
CRASH COURSE ON MANIFOLDS

YAEL KARSHON

A manifold is a (Hausdorff, second countable) topological space M
equipped with an equivalence class of atlases.

An atlas is an open coveringM =
⋃
i Ui and homeomorphisms ϕi : Ui →

Ωi where Ωi ⊂ Rn is open, such that the transition maps ϕj◦ϕ−1i : ϕi(Ui∩
Uj) → ϕj(Ui ∩ Uj) are smooth (that is, are of type C∞: all partial
derivatives of all orders exist and are continuous).

Two atlases {ϕi : Ui → Ωi} and {ϕ̃j : Ũj → Ω̃j} are equivalent if their
union is an atlas, that is, if ϕ̃jϕ

−1
i and ϕiϕ̃j

−1 are smooth for all i, j.

ϕi : Ui → Ωi is called a coordinate chart.

ϕ−1i : Ωi → Ui is called a parametrization.

One can write ϕi = (x1, . . . , xn). xj : Ui → R are coordinates.

Let X ⊂ RN be any subset and Ω ⊂ Rn open. A continuous map
ϕ : X → Ω is called smooth if every point in X is contained in an open
subset V ⊂ RN such that there exists a smooth function ϕ̃ : V → Ω
with ϕ̃|X∩V = ϕ. A continuous map ψ : Ω → X is called smooth if
it is smooth as a map to RN . A diffeomorphism ϕ : X → Ω is a
homeomorphism such that both ϕ and ϕ−1 are smooth.

Theorem. Let M ⊂ RN be a subset that is “locally diffeomorphic to
Rn”: for every point in M there exists a neighborhood U ⊂ M and
there exists an open subset Ω ⊂ Rn and there exists a diffeomorphism
ϕ : U → Ω. Then M is a manifold with atlas {ϕ : U → Ω}. (Exercise:
the transition maps are automatically smooth.) Such an M is called
an embedded submanifold of RN .

Example. S2 = {(x, y, z) | x2 + y2 + z2 = 1}. For instance, x, y are
coordinates on the upper hemisphere.

A continuous function f : M → R is smooth if f ◦ ϕ−1i : Ωi → R is
smooth for all i (as a function of n variables).

C∞(M) := { the smooth functions f : M → R }.
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A (continuous) curve γ : R→M is smooth if ϕi ◦γ is smooth for all i.

We will define the tangent space TmM = “directions along M at the
initial point m”.

A smooth curve γ : R → M with γ(0) = m defines “differentiation
along the curve”, which is the linear functional C∞(M)→ R,

Dγ : f 7→ d

dt

∣∣∣∣
t=0

f(γ(t)).

We define an equivalence of such curves by γ ∼ γ̃ if Dγ = Dγ̃.

This means that γ and γ̃ have the same direction at the point m =
γ(0) = γ̃(0), that is, they are tangent to each other at this point.

Geometric definition of the tangent space:

TmM = { the equivalence classes of curves in M through m.}

Leibnitz property: Dγ(fg) = (Dγf)g(m) + f(m)(Dγg).

Definition. A derivation at m is a linear functional D : C∞(M)→ R
that satisfies the Leibnitz property.

Theorem. The derivations at m form a linear vector space: if D1, D2

are derivations and a, b ∈ R then aD1 + bD2 is a derivation.

Theorem. If x1, . . . , xn are coordinates near m then every derivation
is a linear combination of ∂

∂x1
, . . . , ∂

∂xn
. (The proof uses Hadamard’s

lemma: for any f ∈ C∞(Rn) there exist fi ∈ C∞(Rn) such that f(x) =

f(0) +
∑
xifi(x). Proof of the lemma: f(x) − f(0) =

∫ 1

0
d
dt
f(tx)dt =∑

xi
∫ 1

0
∂f
∂xi

(tx)dt by the chain rule.)

Corollary. For every derivation D there exists a curve γ such that
D = Dγ. TmM is a linear vector space (identified with the space of
derivations atm). If x1, . . . , xn are coordinates nearm then ∂

∂x1
, . . . , ∂

∂xn

is a basis of TmM .

Differential of a function: df |m ∈ T ∗mM = (TmM)∗ is given by

df |m(v) = vf,

the derivative of f in the direction of v ∈ TmM .

If x1, . . . , xn are coordinates then

dxi(
∂

∂xj
) =

∂xi

∂xj
= δij,
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so dx1, . . . , dxn is the basis of T ∗mM that is dual to the basis ∂
∂x1
, . . . , ∂

∂xn

of TmM .

In coordinates, df =
∑
i

∂f

∂xi
dxi.

A differential form of degree 0 is a smooth function.

A differential form of degree 1, α ∈ Ω1(M), associates to each m ∈
M a linear functional αm ∈ T ∗mM . In coordinates: α =

∑
i ci(x)dxi.

We require that the coefficients ci(x) be smooth functions of x =
(x1, . . . , xn).

A differential form of degree 2, α ∈ Ω2(M), associates to each
m ∈M an alternating (i.e., anti-symmetric) bilinear form αm : TmM ×
TmM → R. In coordinates: α =

∑
i,j

cij(x)dxi ∧ dxj (where

dxi ∧ dxj : (u, v) 7→ det

[
ui vi

uj vj

]
if u =

∑
uk ∂

∂xk
and v =

∑
vk ∂

∂xk
).

A differential form of degree k:

α =
∑
i1,...,ik

ci1...ik(x)dxi1 ∧ . . . ∧ dxik

(where dxi1 ∧ . . . ∧ dxii is similarly given by a k × k determinant).

Exterior derivative:

dα =
∑

i1,...,ik,j

∂ci1...ik
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxik .

α is closed if dα = 0; α is exact if there exists β such that α = dβ.

De Rham cohomology: Hk
dR(M) = {closed k-forms}/{exact k-forms}.

An oriented manifold is a manifold equipped with an equivalence
class of oriented atlases. (Jacobians of transition maps must have pos-
itive determinants.)

Integration: Let M be an oriented manifold of dimension n. For
an n-form with support in a coordinate neighborhood Ui: write it as
f(x)dx1 ∧ . . . ∧ dxn where x1, . . . , xn are (oriented) coordinates and
take the Riemann integral of f on Rn. For an arbitrary compactly
supported form α: choose a partition of unity ρi : M → R,

∑
ρi = 1,
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supp ρi ⊂ Ui, and define ∫
M

α =
∑
i

∫
(ρiα).

Pullback: f : M → N induces f ∗ : Ωk(N)→ Ωk(M). This enables us
to integrate a k-form over an oriented k-submanifold.

A manifold with boundary is defined like a manifold except that
the Ωs are open subsets of the upper half space. Its boundary ∂M is
well defined and is a manifold of one dimension less.

Stokes’s theorem:
∫
M
dα =

∫
∂M

α.

α ∈ Ωk(M) is closed iff
∫
N
α = 0 whenever N is the boundary of

a compact oriented submanifold-with-boundary of M . If α is exact,∫
N
α = 0 for every compact oriented submanifold N ⊂M . (α is exact

iff
∫
N
α = 0 for every smooth cycle N in M .) If the integral of a closed

form on N is nonzero, informally N “wraps around a hole in M”.

Theorem: if M is oriented and compact n-manifold then α 7→
∫
M
α

induces an isomorphism Hn
dR(M)→ R.

Multiplicative structure: [α] · [β] = [α ∧ β] is a well defined ring
structure on H∗dR(M). f : M → N induces a ring homomorphism
f ∗ : H∗dR(N)→ H∗dR(M).


