MAT157Y TERM TEST 2 – COMMENTS.

- (1) (a) Give one example of a function $f : \mathbb{R} \to \mathbb{R}$ that satisfies the following condition: (*) There exists $\delta > 0$ such that for all $\epsilon > 0$, if $0 < |x - 1| < \delta$ then $|f(x) - 2| < \epsilon$.
 - (b) Give one example of a function f: R → R that satisfies lim f(x) = 2 but that does not satisfy the condition (*).

Do not explain.

Comment on (a): the condition is that f be identically equal to 2 on some punctured neighbourhood of x = 1.

- (2) (a) Let $A \subset \mathbb{R}$ be a non-empty set of positive numbers. Say whatever you can about inf A and sup A.
 - (b) Does the set $\{x \mid x^2 + x 1 < 0\}$ have a least upper bound? If so, find it. If not, explain in one sentence.

Complete solution to (a): inf A exists and is ≥ 0 . If sup A exists, then sup $A \geq \inf A$ and sup A > 0.

- (3) (a) Prove that there is a point x between 0 and 2 such that $x^5 x = 10$.
 - (b) Prove that there does not exist a point x between 0 and 2 such that $x^5 x = -1$. (Hint: find the minimum value of $x^5 - x$ for x between 0 and 2 and show that it is > -1).

Complete solution to (a): The function $f(x) = x^5 - x$ is continuous on the interval [0, 2], and (because f(0) = 0 and f(2) = 30,) we have f(0) < 10 < f(2). By the intermediate value theorem, there exists x such that 0 < x < 2 and f(x) = 10.

Complete solution to (b): The function $f(x) = x^5 - x$ is continuous on the interval [0, 2], so by the extreme value theorem, it attains a minimum on this interval. Since f is differentiable, if this minimum is attained at a point x in the open interval (0, 2), then at this point we have f'(x) = 0.

Since $f'(x) = 5x^4 - 1$ for all x, if f'(x) = 0 then $x = \frac{1}{\sqrt[4]{5}}$ or $x = -\frac{1}{\sqrt[4]{5}}$. Of these two points, only the first is in the open interval (0, 2). We calculate the value of f at this point: $(\frac{1}{\sqrt[4]{5}})^5 - \frac{1}{\sqrt[4]{5}} = \frac{1}{5\sqrt[4]{5}} - \frac{1}{\sqrt[4]{5}} = \frac{-4}{5\sqrt[4]{5}}$. So the minimum value of f on the interval [0, 2] is either $\frac{-4}{5\sqrt[4]{5}}$, or f(0) (which is 0),

So the minimum value of f on the interval [0, 2] is either $\frac{-4}{5\sqrt[4]{5}}$, or f(0) (which is 0), or f(2) (which is 30). Since $\frac{-4}{5\sqrt[4]{5}}$ is the smallest of these three numbers, the minimum value of f in the interval [0, 2] is $\frac{-4}{5\sqrt[4]{5}}$.

Since 5 > 1, we have $\sqrt[4]{5} > 1$, and so $\frac{4}{5 \cdot \sqrt[4]{5}} < \frac{4}{5}$, and $\frac{-4}{5 \sqrt[4]{5}} > -\frac{4}{5}$. So for all $x \in [0, 2]$ we have $x^5 - x \ge \frac{-4}{5\sqrt[4]{5}} > -1$, and in particular $x^5 - x \ne -1$.

- (4) (a) Find the equation for the tangent line to the graph of the function $x \mapsto \frac{1}{x}$ at the point $(7, \frac{1}{7})$.
 - (b) Find the derivative of the function $x \mapsto \sin(\frac{1}{x})$ at the point $x = \frac{6}{\pi}$. Simplify if you can.

Comment on (b): Simplifying the expression requires evaluating $\cos(\frac{\pi}{6})$. If you are not fluent with trigonometry, please review it. I highly recommend the book "Trigonometry" by Gelfand and Saul.

- (5) For each of the following statements, determine if it is true or false, and explain informally in one short sentence. Do not give formal proofs.
 - (a) For any function $f : \mathbb{R} \to \mathbb{R}$, if f is differentiable and bounded from below, then there exists $x \in \mathbb{R}$ such that $f(x) \leq f(y)$ for all $y \in \mathbb{R}$.
 - (b) For any function $f \colon \mathbb{R} \to \mathbb{R}$, if f is differentiable and f'(x) > 0 for all x, then there is no x such that $f(x) \leq f(y)$ for all $y \in \mathbb{R}$.
 - (c) For any function $f \colon \mathbb{R} \to \mathbb{R}$, if f is differentiable and f'(x) = 0 for all x > 0, then f(0) = f(100).
 - (d) For any function $f: \mathbb{R} \to \mathbb{R}$, if f is differentiable and f'(x) = 0 whenever |x| > 100, then f has a maximal value.

Solution to (a): False. For example $f(x) = e^x$ is differentiable and bounded from below (by 0) but does not attain a minimum.

Solution to (b): True. At a minimum point x for f we would have had f'(x) = 0.

Solution to (c): True. This is a consequence of the mean value theorem.

(*Comment:* We need to apply the mean value theorem only once, to the interval [0, 100], and we don't need to know anything about f'(0).)

Comment on (d): While marking the test I realized that the question can be parsed in two different ways. I allowed both interpretations.

(d') For any function $f \colon \mathbb{R} \to \mathbb{R}$, if

• f is differentiable

and

• f'(x) = 0 whenever |x| > 100,

then f has a maximal value.

This statement is true. By the extreme value theorem, the restriction of f to the closed interval [-100, 100] has a maximal value; the assumption on the derivative implies that f is constant on each of $[100, \infty)$ and on $(-\infty, -100]$, so the maximal value for f on [-100, 100] is also a maximal value for f on all of \mathbb{R} .