POISSON GEOMETRY

DANNY NACKAN

1. INTRODUCTION

This document is intended as a brief introduction to the study of Poisson manifolds, with a focus on their local structure. Following the first half of Weinstein's paper [3], we discuss the basic properties of Poisson manifolds, state the splitting theorem, and introduce the topic of linearization. Some of our exposition is also based on notes by Fernandes and Mărcuț [1], which provide a more detailed look at this material.

2. Basic definitions and properties

Definition. A *Poisson structure* on a manifold M is a Lie bracket $\{,\}$ on $C^{\infty}(M)$ that satisfies the Leibniz property

$${fg,h} = f {g,h} + {f,h} g$$

for all $f, g, h \in C^{\infty}(M)$. The pair $(M, \{,\})$ is called a *Poisson manifold*.

It follows from the Leibniz property and antisymmetry that $\{,\}$ is a derivation in each argument. In particular, for every $h \in C^{\infty}(M)$, the operator

$$X_h := \{\cdot, h\}$$

is a vector field, called the *Hamiltonian vector field* generated by h. (Warning: some authors instead define $X_h = \{h, \cdot\}$.)

Lemma 1. For all $f, g \in C^{\infty}(M)$,

$$X_{\{f,g\}} = [X_g, X_f]$$

(i.e., the map $C^{\infty}(M) \to \mathfrak{X}(M), f \mapsto X_f$, is a Lie algebra antihomomorphism).

Proof. For any $h \in C^{\infty}(M)$,

$$X_{\{f,g\}}(h) = \{h, \{f,g\}\}\$$

= - \{g, \{h, f\}\} - \{f, \{g, h\}\}
= \{\{h, f\}, g\} - \{\{h, g\}, f\} (Jacobi identity)
= \{\{h, f\}, g\} - \{\{h, g\}, f\}

$$= X_g(X_f(h)) - X_f(X_g(h)) = [X_g, X_f](h).$$

Given a Poisson structure $\{,\}$ on M, there is a corresponding bivector field $\pi \in \mathfrak{X}^2(M) := \Gamma(\bigwedge^2 TM)$ such that

$$\pi(df, dg) = \{f, g\}.$$
 (1)

Viewing π as a map $T^*M \times T^*M \to \mathbb{R}$, we obtain (by contraction) a map $\pi^{\sharp} : T^*M \to TM$. Note that (according to our sign conventions) we have $\pi^{\sharp}(dh) = -X_h$ for all $h \in C^{\infty}(M)$.

DANNY NACKAN

Remark. Given an arbitrary bivector field π , the bracket defined by (1) may not satisfy the Jacobi identify. One can show that π defines a Poisson bracket if and only if the Schouten bracket $[\pi, \pi]$ is zero. In this case, we will also refer to π as a *Poisson structure*.

In local coordinates (x_1, \ldots, x_n) on M, we can write

$$\{f,g\} = \sum_{i,j=1}^{n} \{x_i, x_j\} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$$

and

$$\pi = \sum_{i < j} \pi_{ij}(x) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}, \quad \text{where } \pi_{ij}(x) = \{x_i, x_j\}.$$

Thus the Poisson structure is completely determined by the components $\pi_{ij}(x) = \{x_i, x_j\}$. Example 1 (Classical bracket). Let $M = \mathbb{R}^{2n}$ with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$. Then

$$\{f,g\} := \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial q_i} \frac{\partial f}{\partial p_i} \right)$$
(2)

is a Poisson structure, corresponding to the bivector field $\pi := \sum_{i=1}^{n} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$.

Example 2 (Symplectic manifolds). On any symplectic manifold (M, ω) there is a Poisson bracket such that the corresponding X_f are the usual symplectic Hamiltonian vector fields (i.e., they satisfy $df = \iota_{X_f}\omega$). In local symplectic coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$, this bracket is just given by (2).

3. Symplectic foliation

Definition. The rank of a Poisson structure π at $x \in M$ is the rank of the (linear) map $\pi_x^{\sharp}: T_x^*M \to T_xM$. (In local coordinates, this is given by the rank of the matrix $(\pi_{ij}(x))$.)

Definition. A Poisson structure π on M is called *nondegenerate* (or *symplectic*) if its rank is equal to dim M everywhere.

Remark. Example 2 gives a bijective correspondence between symplectic forms ω and nondegenerate Poisson structures π , justifying the above nomenclature.

Theorem 1. If a Poisson structure π has constant rank on M, then Image π^{\sharp} is an integrable distribution which gives rise to a foliation of M into symplectic leaves.

Outline. Since π has constant rank, Image π^{\sharp} is a subbundle of TM, i.e., a distribution. By definition of π^{\sharp} , this distribution is spanned by Hamiltonian vector fields. Since the bracket of Hamiltonian vectors fields is again Hamiltonian (by Lemma 1), we see that Image π^{\sharp} is involutive, and therefore integrable (by the Frobenius theorem).

Showing that the leaves of the corresponding foliation are symplectic requires the technical notion of an induced Poisson structure; we will omit the details here. \Box

Remark. For a general Poisson structure, one obtains a *singular foliation* of M into symplectic leaves (i.e., the leaves may have different dimensions).

Example 3. Consider \mathbb{R}^{2n+s} with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n, c_1, \ldots, c_s)$, and with the Poisson bracket bracket given by (2). (Thus, functions of (c_1, \ldots, c_s) have zero bracket with all of $C^{\infty}(M)$.) In this case, the symplectic leaves are the submanifolds on which all of the c_i are constant, i.e., they are copies of \mathbb{R}^{2n} . Clearly \mathbb{R}^{2n+s} is a union of such submanifolds.

POISSON GEOMETRY

4. Splitting

The product of Poisson manifolds can be given a Poisson structure. Suppose M_1 and M_2 have Poisson structures specified in local coordinates by relations $\{x_i, x_j\} = \pi_{ij}^1(x)$ and $\{y_i, y_j\} = \pi_{ij}^2(y)$ respectively. If we additionally specify that $\{x_i, y_j\} = 0$, then these relations together define a Poisson structure on $M_1 \times M_2$.

Theorem 2 (Splitting). Let M be a Poisson manifold, and let $x \in M$. Then there exists a neighbourhood U of x and an isomorphism $\phi = \phi_S \times \phi_P : U \to S \times P$ where

- *S* is symplectic;
- P is Poisson, with rank 0 at $\phi_P(x)$.

Furthermore, the factors S and P are unique up to local isomorphism.

Remark. One possible representative for the factor S is the symplectic leaf through x.

This theorem reduces the local study of Poisson manifolds to the case where the rank at a point is equal to 0. This case will be studied in further detail in Section 6.

5. LINEAR POISSON STRUCTURES

Fix a finite-dimensional Lie algebra \mathfrak{g} . For any $f \in C^{\infty}(\mathfrak{g}^*)$ and $\mu \in \mathfrak{g}^*$, the differential $df|_{\mu}$ is an element of $\mathfrak{g}^{**} \cong \mathfrak{g}$. Making this identification, we can define a Poisson structure on \mathfrak{g}^* , called the *Lie-Poisson structure*, by

$$\{f,g\}(\mu) = \langle \mu, [df|_{\mu}, dg|_{\mu}] \rangle, \qquad f,g \in C^{\infty}(M)$$

(where $\langle \cdot, \cdot \rangle$ is the pairing of \mathfrak{g}^* with \mathfrak{g}).

We will describe the Lie-Poisson structure in coordinates. Let x_1, \ldots, x_r be a basis for \mathfrak{g} , with corresponding structure constants c_{ij}^k (so that $[x_i, x_j] = \sum_k c_{ij}^k x_k$). Abusing notation, we can also view the x_i as coordinates on \mathfrak{g}^* (via the identification of \mathfrak{g}^{**} with \mathfrak{g}). Then the components of the Lie-Poisson structure are just the linear functions

$$\{x_i, x_j\} = \sum_k c_{ij}^k x_k$$

The following fact is worth mentioning, although we will not use it later.

Fact. The symplectic leaves in g^* are the coadjoint orbits.

6. Linear approximation

Let M be a manifold with Poisson structure π . Suppose that π has rank 0 at a point $p \in M$. We will show that we can provide T_pM with a Lie-Poisson structure.

First note that

$$T_p^*M \cong \mathfrak{m}_p^2/\mathfrak{m}_p$$

where $\mathfrak{m}_p \subseteq C^{\infty}(M)$ is the ideal of functions vanishing at p.

Claim. \mathfrak{m}_p^2 is a Lie ideal of \mathfrak{m}_p .

Proof. Let $f, g, h \in \mathfrak{m}_p$, and write

$${f,gh} = {f,g}h + g {f,h}.$$

The brackets $\{f, g\}$ and $\{f, h\}$ belong to \mathfrak{m}_p (i.e., vanish at p) since the rank of the Poisson structure at p is 0. Hence $\{f, gh\} \in \mathfrak{m}_p^2$.

DANNY NACKAN

Therefore $\mathfrak{g}_p := T_p^* M$ is a Lie algebra, which means that $\mathfrak{g}_p^* = T_p M$ can be given the Lie-Poisson structure. We call this the *linear approximation* to the Poisson structure at p.

The linear approximation has a simple description in coordinates. Suppose x_1, \ldots, x_r are coordinates on M which vanish at p. Since $\pi_{ij} = \{x_i, x_j\}$ vanishes at 0 for all i, j, we can write the Taylor expansion

$$\pi_{ij}(x) = \sum_{k} c_{ij}^{k} x_k + O(x^2), \quad \text{where } c_{ij}^{k} := \frac{\partial \pi_{ij}}{\partial x_k}(0).$$

Then the c_{ij}^k are the structure constants of \mathfrak{g}_p (as the notation suggests), and the components of the linear approximation Poisson structure are just given by

$$\sum_{k} c_{ij}^{k} x_{k}$$

(i.e., by removing the higher order terms).

7. LINEARIZATION

The notion of linear approximation leads to the question of linearization: When is the linear approximation at a point isomorphic to the original Poisson structure? The following example shows that this is not always the case.

Example 4. One can define a nontrivial Poisson structure on \mathbb{R}^3 by

$$\{x_1, x_2\} = |x|^2 x_3 \{x_2, x_3\} = |x|^2 x_1 \{x_3, x_1\} = |x|^2 x_2,$$

but the linear approximation to this structure at the origin is trivial (i.e., the zero bracket).

Definition. A Lie algebra \mathfrak{g} is said to be formally/analytically/ C^{∞} nondegenerate if any Poisson manifold whose linear approximation at a point p is isomorphic to \mathfrak{g}^* is itself isomorphic to \mathfrak{g}^* at p, via a formal/analytic/ C^{∞} local isomorphism.

The classification of nondegenerate Lie algebras is a difficult problem, but certain results are known. For instance, Weinstein proves (in Theorem 6.1 of [3]) that any semisimple Lie algebra is formally nondegenerate. A more recent survey of the linearization problem can be found in [2].

References

- 1. Rui Loja Fernandes and Ioan Marcut, Lectures on Poisson geometry.
- Rui Loja Fernandes and Philippe Monnier, *Linearization of Poisson brackets*, Letters in Mathematical Physics 69 (2004), no. 1, 89–114.
- 3. Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523-557.