Quan	tiza	ntion,
after	Sou	ıriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Quantization, after Souriau

François Ziegler (Georgia Southern)

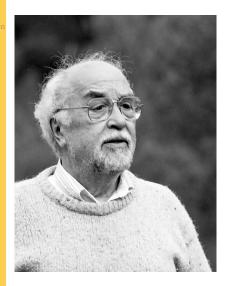
Geometric Quantization: Old and New 2019 CMS Winter Meeting Toronto, 12/8/2019

Abstract: J.-M. Souriau spent the years 1960-2000 in a uniquely dogged inquiry into what exactly quantization is and isn't. I will report on results (of arXiv:1310.7882 etc.) pertaining to the last (still unsatisfactory!) formulation he gave.

J.-M. Souriau

Souriau

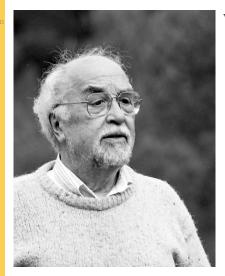
Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)



J.-M. Souriau

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

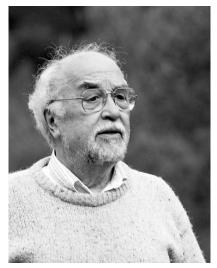


What is quantization?

J.-M. Souriau

Souriau

Prequantizat Quantization Group algebi Classical Quantum Nilpotent Reductive E(3)



What is quantization?

« How do I arrive at the matrix that represents a given quantity in a system of known constitution? »

> — H. Weyl, Quantenmechanik und Gruppentheorie (1927)

Souriau

Prequantization

Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Let (X, ω) be a prequantizable symplectic manifold: $[\omega] \in H^2(X, \mathbb{Z})$.

Mantra:

Prequantization constructs a representation of the Poisson algebra $C^{\infty}(X)$, which is "too large" because not irreducible enough.

(We then need "polarization" to cut it down.)

Prequantization

Souriau

Prequantization

Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3) Let (X,ω) be a prequantizable symplectic manifold: $[\omega]\in H^2(X,\textbf{Z}).$

Mantra:

Prequantization constructs a representation of the Poisson algebra $C^{\infty}(X)$, which is "too large" because not irreducible enough.

(We then need "polarization" to cut it down.)

Souriau:

Not the point! What prequantization constructs is a group Aut(L) with "Lie algebra" $C^{\infty}(X)$, of which X is a coadjoint orbit.

(Every prequantizable symplectic manifold is a coadjoint orbit, 1985.)

Prequantization

Quantization?

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

Mantra:

Quantization is some sort of functor from a "classical" category (symplectic manifolds and functions?) to a "quantum" category (Hilbert spaces and self-adjoint operators?).

Besides, it doesn't exist ("by van Hove's no-go theorem").

Quantization?

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

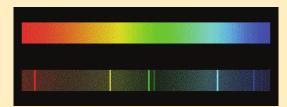
Mantra:

Quantization is some sort of functor from a "classical" category (symplectic manifolds and functions?) to a "quantum" category (Hilbert spaces and self-adjoint operators?).

Besides, it doesn't exist ("by van Hove's no-go theorem").

Souriau:

No! Quantization is a switch from *classical states* to *quantum states*:



Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive • **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)

• C[G]' \cong C^G = {all functions $m : G \to C$ }: $\langle m, c \rangle = \sum c_g m(g)$

• G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)
Call *m* a state of G if positive definite: ⟨m, c* · c⟩ ≥ 0, and m(e) = 1.
Then C[G]/C[G]⁻¹ is a unitary G-module, realizable in C[G]' as
GNS_m = {φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} (|(φ,c)|²/(m,c*·c)) < ∞}. *m* is cyclic in GNS_m (its G-orbit has dense span).
Any unitary G-module with a cyclic unit vector φ is GNS_(φ,+φ).

Quantization, after Souriau

- Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive F(2)
- **C**[G] := {finitely supported functions $\mathbf{G} \to \mathbf{C}$ } $\exists c = \sum_{g \in \mathbf{G}} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh} = (\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $C[G]' \cong C^G = \{ all functions m : G \to C \}: (m, c) = \sum c_g m(g) \}$
- G-invariant sesquilinear forms on C[G] write $(c,d)\mapsto \langle m,c^*\cdot d
 angle$ $(\delta^e,g\delta^e)\mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz) Call *m* a state of G if positive definite: $(m, c^* \cdot c) \ge 0$, and m(e) = 1• Then $\overline{C[G]/C[G]^{\perp}}$ is a unitary G-module, realizable in C[G]' as $GNS_m = \left\{ \varphi \in C^G \text{ such that } \|\varphi\|^2 := \sup_{c \in C[G]} \frac{|\langle \overline{m}, c \rangle|^2}{\langle \overline{m}, c^*, c \rangle} < \infty \right\}.$

- \overline{m} is cyclic in GNS_m (its G-orbit has dense span).
- Any unitary G-module with a cyclic unit vector φ is GNS_{(φ}.

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive • **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$

is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)

• $C[G]' \cong C^G = \{ all \text{ functions } m : G \to C \}: \langle m, c \rangle = \sum c_g m(g) \}$

• G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

all m a *state of* G if positive definite: $\langle m, c^* \cdot c
angle \geqslant ar{0}$, and m(e) = 1.

• Then $C[G]/C[G]^{\perp}$ is a unitary G-module, realizable in C[G]' as

 $\mathrm{GNS}_m = \left\{ \varphi \in \mathbf{C}^\mathsf{G} \text{ such that } \|\varphi\|^2 := \sup_{c \in \mathsf{C}[\mathsf{G}]} \frac{|(\overline{\varphi}, c)|^2}{(m, c \in c)} < \infty \right\}$

• \overline{m} is cyclic in GNS_m (its G-orbit has dense span).

• Any unitary G-module with a cyclic unit vector φ is GNS_(φ , .)

Quantization, after Souriau

- Souriau Prequantizatio Quantization? **Group algebra** Classical Quantum Nilpotent Reductive E(2)
- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $C[G]' \cong C^G = \{ \text{all functions } m : G \to C \}: (m, c) = \sum c_g m(g) \}$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)
Call *m* a state of G if positive definite: (*m*, *c** · *c*) ≥ 0, and *m*(*e*) = 1.
Then C[G]/C[G][⊥] is a unitary G-module, realizable in C[G]' as GNS_m = {φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} (|(φ, c)|²/(m, c* · c)) < ∞}. *m* is cyclic in GNS_m (its G-orbit has dense span).

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \ \langle m, c \rangle = \sum c_g m(g) \}$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz) = 0.5 (GRS, L. Schwartz).
Call *m* a state of G if positive definite: (*m*, *c** · *c*) ≥ 0, and *m*(*e*) = 1.
Then C[G]/C[G][⊥] is a unitary G-module, realizable in C[G]' as GNS_m = { φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} (((m, c)²)/((m, c)²)) < ∞ }. *m* is cyclic in GNS_m (its G-orbit has dense span).
Any unitary G-module with a cyclic unit vector φ is GNS_(c, w).

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[G]' \cong \mathbf{C}^G = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \ \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)
Call *m* a state of G if positive definite: (*m*, *c** · *c*) ≥ 0, and *m*(*e*) = 1.
Then C[G]/C[G][⊥] is a unitary G-module, realizable in C[G]' as GNS_m = {φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} ((φ,c))²/(m,c*·c)) < ∞}. *m* is cyclic in GNS_m (its G-orbit has dense span).
Any unitary G-module with a cyclic unit vector φ is GNS_(φ,·φ).

Quantization, after Souriau

- Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)
- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g\delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)
Call *m* a state of G if positive definite: (*m*, *c** · *c*) ≥ 0, and *m*(*e*) = 1.
Then C[G]/C[G][⊥] is a unitary G-module, realizable in C[G]' as GNS_m = {φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} (^{[G,c])²}/_(m,c⁺,c) < ∞}. *m* is cyclic in GNS_m (its G-orbit has dense span).
Any unitary G-module with a cyclic unit vector φ is GNS_(φ, r, φ).

Quantization, after Souriau

- Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)
- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)
Call *m* a state of G if positive definite: ⟨m, c* · c⟩ ≥ 0, and m(e) = 1.
Then C[G]/C[G][⊥] is a unitary G-module, realizable in C[G]' as GNS_m = {φ ∈ C^G such that ||φ||² := sup_{c∈C[G]} |((m,c* · c))/((m,c* · c)) < ∞}. *m* is cyclic in GNS_m (its G-orbit has dense span).
Any unitary G-module with a cyclic unit vector φ is GNS_(φ,c0).

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

- Call *m* a *state of* G if positive definite: $\langle m, c^* \cdot c \rangle \ge 0$, and m(e) = 1.
 - Then $C[G]/C[G]^{\perp}$ is a unitary G-module, realizable in C[G]' as
 - $\mathrm{GNS}_m = \left\{ \varphi \in \mathbf{C}^{\mathrm{G}} \text{ such that } \|\varphi\|^2 := \sup_{c \in \mathbf{C}[\mathrm{G}]} \frac{|\langle \overline{\varphi}, c \rangle|^2}{(m, c^* \cdot c)} < \infty \right\}.$

• \overline{m} is cyclic in GNS_m (its G-orbit has dense span).

• Any unitary G-module with a cyclic unit vector φ is GNS_{(φ_{1}}.

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

Call *m* a *state of* G if positive definite: $\langle m, c^* \cdot c \rangle \ge 0$, and m(e) = 1.

• Then $C[G]/C[G]^{\perp}$ is a unitary G-module, realizable in C[G]' as

 $\mathrm{GNS}_m = \left\{ \varphi \in \mathbf{C}^{\mathrm{G}} \text{ such that } \|\varphi\|^2 := \sup_{c \in \mathbf{C}[\mathrm{G}]} \frac{|\langle \overline{\varphi}, c \rangle|^2}{\langle m, c^* \cdot c \rangle} < \infty \right\}$

• \overline{m} is cyclic in GNS_m (its G-orbit has dense span).

• Any unitary G-module with a cyclic unit vector φ is GNS_{(φ , ...}}

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

Call *m* a *state of* G if positive definite: $(m, c^* \cdot c) \ge 0$, and m(e) = 1.

• Then $\overline{\mathbf{C}[G]/\mathbf{C}[G]^{\perp}}$ is a unitary G-module, realizable in $\mathbf{C}[G]'$ as

 $GNS_m = \left\{ \varphi \in \mathbf{C}^G \text{ such that } \|\varphi\|^2 := \sup_{c \in \mathbf{C}[G]} \frac{|\langle \overline{\varphi}, c \rangle|^2}{\langle m, c^* \cdot c \rangle} < \infty \right\}.$

• \overline{m} is cyclic in GNS_m (its G-orbit has dense span).

Any unitary G-module with a cyclic unit vector φ is GNS_(φ, · φ)

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

Call *m* a *state of* G if positive definite: $(m, c^* \cdot c) \ge 0$, and m(e) = 1.

• Then $\overline{\mathbf{C}[G]/\mathbf{C}[G]^{\perp}}$ is a unitary G-module, realizable in $\mathbf{C}[G]'$ as

$$\mathrm{GNS}_m = \left\{ \phi \in \mathbf{C}^\mathrm{G} \text{ such that } \|\phi\|^2 := \sup_{c \in \mathbf{C}[\mathrm{G}]} \tfrac{|\langle \overline{\phi}, c \rangle|^2}{\langle m, c^* \cdot c \rangle} < \infty \right\}.$$

• \overline{m} is cyclic in GNS_m (its G-orbit has dense span).

• Any unitary G-module with a cyclic unit vector φ is $GNS_{(\varphi, \cdot, \varphi)}$.

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

Call *m* a *state of* G if positive definite: $(m, c^* \cdot c) \ge 0$, and m(e) = 1.

• Then $\overline{\mathbf{C}[G]/\mathbf{C}[G]^{\perp}}$ is a unitary G-module, realizable in $\mathbf{C}[G]'$ as

$$\mathrm{GNS}_m = \left\{ \phi \in \mathbf{C}^\mathrm{G} \text{ such that } \|\phi\|^2 := \sup_{c \in \mathbf{C}[\mathrm{G}]} \tfrac{|\langle \overline{\phi}, c \rangle|^2}{\langle m, c^* \cdot c \rangle} < \infty \right\}.$$

- \overline{m} is cyclic in GNS_m (its G-orbit has dense span).
- Any unitary G-module with a cyclic unit vector φ is $GNS_{(\varphi, \cdot, \varphi)}$.

Quantization, after Souriau

Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

- **C**[G] := {finitely supported functions $G \to C$ } $\ni c = \sum_{g \in G} c_g \delta^g$ is a *-algebra: $\delta^g \cdot \delta^h = \delta^{gh}$, $(\delta^g)^* = \delta^{g^{-1}}$ (and a G-module)
- $\mathbf{C}[\mathbf{G}]' \cong \mathbf{C}^{\mathbf{G}} = \{ \text{all functions } m : \mathbf{G} \to \mathbf{C} \}: \quad \langle m, c \rangle = \sum c_g m(g)$
- G-invariant sesquilinear forms on C[G] write $(c, d) \mapsto \langle m, c^* \cdot d \rangle$ $(\delta^e, g \delta^e) \mapsto m(g)$

Definition, Theorem (GNS, L. Schwartz)

Call *m* a *state of* G if positive definite: $(m, c^* \cdot c) \ge 0$, and m(e) = 1.

• Then $\overline{\mathbf{C}[G]/\mathbf{C}[G]^{\perp}}$ is a unitary G-module, realizable in $\mathbf{C}[G]'$ as

$$\mathrm{GNS}_m = \left\{ \phi \in \mathbf{C}^\mathrm{G} \text{ such that } \|\phi\|^2 := \sup_{c \in \mathbf{C}[\mathrm{G}]} \tfrac{|\langle \overline{\phi}, c \rangle|^2}{\langle m, c^* \cdot c \rangle} < \infty \right\}.$$

- \overline{m} is cyclic in GNS_m (its G-orbit has dense span).
- Any unitary G-module with a cyclic unit vector φ is $GNS_{(\varphi, \cdot \phi)}$.

Group algebra

Group algebra. States

Souriau

Example 1: Characters

 $f\,\chi:G\to U(1)$ is a character, then χ is a state and

 $\text{GNS}_{\chi} = \boldsymbol{C}_{\chi}$

 $(= \mathbf{C}$ where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If n is a state of a subgroup $\mathrm{H}\subset\mathrm{G}$ and m(g)= then m is a state and

(g) if $g \in H$, otherwise

```
\mathrm{GNS}_m = \mathrm{ind}_\mathrm{H}^\mathrm{G} \mathrm{GNS}_n
```

Group algebra

Group algebra. States

Souriau

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$\text{GNS}_{\chi} = \boldsymbol{C}_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If n is a state of a subgroup $\mathrm{H}\subset\mathrm{G}$ and m(g)= then m is a state and

(g) if $g \in H$, otherwise

 $\mathrm{GNS}_m = \mathrm{ind}_\mathrm{H}^\mathrm{G} \, \mathrm{GNS}_n$

Group algebra. States

Prequanti

Group algebra

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$\text{GNS}_{\chi} = \boldsymbol{C}_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If n is a state of a subgroup $\mathrm{H}\subset\mathrm{G}$ and m(g)=+ then m is a state and

g) if $g \in H$, otherwise,

 $GNS_m = ind_H^G GNS_n$

Group algebra. States

Prequanti

Group algebra

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$\text{GNS}_{\chi} = \boldsymbol{C}_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

g) if $g \in H$, otherwise,

 $\mathrm{GNS}_m = \mathrm{ind}_\mathrm{H}^\mathrm{G} \mathrm{GNS}_n$

Group algebra. States

Prequantiza

Quantization?

Group algebra

Classical Quantum Nilpotent

Reducti

E(3)

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$\text{GNS}_{\chi} = \boldsymbol{C}_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If *n* is a state of a subgroup $H \subset G$ and $m(g) = \begin{cases} n(g) & \text{if } g \in H, \\ 0 & \text{otherwise,} \end{cases}$

$$GNS_m = ind_H^G GNS_n$$

Group algebra. States

Prequantiza

Group algebra

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$GNS_{\chi} = C_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If *n* is a state of a subgroup $H \subset G$ and $m(g) = \begin{cases} n(g) & \text{if } g \in H, \\ 0 & \text{otherwise,} \end{cases}$

$$GNS_m = ind_H^G GNS_n$$

Group algebra. States

Prequantiza

Quantization?

Group algebra

Classical Quantum Nilpotent

F(2)

Example 1: Characters

If $\chi:G\to U(1)$ is a character, then χ is a state and

$$GNS_{\chi} = C_{\chi}$$

(= **C** where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If *n* is a state of a subgroup $H \subset G$ and $m(g) = \begin{cases} n(g) & \text{if } g \in H, \\ 0 & \text{otherwise,} \end{cases}$

$$GNS_m = ind_H^G GNS_n$$

Classical (statistical) states

Souriau Prequantization Quantization Group algebra **Classical** Quantum

Reductive E(3) Let X be a coadjoint orbit of G (say a Lie group). Continuous states m of (g, +) correspond to probability measures μ on g^* (Bochner):

$$m(\mathbf{Z}) = \int_{\mathfrak{g}^*} \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z} \rangle} d\mu(x). \tag{1}$$

Definition

A *statistical state* for X is a state m of g which is concentrated on X, in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make g discrete and hence replace g^* by its *Bohr compactification*

 $\hat{\mathfrak{g}} = \{ all \text{ characters of } \mathfrak{g} \},\$

```
in which X \subset \mathfrak{g}^* embeds by x \mapsto e^{i(x,\cdot)}.
```

Classical

Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m of (g, +) correspond to probability measures μ on g^* (Bochner):

$$m(\mathbf{Z}) = \int_{\mathfrak{g}^*} e^{\mathbf{i} \langle x, \mathbf{Z} \rangle} d\mu(x). \tag{1}$$

Definition

A *statistical state* for X is a state m of g which is concentrated on X, in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make g discrete and hence replace g^* by its *Bohr compactification*

 $\hat{\mathfrak{g}} = \{ all \text{ characters of } \mathfrak{g} \},\$

```
in which X \subset \mathfrak{g}^* embeds by x \mapsto e^{i\langle x, \cdot \rangle}.
```

Classical

Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m of (g, +) correspond to probability measures μ on g^* (Bochner):

$$m(\mathbf{Z}) = \int_{\mathfrak{g}^*} e^{\mathrm{i}\langle x, \mathbf{Z} \rangle} d\mu(x). \tag{1}$$

Definition

A *statistical state* for X is a state m of \mathfrak{g} which is concentrated on X, in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make g discrete and hence replace g^* by its *Bohr compactification*

 $\hat{\mathfrak{g}} = \{ all \text{ characters of } \mathfrak{g} \},\$

in which $X \subset \mathfrak{g}^*$ embeds by $x \mapsto e^{i\langle x, \cdot \rangle}$.

Classical

Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m of (g, +) correspond to probability measures μ on g^* (Bochner):

$$m(\mathbf{Z}) = \int_{\mathfrak{g}^*} e^{\mathrm{i}\langle x, \mathbf{Z} \rangle} d\mu(x). \tag{1}$$

Definition

A *statistical state* for X is a state m of \mathfrak{g} which is concentrated on X, in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make \mathfrak{g} discrete and hence replace \mathfrak{g}^* by its *Bohr compactification*

 $\hat{\mathfrak{g}} = \{ all \text{ characters of } \mathfrak{g} \},\$

in which $X \subset \mathfrak{g}^*$ embeds by $x \mapsto e^{i\langle x, \cdot \rangle}$.

Classical

Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m of (g, +) correspond to probability measures μ on g^* (Bochner):

$$m(\mathbf{Z}) = \int_{\mathfrak{g}^*} e^{\mathrm{i}\langle x, \mathbf{Z} \rangle} d\mu(x). \tag{1}$$

Definition

A *statistical state* for X is a state m of \mathfrak{g} which is concentrated on X, in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make \mathfrak{g} discrete and hence replace \mathfrak{g}^* by its *Bohr compactification*

 $\hat{\mathfrak{g}} = \{ all \text{ characters of } \mathfrak{g} \},\$

in which $X \subset \mathfrak{g}^*$ embeds by $x \mapsto e^{i\langle x, \cdot \rangle}$.

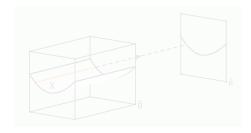
Quantum states

Souriau Prequantization? Quantization? Group algebra Classical Classical Nilpotent Reductive E(3)

Let X be a coadjoint orbit of G (say a Lie group).

efinition (equivalent to Souriau's)

A *quantum state* for X is a state m of G, such that for every abelian subalgebra \mathfrak{a} of \mathfrak{g} , the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{of} \mathfrak{a}$ is concentrated on $bX_{|\mathfrak{a}|}$.



Statistical interpretation: the spectral measure of $m \circ \exp_{|\mathfrak{a}|}$ gives the probability distribution of $x_{|\mathfrak{a}|}$ (or "joint probability" of the Poisson commuting functions $\langle \cdot, Z_j \rangle$ for Z_j in a basis of \mathfrak{a}).

Quantum states

Souriau

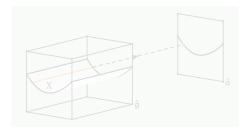
Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau's)

A *quantum state* for X is a state m of G, such that for every abelian subalgebra \mathfrak{a} of \mathfrak{g} , the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{g}$ of \mathfrak{a} is concentrated on $bX_{|\mathfrak{a}|}$.



Statistical interpretation: the spectral measure of $m \circ \exp_{|\mathfrak{a}|}$ gives the probability distribution of $x_{|\mathfrak{a}|}$ (or "joint probability" of the Poisson commuting functions $\langle \cdot, Z_j \rangle$ for Z_j in a basis of \mathfrak{a}).

Quantum states

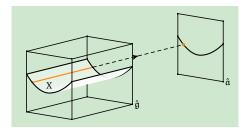
Souriau

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive

Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau's)

A *quantum state* for X is a state m of G, such that for every abelian subalgebra \mathfrak{a} of \mathfrak{g} , the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{g}$ of \mathfrak{a} is concentrated on $bX_{|\mathfrak{a}|}$.



Statistical interpretation: the spectral measure of $m \circ \exp_{|\mathfrak{a}|}$ gives the probability distribution of $x_{|\mathfrak{a}|}$ (or "joint probability" of the Poisson commuting functions $\langle \cdot, Z_j \rangle$ for Z_j in a basis of \mathfrak{a}).

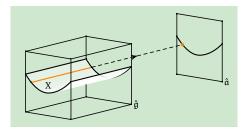
Quantum states

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau's)

A *quantum state* for X is a state m of G, such that for every abelian subalgebra \mathfrak{a} of \mathfrak{g} , the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{g}$ of \mathfrak{a} is concentrated on $bX_{|\mathfrak{a}|}$.



Statistical interpretation: the spectral measure of $m \circ \exp_{|\mathfrak{a}|}$ gives the probability distribution of $x_{|\mathfrak{a}|}$ (or "joint probability" of the Poisson commuting functions $\langle \cdot, \mathbb{Z}_j \rangle$ for \mathbb{Z}_j in a basis of \mathfrak{a}).

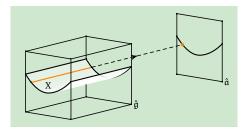
Quantum states

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau's)

A *quantum state* for X is a state m of G, such that for every abelian subalgebra \mathfrak{a} of \mathfrak{g} , the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{g}$ of \mathfrak{a} is concentrated on $bX_{|\mathfrak{a}|}$.



Statistical interpretation: the spectral measure of $m \circ \exp_{|\mathfrak{a}|}$ gives the probability distribution of $x_{|\mathfrak{a}|}$ (or "joint probability" of the Poisson commuting functions $\langle \cdot, \mathbb{Z}_j \rangle$ for \mathbb{Z}_j in a basis of \mathfrak{a}).

Quantum states

Souriau Prequantizati Quantization Group algebr Classical Quantum Nilpotent Reductive E(3)

If $V = GNS_m$, then $(\varphi, \cdot \varphi)$ is a quantum state for X for *all* unit $\varphi \in V$. Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

xample 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that $n(\exp(Z)) = e^{i(y,Z)}$ (2)

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n

Souriau

Prequantizatio Quantization? Group algebra Classical **Quantum** Nilpotent Reductive E(3)

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

hey need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*prbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n

We will call states of $G \supset H$ that restrict to (2) *eigenstates belonging* to $y \in (\mathfrak{h}^*)^H$ — or by abuse, to the (generically *coisotropic*) preimage of y in some $X \subset \mathfrak{g}^*$. Weinstein (1982) called attaching waves to lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.

Quantum states

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

xample 1: Point-orbits

Suppose a state n of a connected Lie group H is quantum for a pointrbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then y is integral, and n is the character such that

 $n(\exp(Z)) = e^{i\langle y, Z \rangle}.$ (2)

Quantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n

Souriau

Prequantization? Quantization? Group algebra Classical Quantum

Reductive

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state n of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then y is *integral*, and n is the character such that

$$n(\exp(\mathbf{Z})) = e^{i\langle y, \mathbf{Z} \rangle}.$$
 (2)

Quantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

Quantum

If $V = GNS_m$, then $(\varphi, \cdot \varphi)$ is a quantum state for X for all unit $\varphi \in V$.

Definition

G-modules V with this property are quantum representations for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then y is integral, and n is the character such that

Quantum states

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent

Reductive

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

$$n(\exp(\mathbf{Z})) = e^{i\langle y, \mathbf{Z} \rangle}.$$
 (2)

Ouantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent

Reductive

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

$$n(\exp(\mathbf{Z})) = e^{i\langle y, \mathbf{Z} \rangle}.$$
 (2)

Ouantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent

E(3)

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

$$n(\exp(\mathbf{Z})) = e^{i\langle y, \mathbf{Z} \rangle}.$$
 (2)

Ouantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent

E(3)

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

$$n(\exp(\mathbf{Z})) = e^{i\langle y, \mathbf{Z} \rangle}.$$
 (2)

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

We will call states of $G \supset H$ that restrict to (2) *eigenstates belonging* to $y \in (\mathfrak{h}^*)^H$ — or by abuse, to the (generically *coisotropic*) preimage of y in some $X \subset \mathfrak{g}^*$. Weinstein (1982) called attaching waves to lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.

Quantum states

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent

E(3)

If $V = GNS_m$, then $(\phi, \cdot \phi)$ is a quantum state for X for *all* unit $\phi \in V$.

Definition

G-modules V with this property are *quantum representations* for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state *n* of a connected Lie group H is quantum for a *point*orbit $\{y\} \subset (\mathfrak{h}^*)^{\mathrm{H}}$. Then *y* is *integral*, and *n* is the character such that

$$n(\exp(\mathbf{Z})) = e^{\mathbf{i}\langle y, \mathbf{Z} \rangle}.$$
 (2)

Ouantum states

A representation of H is quantum for $\{y\}$ iff it is a *multiple* of this n.

Prequantization Quantization? Group algebra Classical **Quantum** Nilpotent Reductive

E(3)

Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over $X = (\mathbb{R}^2, dp \land dq)$. The resulting representation of Aut(L) in $L^2(X)$ is not quantum for X.

Sketch of proof:

It represents the flow of the *bounded* hamiltonian $H(p, q) = \sin p$ by a 1-parameter group whose self-adjoint generator is *unbounded* — it's equivalent to multiplication by $\sin p + (k - p) \cos p$ in $L^2(\mathbb{R}^2, dp \, dk)$.

Remark

We are rejecting this representation for *spectral* reasons. Unlike van Hove who rejected it for being *reducible* on the Heisenberg subgroup, we can still hope that Aut(L) has a representation quantizing X.

Prequantizatic Quantization? Group algebra Classical **Quantum** Nilpotent Reductive

E(3)

Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over $X = (\mathbf{R}^2, dp \wedge dq)$. The resulting representation of Aut(L) in L²(X) is not quantum for X.

Sketch of proof:

It represents the flow of the *bounded* hamiltonian $H(p, q) = \sin p$ by a 1-parameter group whose self-adjoint generator is *unbounded* — it's equivalent to multiplication by $\sin p + (k - p) \cos p$ in $L^2(\mathbb{R}^2, dp \, dk)$.

Remark

We are rejecting this representation for *spectral* reasons. Unlike van Hove who rejected it for being *reducible* on the Heisenberg subgroup, we can still hope that Aut(L) has a representation quantizing X.

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over $X = (\mathbf{R}^2, dp \wedge dq)$. The resulting representation of Aut(L) in L²(X) is not quantum for X.

Sketch of proof:

It represents the flow of the *bounded* hamiltonian $H(p, q) = \sin p$ by a 1-parameter group whose self-adjoint generator is *unbounded* — it's equivalent to multiplication by $\sin p + (k - p) \cos p$ in $L^2(\mathbb{R}^2, dp \, dk)$.

Remark

We are rejecting this representation for *spectral* reasons. Unlike van Hove who rejected it for being *reducible* on the Heisenberg subgroup, we can still hope that Aut(L) has a representation quantizing X.

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over $X = (\mathbf{R}^2, dp \wedge dq)$. The resulting representation of Aut(L) in L²(X) is not quantum for X.

Sketch of proof:

It represents the flow of the *bounded* hamiltonian $H(p, q) = \sin p$ by a 1-parameter group whose self-adjoint generator is *unbounded* — it's equivalent to multiplication by $\sin p + (k - p) \cos p$ in $L^2(\mathbb{R}^2, dp \, dk)$.

Remark

We are rejecting this representation for *spectral* reasons. Unlike van Hove who rejected it for being *reducible* on the Heisenberg subgroup, we can still hope that Aut(L) has a representation quantizing X.

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over $X = (\mathbf{R}^2, dp \wedge dq)$. The resulting representation of Aut(L) in L²(X) is not quantum for X.

Sketch of proof:

It represents the flow of the *bounded* hamiltonian $H(p, q) = \sin p$ by a 1-parameter group whose self-adjoint generator is *unbounded* — it's equivalent to multiplication by $\sin p + (k - p) \cos p$ in $L^2(\mathbb{R}^2, dp \, dk)$.

Remark

We are rejecting this representation for *spectral* reasons. Unlike van Hove who rejected it for being *reducible* on the Heisenberg subgroup, we can still hope that Aut(L) has a representation quantizing X.

Quantum states

Souriau

Prequantization Quantization? Group algebra Classical Quantum

Reductive E(3)

On the other hand...

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

- G noncompact simple: every nonzero coadjoint orbit has $bX = bg^*$.
- G connected nilpotent: every coadjoint orbit has the same Bohr closure as its affine hull.

- G noncompact simpler every unitary representation is quantum for every nonzero condipint orbit.
- G simply connected nilpotent: a unitary representation is quantum for X iff the center of G/ exp(ann(X)) acts by the correct character.

Quantum states

Souriau

Prequantizatio Quantization? Group algebra Classical Quantum

Nilpotent

E(3)

On the other hand...

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

- G noncompact simple: every nonzero coadjoint orbit has $bX = bg^*$.
- G connected nilpotent: every coadjoint orbit has the same Bohr closure as its affine hull.

- G noncompact simple: every unitary representation is quantum for every nonzero coadjoint orbit.
- G simply connected nilpotent: a unitary representation is quantum for X iff the center of G/ exp(ann(X)) acts by the correct character.

Quantum states

Souriau

Prequantization Quantization? Group algebra Classical Ouantum

Nilpotent

Reductive E(3)

On the other hand...

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

- G noncompact simple: every nonzero coadjoint orbit has $bX = bg^*$.
- G connected nilpotent: every coadjoint orbit has the same Bohr closure as its affine hull.

- G noncompact simple: every unitary representation is quantum for every nonzero coadjoint orbit.
- G simply connected nilpotent: a unitary representation is quantum for X iff the center of G/ exp(ann(X)) acts by the correct character.

Quantum states

Souriau

Prequantization Quantization? Group algebra Classical Ouantum

-Nilpotent

Reductive

On the other hand...

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

- G noncompact simple: every nonzero coadjoint orbit has $bX = bg^*$.
- G connected nilpotent: every coadjoint orbit has the same Bohr closure as its affine hull.

- G noncompact simple: every unitary representation is quantum for every nonzero coadjoint orbit.
- G simply connected nilpotent: a unitary representation is quantum for X iff the center of G/ exp(ann(X)) acts by the correct character.

Eigenstates in nilpotent groups

Souriau

- Prequantization
- Quantization
- Group algebra
- Classical
- Quantum
- Nilpotent Reductive

Eigenstates in nilpotent groups

Quantization, after Souriau

Souriau Prequantization Quantization? Group algebra Classical Quantum Nilpotent

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathrm{H}\subset\mathrm{G}$ is subordinate to x if, equivalently,

Eigenstates in nilpotent groups

- Souriau Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive
- E(3)

G : connected, simply connected nilpotent Lie group, X : condicint orbit of C

- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

 $\{x_{ij}\}$ is a point-orbit of H in \mathfrak{h}

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
 - x : chosen point in X.

A connected subgroup $\mathrm{H}\subset\mathrm{G}$ is *subordinate to* x if, equivalently,

 $\{x_{|h}\}$ is a point-orbit of H in h^*

Nilpotent Reductive

E(3)

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
 - x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

 $\{x_{|b}\}$ is a point-orbit of H in b

e^{ix o log}IH is a character of H.

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

- Prequantizatio Quantizatio Group algel Classical Quantum Nilpotent
- E(3)

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Prequantiza Quantization Group algeb Classical Quantum Nilpotent

Reduct E(3)

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log}|_{H}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$\mathfrak{u}(g) = \left\{ egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \mathrm{o} \log}(g) & \mathrm{i}f \; g \in \mathrm{H}, \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log}_{|H|}$ (discrete induction)

11/18

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log}|_{H}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{lb}\} \subset b^*$, namely

$$\mathsf{L}(g) = \left\{ egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \log}(g) & \mathrm{i}f \; g \in \mathrm{H}, \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log}_{|H|}$ (discrete induction)

11/18

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$n(g) = \left\{ egin{array}{cc} {
m e}^{ix \, \circ \, \log(g)} & {
m if} \ g \in {
m H}, \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}} (discrete induction)$

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{ egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}} (discrete induction)$

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & \textit{if } g \in \mathrm{H}, \ 0 & \textit{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}} (discrete induction).$

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} {
m e}^{{
m i}x\circ\log}(g) & {
m i}f\ g\in {
m H},\ 0 & otherwise. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log}_{|H|}$ (discrete induction).

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & \textit{if } g \in \mathrm{H}, \ 0 & \textit{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}}$ (discrete induction).

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}}$ (discrete induction).

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & \textit{if } g \in \mathrm{H}, \ 0 & \textit{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}}$ (discrete induction).

 $\mathfrak{a} \subset \mathfrak{h} \Rightarrow x_{|\mathfrak{a}}$ certain;

Nilpotent

Eigenstates in nilpotent groups

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.
- A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,
 - $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
 - $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
 - $e^{ix \circ \log}|_{H}$ is a character of H.

Theorem

Let $H \subset G$ be **maximal** subordinate to $x \in X$. Then there is a unique quantum eigenstate for X belonging to $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind(x, H) := ind_H^G e^{ix \circ \log_{|H|}}$ (discrete induction).

 $\mathfrak{a} \subset \mathfrak{h} \; \Rightarrow \; x_{|\mathfrak{a}} \; certain; \qquad \mathfrak{a} \pitchfork \mathfrak{h} \; \Rightarrow \; x_{|\mathfrak{a}} \; equidistributed in \, \hat{\mathfrak{a}}.$

Nilpotent

Eigenstates in nilpotent groups

Remark

Kirillov (1962) used $\operatorname{Ind}(x, H) := \operatorname{Ind}_{H}^{G} e^{ix \circ \log}_{|H|}$ (usual induction). This is

irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

) equivalent to $\operatorname{Ind}(x, \mathbb{H})$ if $\mathbb{H} \neq \mathbb{H}'$ are two polarizations at x .

Nilpotent

Eigenstates in nilpotent groups

Remark

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log_{|H|}}$ (usual induction). This is

irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

Nilpotent

Eigenstates in nilpotent groups

Remark

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log}_{|H}$ (usual induction). This is

(a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

(b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

Nilpotent

Eigenstates in nilpotent groups

Remark

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log}_{|H}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

Eigenstates in nilpotent groups

riau

Nilpotent

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log}|_{H}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

Theorem

Let $\mathrm{H} \subset \mathrm{G}$ be subordinate to x. Then $\mathrm{ind}(x,\mathrm{H}) := \mathrm{ind}_{\mathrm{H}}^{\mathrm{G}} \mathrm{e}^{\mathrm{i}x \circ \log}_{|_{\mathrm{H}}}$ is

Nilpotent

Eigenstates in nilpotent groups

au

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log}|_{H}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

Theorem

Let $H \subset G$ be subordinate to x. Then $ind(x, H) := ind_{H}^{G} e^{ix \circ \log_{|H|}}$ is

Eigenstates in nilpotent groups

uriau

Nilpotent

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log}_{|H|}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

Theorem

Let $H \subset G$ be subordinate to x. Then $ind(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

Eigenstates in nilpotent groups

ouriau

Nilpotent

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

Theorem

Let $H \subset G$ be subordinate to x. Then $ind(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

(a) *irreducible* \Leftrightarrow H *is* **maximal** *subordinate* to x;

(b) **inequivalent** to ind(x, H') if $H \neq H'$ are two polarizations at x.

Eigenstates in nilpotent groups

ouriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

Kirillov (1962) used $Ind(x, H) := Ind_{H}^{G} e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a **polarization at** x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to Ind(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

Theorem

Let $H \subset G$ be subordinate to x. Then $ind(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

- (a) *irreducible* \Leftrightarrow H *is* **maximal** *subordinate* to x;
- (b) *inequivalent* to ind(x, H') if $H \neq H'$ are two polarizations at x.

Eigenstates in reductive groups

Souriau

- Prequantization
- Quantization
- Group algebra
- Classical
- Quantum
- Nilpotent

Reductive

E(3)

Eigenstates in reductive groups

Souriau Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose)

: identified with \mathfrak{g} by means of the trace form $\langle \mathbf{Z}, \mathbf{Z}' \rangle = \text{Tr}(\mathbf{Z}\mathbf{Z}')$ hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$ a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i\mathfrak{x}_{|\mathfrak{g}|}$.

Remark: The coadjoint orbit $G(x) = Ind_0^G \{x_{ig}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $oldsymbol{n}(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in \mathrm{Q}, \ \end{array}
ight.$

Eigenstates in reductive groups

Souriau Prequantizati Quantization Group algebr Classical Quantum Nilpotent Reductive

E(3)

G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$: a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $ix_{|\mathfrak{g}|}$.

temark: The coadjoint orbit $G(x) = Ind_0^G \{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $n(g) = igg\{ egin{array}{cc} \chi(g) & ext{if} \ g \in ext{Q}, \end{array} igg\}$

Eigenstates in reductive groups

Souriau Prequantization Quantization Group algebr Classical Quantum Nilpotent Reductive

E(3)

G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$ x : hyperbolic element of g^{*} (: diagonalizable with real eigenvalues)

: sum of the eigenspaces belonging to positive eigenvalues of ad(x): a character of the parabolic $Q = G_x \exp(u)$ with differential $ix_{|g|}$.

Remark: The coadjoint orbit $G(x) = Ind_Q^G \{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $oldsymbol{n}(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in \mathrm{Q}, \ \end{array}
ight.$

Eigenstates in reductive groups

Souriau Prequantizati Quantization Group algebr Classical Quantum Nilpotent Reductive G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$ x : hyperbolic element of g^{*} (: diagonalizable with real eigenvalues)

- \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\mathrm{ad}(x)$
 - (: a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $\mathrm{i} x_{|\mathfrak{q}|}$

Remark: The coadjoint orbit $G(x) = Ind_{Q}^{G} \{x_{|q}\}$ (symplectic induction).

```
Conjecture
```

There is a unique state m of G that extends χ , namely

```
n(g) = \left\{egin{array}{cc} \chi(g) & 	ext{if } g \in \mathbb{Q}, \ \end{array}
ight.
```

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = Tr(ZZ')$

x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues)

 \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\mathrm{ad}(x)$

 χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|\mathfrak{q}}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $(g)=\left\{egin{array}{cc} \chi(g) & ext{if } g\in extsf{Q}, \end{array}
ight.$

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive F(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g*: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

- x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$
- χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|\mathfrak{q}}$.

Remark: The coadjoint orbit $G(x) = Ind_Q^G \{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $m(g) = \left\{ egin{array}{cc} \chi(g) & ext{if } g \in \mathbb{Q}, \end{array}
ight.$

Eigenstates in reductive groups

Souriau Prequantizati Quantizatior Group algeb: Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_{*n*}(**R**), stable under transpose) \mathfrak{g}^* : identified with \mathfrak{g} by means of the trace form $\langle \mathbf{Z}, \mathbf{Z}' \rangle = \text{Tr}(\mathbf{Z}\mathbf{Z}')$

x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$

 χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|q}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in { extsf{Q}}, \end{array}
ight.$$

Eigenstates in reductive groups

Souriau Prequantizati Quantization Group algebri Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g*: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$

 χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|q}$.

Remark: The coadjoint orbit $G(x) = Ind_Q^G \{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

 $m(g) = \left\{ egin{array}{cc} \chi(g) & ext{if } g \in {
m Q}, \end{array}
ight.$

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

- x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$
- χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|q}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{ egin{array}{cc} \chi(g) & ext{if } g \in \mathbf{Q}, \end{array}
ight.$$

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

- x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$
- χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|\mathfrak{q}}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{egin{array}{cc} \chi(g) & if \ g \in {
m Q}, \ 0 & otherwise. \end{array}
ight.$$

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebri Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$ x : hyperbolic element of g^{*} (: diagonalizable with real eigenvalues)

- \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\mathrm{ad}(x)$
- χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|\mathfrak{q}}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in ext{Q}, \ 0 & ext{otherwise}. \end{array}
ight.$$

It is a quantum eigenstate for X belonging to $\{x_{|q}\}$, and $GNS_m = ind_Q^G \chi$.

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$ x : hyperbolic element of g^{*} (: diagonalizable with real eigenvalues)

- \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\mathrm{ad}(x)$
- χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|\mathfrak{q}}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in {
m Q}, \ 0 & ext{otherwise}. \end{array}
ight.$$

It is a quantum eigenstate for X belonging to $\{x_{|q}\}$, and $GNS_m = ind_Q^G \chi$.

Eigenstates in reductive groups

Souriau Prequantizat Quantization Group algebr Classical Quantum Nilpotent Reductive E(3) G : linear reductive Lie group (: \subset **GL**_n(**R**), stable under transpose) g^{*}: identified with g by means of the trace form $\langle Z, Z' \rangle = \text{Tr}(ZZ')$

x: hyperbolic element of \mathfrak{g}^* (: diagonalizable with real eigenvalues) \mathfrak{u} : sum of the eigenspaces belonging to positive eigenvalues of $\operatorname{ad}(x)$

 χ : a character of the parabolic $Q = G_x \exp(\mathfrak{u})$ with differential $i x_{|q}$.

Remark: The coadjoint orbit $G(x) = \text{Ind}_Q^G\{x_{|q}\}$ (symplectic induction).

Conjecture

There is a unique state m of G that extends χ , namely

$$m(g) = \left\{egin{array}{cc} \chi(g) & ext{if } g \in ext{Q}, \ 0 & ext{otherwise}. \end{array}
ight.$$

It is a quantum eigenstate for X belonging to $\{x_{|q}\}$, and $GNS_m = ind_Q^G \chi$.

Theorem: The conjecture is true for $G = SL_2(R)$ or $SL_3(R)$, Q Borel.

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Example: TS²

G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2 formula

 $\omega = k \; d \langle oldsymbol{u}, oldsymbol{dr}
angle + s \, \mathrm{Area}_{\mathrm{S}^2}.$

The moment map

 $\Phi(u,r) = \binom{r \times ku + su}{ku}$

makes X into a coadjoint orbit of G

Souriau

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Example: TS²

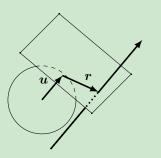
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{k.s}:

 $\omega = k \ d\langle u, dr \rangle + s \operatorname{Area}_{S^2}.$

The moment map

$$\Phi(u,r) = egin{pmatrix} r imes ku + su \ ku \end{pmatrix}$$

makes X into a coadjoint orbit of G.



Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Example: TS²

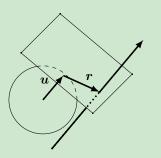
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{k.s}:

 $\omega = k \ d\langle u, dr
angle + s \operatorname{Area}_{\mathrm{S}^2}.$

The moment map

$$\Phi(u,r) = egin{pmatrix} r imes ku + su \ ku \end{pmatrix}$$

makes X into a coadjoint orbit of G.



Souriau

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in B^3 \right\}$

Example: TS²

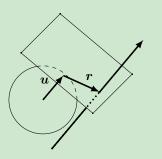
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{*k.s*}:

$$\omega = k \ d\langle u, dr
angle + s \operatorname{Area}_{\mathrm{S}^2}.$$

The moment map

$$\Phi(u,r) = egin{pmatrix} r imes ku + su \ ku \end{pmatrix}$$

makes X into a coadjoint orbit of G.



Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \frac{A \in \mathbf{SO}(3)}{c \in \mathbf{R}^3}\right\}$

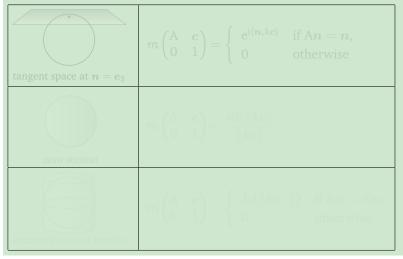
Case s = 0:

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

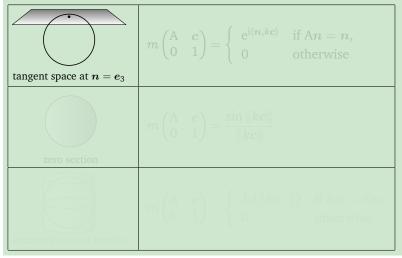


Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

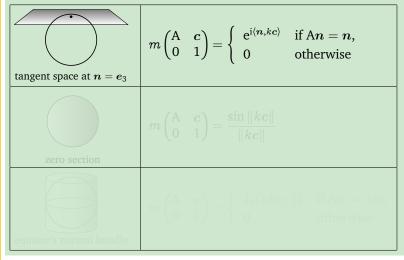


Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

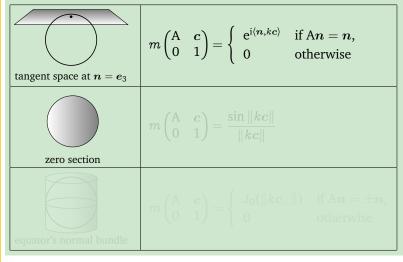


Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \begin{array}{c} A \in \mathbf{SO}(3) \\ c \in \mathbf{R}^3 \end{array}\right\}$

Case s = 0:



Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \frac{A \in \mathbf{SO}(3)}{c \in \mathbf{R}^3}\right\}$

Case s = 0:

Image: tangent space at
$$n = e_3$$
 $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle n, kc \rangle} & \text{if } An = n, \\ 0 & \text{otherwise} \end{cases}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin ||kc||}{||kc||}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin ||kc||}{||kc||}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(||kc_1||) & \text{if } An = \pm n, \\ 0 & \text{otherwise} \end{cases}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(||kc_1||) & \text{if } An = \pm n, \\ 0 & \text{otherwise} \end{cases}$

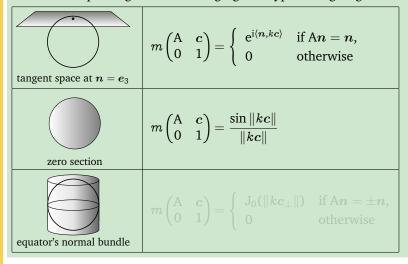
Case s = 0:

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \frac{A \in \mathbf{SO}(3)}{c \in \mathbf{R}^3}\right\}$

We have unique* eigenstates belonging to 3 types of lagrangians:



Case s = 0:

Souriau

Prequantization? Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \frac{A \in \mathbf{SO}(3)}{c \in \mathbf{R}^3}\right\}$

We have unique* eigenstates belonging to 3 types of lagrangians:

Image: tangent space at
$$n = e_3$$
 $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle n, kc \rangle} & \text{if } An = n, \\ 0 & \text{otherwise} \end{cases}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } An = \pm n, \\ 0 & \text{otherwise} \end{cases}$ Image: tangent space at $n = e_3$ $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } An = \pm n, \\ 0 & \text{otherwise} \end{cases}$

Souriau

Prequantizati Quantization Group algebr Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

The resulting GNS modules can be realized as solution spaces of the Helmholtz equation

$$\Delta \psi + k^2 \psi = 0 \tag{3}$$

with scalar field G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$ and cyclic vectors:

Souriau

Prequantizati Quantization Group algebr Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

The resulting GNS modules can be realized as solution spaces of the Helmholtz equation

$$\Delta \psi + k^2 \psi = 0 \tag{3}$$

with scalar field G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$ and cyclic vectors:

Souriau

Prequantization Quantization Group algebr Classical Quantum Nilpotent Reductive E(3)

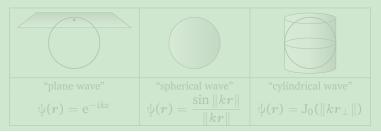
Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

The resulting GNS modules can be realized as solution spaces of the Helmholtz equation

$$\Delta \psi + k^2 \psi = 0 \tag{3}$$

with *scalar field* G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$ and cyclic vectors:



Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

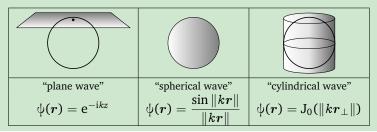
Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

The resulting GNS modules can be realized as solution spaces of the Helmholtz equation

$$\Delta \psi + k^2 \psi = 0 \tag{3}$$

with *scalar field* G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$ and cyclic vectors:



Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive

E(3)

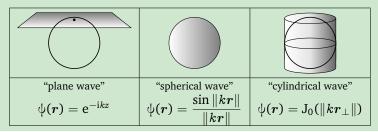
Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 0:

The resulting GNS modules can be realized as solution spaces of the Helmholtz equation

$$\Delta \psi + k^2 \psi = 0 \tag{3}$$

with scalar field G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$ and cyclic vectors:



Souriau

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at $m{n}$ becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle n,kc \rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\},\$ with G-action $(gb)(u) = e^{(u,kc)J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u.$ Putting $F(z) = \sum_{i=1}^{n} e^{-(u,kr)J}(b_{i}-iJb)(z_i)$

$${
m F}(r) = \sum_{u\in {
m S}^2} {
m e}^{-\langle u,kr
angle {
m J}}(b-{
m i}{
m J}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions $\mathbf{F} = \mathbf{B} + \mathbf{i}\mathbf{E}$ of the reduced Maxwell equations

div
$$\mathbf{F} = 0$$
, $\operatorname{curl} \mathbf{F} = k\mathbf{F}$,

with *vector field* G-action $(gF)(r) = AF(A^{-1}(r-c))$. Cyclic vector: the textbook "plane wave" $F(r) = e^{-ikz}(e_1 - ie_2)$.

Souriau

Prequantizatio Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle n,kc\rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $\text{GNS}_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } \text{TS}^2 \to \text{S}^2\},\$ with G-action $(gb)(u) = e^{\langle u, kc \rangle \text{J}} \text{A}b(\text{A}^{-1}u)$ where $\text{J}\delta u = \mathbf{j}(u)\delta u.$ Putting $\mathbf{F}(x) = \sum_{\mathbf{a}} e^{-\langle u, kr \rangle \text{J}} (b - \mathbf{i}b)(x)$

$$\mathsf{F}(r) = \sum_{oldsymbol{u}\in\mathsf{S}^2} \mathrm{e}^{-\langleoldsymbol{u},kr
angle \mathsf{J}}(oldsymbol{b} - \mathrm{i} \mathsf{J} oldsymbol{b})(oldsymbol{u})$$

one obtains a Hilbert space of almost-periodic solutions $\mathbf{F} = \mathbf{B} + \mathbf{i}\mathbf{E}$ of the reduced Maxwell equations

div $\mathbf{F} = \mathbf{0}$, $\operatorname{curl} \mathbf{F} = k\mathbf{F}$,

with vector field G-action $(gF)(r) = AF(A^{-1}(r-c))$. Cyclic vector: the textbook "plane wave" $F(r) = e^{-ikz}(e_1 - ie_2)$.

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha} e^{i\langle n, kc \rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $\text{GNS}_m = \{\ell^2 \text{ sections } \boldsymbol{b} \text{ of the tangent bundle } \text{TS}^2 \to \text{S}^2\},\$ with G-action $(\boldsymbol{g}\boldsymbol{b})(\boldsymbol{u}) = e^{\langle \boldsymbol{u}, \boldsymbol{k} \boldsymbol{c} \rangle \text{J}} A \boldsymbol{b}(\text{A}^{-1}\boldsymbol{u})$ where $J\delta \boldsymbol{u} = j(\boldsymbol{u})\delta \boldsymbol{u}.$ Putting $\mathbb{E}(\boldsymbol{v}) = \sum_{\boldsymbol{a}} e^{-\langle \boldsymbol{u}, \boldsymbol{k} \boldsymbol{r} \rangle \text{J}} (\boldsymbol{b} - iI\boldsymbol{b})(\boldsymbol{u})$

$$\mathrm{F}(r) = \sum_{u \in \mathbb{S}^2} \mathrm{e}^{-\langle u, \kappa r
angle \mathrm{J}}(b - \mathrm{i} \mathrm{J}b)(u) \; .$$

one obtains a Hilbert space of almost-periodic solutions $\mathbf{F} = \mathbf{B} + i\mathbf{E}$ of the reduced Maxwell equations

div $\mathbf{F} = 0$, curl $\mathbf{F} = k\mathbf{F}$,

with vector field G-action $(gF)(r) = AF(A^{-1}(r-c))$. Cyclic vector: the textbook "plane wave" $F(r) = e^{-ikz}(e_1 - ie_2)$

Souriau

Prequantizatior Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha} e^{i\langle n, kc \rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\},\$ with G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u.$ Putting $F(r) = \sum e^{-\langle u, kr \rangle J}(b - iJb)(u)$

$$\mathbf{F}(m{r}) = \sum_{m{u}\in \mathbb{S}^2} \mathrm{e}^{-\langlem{u},km{r}
angle \mathrm{J}}(m{b}-\mathrm{i}\mathrm{J}m{b})(m{u})$$

one obtains a Hilbert space of almost-periodic solutions $\mathbf{F} = \mathbf{B} + i\mathbf{E}$ of the reduced Maxwell equations

div $\mathbf{F} = 0$, curl $\mathbf{F} = k\mathbf{F}$,

with vector field G-action $(gF)(r) = AF(A^{-1}(r - c))$. Cyclic vector: the textbook "plane wave" $F(r) = e^{-ikz}(e_1 - ie_2)$.

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle n,kc\rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $GNS_m = \{\ell^2 \text{ sections } \boldsymbol{b} \text{ of the tangent bundle } TS^2 \to S^2\},\$ with G-action $(\boldsymbol{g}\boldsymbol{b})(\boldsymbol{u}) = e^{\langle \boldsymbol{u}, \boldsymbol{k}\boldsymbol{c} \rangle J}A\boldsymbol{b}(A^{-1}\boldsymbol{u})$ where $J\delta\boldsymbol{u} = j(\boldsymbol{u})\delta\boldsymbol{u}.$ Putting $\mathbf{F}(\boldsymbol{u}) = \sum_{\boldsymbol{a}} e^{-\langle \boldsymbol{u}, \boldsymbol{k}\boldsymbol{r} \rangle J}(\boldsymbol{b} - i\mathbf{b})(\boldsymbol{u})$

$$\mathbf{F}(m{r}) = \sum_{m{u}\in \mathbb{S}^2} \mathrm{e}^{-\langlem{u},km{r}
angle \mathrm{J}}(m{b}-\mathrm{i}\mathrm{J}m{b})(m{u})$$

one obtains a Hilbert space of almost-periodic solutions ${\bf F}={\bf B}+{\rm i}{\bf E}$ of the reduced Maxwell equations

div $\mathbf{F} = 0$, curl $\mathbf{F} = k\mathbf{F}$,

with *vector field* **G**-action $(g\mathbf{F})(r) = A\mathbf{F}(A^{-1}(r-c))$. Cyclic vector: the textbook "plane wave" $\mathbf{F}(r) = e^{-ikz}(e_1 - ie_2)$.

Souriau

Prequantization Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle n,kc\rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\},\$ with G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u.$ Putting $F(r) = \sum e^{-\langle u, kr \rangle J}(b - iJb)(u)$

$$\mathbf{F}(r) = \sum_{oldsymbol{u} \in \mathbb{S}^2} \mathrm{e}^{-\langle oldsymbol{u}, kr
angle \mathrm{J}}(b - \mathrm{i} \mathrm{J} b)(u)$$

one obtains a Hilbert space of almost-periodic solutions ${\bf F}={\bf B}+{\rm i}{\bf E}$ of the reduced Maxwell equations

div $\mathbf{F} = 0$, curl $\mathbf{F} = k\mathbf{F}$,

with vector field G-action $(gF)(r) = AF(A^{-1}(r - c))$. Cyclic vector: the textbook "plane wave" $F(r) = e^{-ikz}(e_1 - i$

Souriau

Prequantizatior Quantization? Group algebra Classical Quantum Nilpotent Reductive E(3)

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : A \in SO(3) \atop c \in \mathbb{R}^3 \right\}$

Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle n,kc\rangle} & \text{if } A = e^{j(\alpha n)}, \\ 0 & \text{otherwise} \end{cases} \quad (j(\alpha) := \alpha \times \cdot).$$

Module: $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\},\$ with G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u.$ Putting $F(u) = \sum_{i=1}^{n} e^{-\langle u, kr \rangle J}(b - iJb)(u)$

$$\mathbf{F}(r) = \sum_{oldsymbol{u} \in \mathbb{S}^2} \mathrm{e}^{-\langle oldsymbol{u}, kr
angle \mathrm{J}}(b - \mathrm{i} \mathrm{J} b)(u)$$

one obtains a Hilbert space of almost-periodic solutions ${\bf F}={\bf B}+{\rm i}{\bf E}$ of the reduced Maxwell equations

div $\mathbf{F} = 0$, curl $\mathbf{F} = k\mathbf{F}$,

with vector field G-action $(g\mathbf{F})(\mathbf{r}) = A\mathbf{F}(A^{-1}(\mathbf{r} - \mathbf{c}))$. Cyclic vector: the textbook "plane wave" $\mathbf{F}(\mathbf{r}) = e^{-ikz}(e_1 - ie_2)$.

Souriau

- Prequantization
- Quantization
- Group algebra
- Classical
- Quantum
- Nilpotent
- Reductiv
- E(3)

End!