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1. Introduction

This document is intended as a brief introduction to the study of Poisson manifolds, with a
focus on their local structure. Following the first half of Weinstein’s paper [3], we discuss the
basic properties of Poisson manifolds, state the splitting theorem, and introduce the topic
of linearization. Some of our exposition is also based on notes by Fernandes and Mărcut, [1],
which provide a more detailed look at this material.

2. Basic definitions and properties

Definition. A Poisson structure on a manifold M is a Lie bracket {, } on C∞(M) that
satisfies the Leibniz property

{fg, h} = f {g, h}+ {f, h} g

for all f, g, h ∈ C∞(M). The pair (M, {, }) is called a Poisson manifold.

It follows from the Leibniz property and antisymmetry that {, } is a derivation in each
argument. In particular, for every h ∈ C∞(M), the operator

Xh := {·, h}

is a vector field, called the Hamiltonian vector field generated by h. (Warning: some authors
instead define Xh = {h, ·}.)

Lemma 1. For all f, g ∈ C∞(M),

X{f,g} = [Xg, Xf ]

(i.e., the map C∞(M)→ X(M), f 7→ Xf , is a Lie algebra antihomomorphism).

Proof. For any h ∈ C∞(M),

X{f,g}(h) = {h, {f, g}}
= −{g, {h, f}} − {f, {g, h}} (Jacobi identity)

= {{h, f} , g} − {{h, g} , f} (antisymmetry)

= Xg(Xf (h))−Xf (Xg(h)) = [Xg, Xf ](h). �

Given a Poisson structure {, } on M , there is a corresponding bivector field π ∈ X2(M) :=
Γ(
∧2 TM) such that

π(df, dg) = {f, g} . (1)

Viewing π as a map T ∗M × T ∗M → R, we obtain (by contraction) a map π] : T ∗M → TM .
Note that (according to our sign conventions) we have π](dh) = −Xh for all h ∈ C∞(M).
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Remark. Given an arbitrary bivector field π, the bracket defined by (1) may not satisfy the
Jacobi identify. One can show that π defines a Poisson bracket if and only if the Schouten
bracket [π, π] is zero. In this case, we will also refer to π as a Poisson structure.

In local coordinates (x1, . . . , xn) on M , we can write

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj

and

π =
∑
i<j

πij(x)
∂

∂xi
∧ ∂

∂xj
, where πij(x) = {xi, xj} .

Thus the Poisson structure is completely determined by the components πij(x) = {xi, xj}.
Example 1 (Classical bracket). Let M = R2n with coordinates (q1, . . . , qn, p1, . . . , pn). Then

{f, g} :=
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
(2)

is a Poisson structure, corresponding to the bivector field π :=
∑n

i=1
∂
∂qi
∧ ∂

∂pi
.

Example 2 (Symplectic manifolds). On any symplectic manifold (M,ω) there is a Poisson
bracket such that the corresponding Xf are the usual symplectic Hamiltonian vector fields
(i.e., they satisfy df = ιXf

ω). In local symplectic coordinates (q1, . . . , qn, p1, . . . , pn), this
bracket is just given by (2).

3. Symplectic foliation

Definition. The rank of a Poisson structure π at x ∈ M is the rank of the (linear) map
π]x : T ∗xM → TxM . (In local coordinates, this is given by the rank of the matrix (πij(x)).)

Definition. A Poisson structure π on M is called nondegenerate (or symplectic) if its rank
is equal to dimM everywhere.

Remark. Example 2 gives a bijective correspondence between symplectic forms ω and non-
degenerate Poisson structures π, justifying the above nomenclature.

Theorem 1. If a Poisson structure π has constant rank on M , then Imageπ] is an integrable
distribution which gives rise to a foliation of M into symplectic leaves.

Outline. Since π has constant rank, Imageπ] is a subbundle of TM , i.e., a distribution. By
definition of π], this distribution is spanned by Hamiltonian vector fields. Since the bracket
of Hamiltonian vectors fields is again Hamiltonian (by Lemma 1), we see that Image π] is
involutive, and therefore integrable (by the Frobenius theorem).

Showing that the leaves of the corresponding foliation are symplectic requires the technical
notion of an induced Poisson structure; we will omit the details here. �

Remark. For a general Poisson structure, one obtains a singular foliation of M into sym-
plectic leaves (i.e., the leaves may have different dimensions).

Example 3. Consider R2n+s with coordinates (q1, . . . , qn, p1, . . . , pn, c1, . . . , cs), and with the
Poisson bracket bracket given by (2). (Thus, functions of (c1, . . . , cs) have zero bracket with
all of C∞(M).) In this case, the symplectic leaves are the submanifolds on which all of the
ci are constant, i.e., they are copies of R2n. Clearly R2n+s is a union of such submanifolds.
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4. Splitting

The product of Poisson manifolds can be given a Poisson structure. Suppose M1 and
M2 have Poisson structures specified in local coordinates by relations {xi, xj} = π1

ij(x) and

{yi, yj} = π2
ij(y) respectively. If we additionally specify that {xi, yj} = 0, then these relations

together define a Poisson structure on M1 ×M2.

Theorem 2 (Splitting). Let M be a Poisson manifold, and let x ∈ M . Then there exists a
neighbourhood U of x and an isomorphism φ = φS × φP : U → S × P where

• S is symplectic;
• P is Poisson, with rank 0 at φP (x).

Furthermore, the factors S and P are unique up to local isomorphism.

Remark. One possible representative for the factor S is the symplectic leaf through x.

This theorem reduces the local study of Poisson manifolds to the case where the rank at
a point is equal to 0. This case will be studied in further detail in Section 6.

5. Linear Poisson structures

Fix a finite-dimensional Lie algebra g. For any f ∈ C∞(g∗) and µ ∈ g∗, the differential
df |µ is an element of g∗∗ ∼= g. Making this identification, we can define a Poisson structure
on g∗, called the Lie-Poisson structure, by

{f, g} (µ) = 〈µ, [df |µ, dg|µ] 〉 , f, g ∈ C∞(M)

(where 〈 ·, · 〉 is the pairing of g∗ with g).
We will describe the Lie-Poisson structure in coordinates. Let x1, . . . , xr be a basis for g,

with corresponding structure constants ckij (so that [xi, xj] =
∑

k c
k
ijxk). Abusing notation,

we can also view the xi as coordinates on g∗ (via the identification of g∗∗ with g). Then the
components of the Lie-Poisson structure are just the linear functions

{xi, xj} =
∑
k

ckijxk.

The following fact is worth mentioning, although we will not use it later.

Fact. The symplectic leaves in g∗ are the coadjoint orbits.

6. Linear approximation

Let M be a manifold with Poisson structure π. Suppose that π has rank 0 at a point
p ∈M . We will show that we can provide TpM with a Lie-Poisson structure.

First note that
T ∗pM

∼= m2
p/mp,

where mp ⊆ C∞(M) is the ideal of functions vanishing at p.

Claim. m2
p is a Lie ideal of mp.

Proof. Let f, g, h ∈ mp, and write

{f, gh} = {f, g}h+ g {f, h} .
The brackets {f, g} and {f, h} belong to mp (i.e., vanish at p) since the rank of the Poisson
structure at p is 0. Hence {f, gh} ∈ m2

p. �
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Therefore gp := T ∗pM is a Lie algebra, which means that g∗p = TpM can be given the
Lie-Poisson structure. We call this the linear approximation to the Poisson structure at p.

The linear approximation has a simple description in coordinates. Suppose x1, . . . , xr are
coordinates on M which vanish at p. Since πij = {xi, xj} vanishes at 0 for all i, j, we can
write the Taylor expansion

πij(x) =
∑
k

ckijxk +O(x2), where ckij :=
∂πij
∂xk

(0).

Then the ckij are the structure constants of gp (as the notation suggests), and the components
of the linear approximation Poisson structure are just given by∑

k

ckijxk

(i.e., by removing the higher order terms).

7. Linearization

The notion of linear approximation leads to the question of linearization: When is the
linear approximation at a point isomorphic to the original Poisson structure? The following
example shows that this is not always the case.

Example 4. One can define a nontrivial Poisson structure on R3 by

{x1, x2} = |x|2x3
{x2, x3} = |x|2x1
{x3, x1} = |x|2x2,

but the linear approximation to this structure at the origin is trivial (i.e., the zero bracket).

Definition. A Lie algebra g is said to be formally/analytically/C∞ nondegenerate if any
Poisson manifold whose linear approximation at a point p is isomorphic to g∗ is itself iso-
morphic to g∗ at p, via a formal/analytic/C∞ local isomorphism.

The classification of nondegenerate Lie algebras is a difficult problem, but certain results
are known. For instance, Weinstein proves (in Theorem 6.1 of [3]) that any semisimple Lie
algebra is formally nondegenerate. A more recent survey of the linearization problem can be
found in [2].
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