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1 Introduction

Take (M,ω) a symplectic manifold, G a compact Lie group with Hamiltonian action on M , and
J : M → g∗ the momentum map. Recall this means J is G-equivariant (with respect to the
coadjoint action), and d〈J, µ〉 = ιµMω for each µ ∈ g. Note the orbits of G carry a unique
differential structure as immersed submanifolds of M . Warming up, we begin with a standard fact
(see, for example, [2], page 142).

Lemma 1. Set gp := {µ ∈ g | µM(p) = 0}, and say Op is the orbit through p. Then

ann Im dJp = gp, ker dJp = (TpOp)ωp ,

where ann is the annihilator. If J(p) = 0, then TpOp is isotropic, so the immersed submanifold
Op is isotropic in M .

Proof. For any u ∈ TpM , µ ∈ g,

〈dJpu, µ〉 = d〈J, µ〉pu by the chain rule

= ιµMωp(u) By Hamilton’s equation

= ωp(µM(p), u),

so the left is zero for all u if and only if µM(p) = 0, proving the first statement. The left side is
zero for all µ if and only if u ∈ (TpOp)ωp (using the fact the tangent space consists of all µM(p)),
proving the second statement. For the last statement, taking u = ξM(p) for ξ ∈ g, and evaluating
dJpu, we get

dJp(ξM(p)) = dJp

(
d

dt

∣∣
t=0

exp(tξ) · p
)

by definition of exp

=
d

dt

∣∣
t=0

(J(exp(tξ) · p)) by the chain rule

=
d

dt

∣∣
t=0

(exp(tξ) · J(p)) because J is invariant.

If J(p) = 0, it follows that 0 = 〈dJp(ξM(p)), µ〉 = ωp(µM(p), ξM(p)) = 0. Since this holds for
any µ ∈ g, we conclude TpOp ⊆ ker dJp = (TpOp)ωp .

Suppose now that G acts freely on M . By Lemma 1, 0 is a regular value of J , so J−1(0) is an
embedded submanifold of M . The group G still acts properly and freely on J−1(0), so

M0 := J−1(0)/G
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has a manifold structure. In 1974, Marsden and Weinstein showed there is a unique symplectic
form ω0 on M0 such that given

J−1(0) M

M0 = J−1(0)/G

ι

π

we have π∗ω0 = ι∗ω. We call (M0, ω0) Marsden-Weinstein reduced space. If the G-action is not
necessarily free, and 0 is not a regular value, then J−1(0) need not be a submanifold of M , and
similarly for the quotient M0 = J−1(0)/G. Regardless M0 is a topological space. In 1991 Sjamaar
and Lerman in “Stratified symplectic spaces and reduction” [1] showed M0 is a stratified symplectic
space. The remainder of this note is devoted stating Sjamaar and Lerman’s result. Cushman and
Sjamaar wrote a helpful summary of [1], appearing in [3].

2 Statement of the Result

Definition 1. A decomposition of a Hausdorff and paracompact topological space X is a partition
X =

⊔
i∈I Si, where the collection {Si} is locally finite, each Si is locally closed, each Si carries a

manifold structure, and

(frontier condition) Si ∩ S̄j 6= ∅ ⇐⇒ Si ⊆ S̄j.

We call a space X with a decomposition a decomposed space. The frontier condition gives a
partial ordering of the pieces Si by Si ≤ Sj if Si ∩ S̄j 6= ∅ (and equality if and only if i = j). This
partial ordering is used to define a stratification of X. This additional structure on a decomposed
space is defined recursively, like that of a CW or simplicial complex:

Definition 2. A stratification of a decomposed space X is an assignment to each x ∈ S an
open neighbourhood U of x in X, an open ball B about x in S, a stratified space L, and a
homeomorphism ϕ : B × CL→ U preserving the decomposed structure.1

A decomposed space with a stratification is a stratified space. This is well-defined because the
cone over a decomposed space increases the depth of a decomposed space by 1, where

depth X := sup
i∈I

sup{n | Si < Si1 < · · · < Sin}.

A relevant example comes from a compact Lie group G acting on a manifold M . For each
pair of stabilizer subgroups H,K ≤ G, declare H ∼ K if K and H are conjugate. In the set of
stabilizer subgroups, denote the classes of this relation by (H), and define the orbit type strata

1Here CL is the infinte cone over L, obtained from L× [0,∞) by identifying L× {0} with a point.
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M(H) := {p ∈M | (Gp) = (H)}.

The connected components M(H),i of each M(H) are manifolds, and moreover the partition
M =

⊔
(H),iM(H),i is a decomposition of M . The corresponding partition of M/G by the M(H),i/G

is decomposition of M/G. Both decomposed spaces are in fact stratified. We now state Sjamaar
and Lerman’s main result, Theorem 2.1 in [1].

Theorem 1. Take (M,ω) a symplectic manifold, equipped with a Hamiltonian action by the
compact Lie group G with momentum map J : M → g∗. For each stabilizer group H ≤ G, the
intersection M(H),i ∩ J−1(0) is a manifold (Lemma 1), and

(M0)(H),i = (M(H),i ∩ J−1(0))/G

has a symplectic structure (ω0)(H),i such that given

M(H),i ∩ J−1(0) M

(M0)(H),i

ι

π

we have π∗(ω0)(H),i = ι∗ω. Moreover, the (M0)(H),i stratify M0 with symplectic pieces.

3 Poisson structure on reduced space

We give another view of M0. In a Poisson manifold P , a symplectic leaf about x ∈ P is collection
of all other y ∈ P that can be joined to x by trajectories of a finite number of Hamiltonian vector
fields. In 1983 Weinstein proved each symplectic leaf is a weakly embedded submanifold of P
which carries a symplectic form.

In our case, M0 is not necessarily a manifold, let alone Poisson. Regardless, it is stratified.
Sjamaar and Lerman define a smooth structure on a stratified space X to be an algebra of con-
tinuous functions on X such that each member restricts to a smooth function on the pieces of X.
If the pieces of X are symplectic manifolds, and there is a smooth structure C∞(X) on X with
a Poisson bracket {·, ·} making the embeddings S ↪→ X Poisson, we say (X, {·, ·}) is a stratified
symplectic space:

In the case X = M0, Sjamaar and Lerman give a smooth structure (C∞(M0), {·, ·}) making
M0 a stratified symplectic space. Moreover, there is a notion of symplectic leaves in (M, {·, ·}),
and these are exactly the pieces of M0 (i.e. the M(H),i). Details follow.

Definition 3. • A continuous function on M0 is smooth if there is a smooth G-invariant func-
tion F on M such that F |J−1(0) = f ◦ π. Denote this smooth structure by C∞(M0). It is a
combination of the notion of Whitney smooth, and of smooth functions on an orbit space.

3



David Miyamoto Singular Symplectic Reduction May 9, 2019

• A bracket of smooth functions f, h ∈ C∞(M0) is given by

{f, h} := {F,H}M ,

where F,H : M → R are G-invariant smooth functions witnessing the smoothness of f, h,
and {·, ·}M is the bracket induced by ω.

It takes work to show this bracket is well-defined. If 0 is a regular value of J , this Poisson
structure coincides with the Marsden-Weinstein one induced by ω0. Now we define the notion of
a Hamiltonian vector field of h ∈ C∞(M0), and its trajectory.

Definition 4. • The Hamiltonian derivation adh of h ∈ C∞(M0) operates on smooth func-
tions

adh · f := {h, f}.

• A trajectory of adh through a point in M0 is a smooth curve2 γ : [0, 1]→M0 starting at the
point such that for all smooth f : M0 → R,

d

dt
f ◦ γ(t) = − adh · f(γ(t)).

Integral curves always exist in some neighbourhood, and are unique. We say the leaves of
(M0, {·, ·}) are the equivalence classes obtained from declaring two points related if they can be
joined by a finite number of trajectories of Hamiltonian derivations. Sjamaar and Lerman showed
(page 19 of [1])

Theorem 2. The (M0)(H),i are exactly the leaves of (M0, {·, ·}).

4 An example

We follow Example 2.4 in [3], to show reduced space may indeed fail to be a manifold. Set M := C4,
with S1 action

eiθ · (z1, z2, z3, z4) := (eiθz1, e
iθz2, e

−iθz3, e
−iθz4).

This action is Hamiltonian, with momentum map

2a continuous map γ : [0, 1]→M0 such that its pullback by any smooth function is smooth
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J(z1, z2, z3, z4) :=
1

2
(|z1|2 + |z2|2 − |z3|2 − |z4|2).

Note 0 is not a regular value of J . As a set,

J−1(0) = {|z1|2 + |z2|2 = |z3|2 + |z4|2}.

Consider S7 = {|z1|2 + |z2|2 + |z3|2 + |z4|2} ⊂ C4. Both S7 and J−1(0) are S1-invariant, and
their intersection is the 6-dimensional S1-invariant submanifold (of C4)

J−1(0) ∩ S7 = S3 × S3 ⊂ C2 × C2, where each S3 has radius
1

2
.

This is a deformation retract of J−1(0) r {0}, which is J−1(0) ∩M{1}. Evidently

S1 acts on the first copy of S2 by eiθ · (z1, z2) := (eiθz1, e
iθz2)

S1 acts on the second copy of S2 by eiθ · (z3, z4) := (e−iθz3, e
−iθz4).

Denote the quotient of S3 × S3 by the S1 action as S3 ×S1 S3. Observe reduced space (C4)0 is
homotopy equivalent to the cone over S3 ×S1 S3, i.e.

(C4)0 ∼ C(S3 ×S1 S3).

The 3rd degree rational local homology of the cone at its vertex is Q, which is impossible for a
6-dimensional manifold. Therefore reduced space is not a manifold (in fact, it is not an orbifold).
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tique et physique mathematique (Aix-en-Provence, France, 1990), Progress in Mathematics, vol. 99, Birkhäuser
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