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Toronto, 12/8/2019

Abstract: J.-M. Souriau spent the years 1960-2000 in a uniquely dogged inquiry into
what exactly quantization is and isn’t. I will report on results (of arXiv:1310.7882 etc.)
pertaining to the last (still unsatisfactory!) formulation he gave.
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What is quantization?

« How do I arrive at the matrix
that represents a given quantity in
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— H. Weyl, Quantenmechanik und
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Prequantization

Let (X,ω) be a prequantizable symplectic manifold: [ω] ∈ H2(X, Z).

Mantra:
Prequantization constructs a representation of the Poisson algebra
C∞(X), which is “too large” because not irreducible enough.

(We then need “polarization” to cut it down.)
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Prequantization

Let (X,ω) be a prequantizable symplectic manifold: [ω] ∈ H2(X, Z).

Mantra:
Prequantization constructs a representation of the Poisson algebra
C∞(X), which is “too large” because not irreducible enough.

(We then need “polarization” to cut it down.)

Souriau:
Not the point! What prequantization constructs is a group Aut(L)
with “Lie algebra” C∞(X), of which X is a coadjoint orbit.

(Every prequantizable symplectic manifold is a coadjoint orbit, 1985.)
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Quantization?

Mantra:
Quantization is some sort of functor from a “classical” category
(symplectic manifolds and functions?) to a “quantum” category
(Hilbert spaces and self-adjoint operators?).

Besides, it doesn’t exist (“by van Hove’s no-go theorem”).
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Quantization?

Mantra:
Quantization is some sort of functor from a “classical” category
(symplectic manifolds and functions?) to a “quantum” category
(Hilbert spaces and self-adjoint operators?).

Besides, it doesn’t exist (“by van Hove’s no-go theorem”).

Souriau:
No! Quantization is a switch from classical states to quantum states:
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Group algebra. States

• C[G] := {finitely supported functions G→ C} 3 c =
∑

g∈G cgδ
g

is a ∗-algebra: δg · δh = δgh , (δg)∗ = δg
−1

(and a G-module)
• C[G]′ ∼= CG

= {all functions m : G→ C}: 〈m , c〉 =
∑

cgm(g)
• G-invariant sesquilinear forms on C[G] write (c, d) 7→ 〈m , c∗ · d〉

(δe , gδe) 7→ m(g)

Definition, Theorem (GNS, L. Schwartz)
Call m a state of G if positive definite: 〈m , c∗ · c〉 > 0, and m(e) = 1.

• Then C[G]/C[G]⊥ is a unitary G-module, realizable in C[G]′ as

GNSm =
¦

φ ∈ CG such that ‖φ‖2 := supc∈C[G]
|〈φ,c〉|2
〈m ,c∗·c〉 <∞

©

.

• m is cyclic in GNSm (its G-orbit has dense span).

• Any unitary G-module with a cyclic unit vector φ is GNS(φ, · φ).
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Group algebra. States

Example 1: Characters

If χ : G→ U(1) is a character, then χ is a state and

GNSχ = Cχ

(= C where G acts by χ).

Example 2: Discrete induction (Blattner 1963)

If n is a state of a subgroup H ⊂ G and m(g) =

¨

n(g) if g ∈ H,
0 otherwise,then m is a state and

GNSm = indG
H GNSn

(lower case “i” for discrete a.k.a. `2 induction).
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Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m
of (g,+) correspond to probability measures μ on g∗ (Bochner):

m(Z) =
∫
g∗

ei〈x ,Z〉dμ(x ). (1)

Definition
A statistical state for X is a state m of g which is concentrated on X,
in the sense that its spectral measure (μ above) is.

This works even without assuming continuity of m: in (1), make g
discrete and hence replace g∗ by its Bohr compactification

ĝ = {all characters of g},

in which X ⊂ g∗ embeds by x 7→ ei〈x ,·〉.

Notation: bX = closure of X in ĝ (“Bohr closure”).
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Quantum states

Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau’s)

A quantum state for X is a state m of G, such that for every abelian
subalgebra a of g, the state m ◦ exp|a of a is concentrated on bX|a.

ĝ

âX

Statistical interpretation: the spectral measure of m ◦ exp|a gives
the probability distribution of x|a (or “joint probability” of the Poisson
commuting functions 〈·, Zj 〉 for Zj in a basis of a).
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Quantum states

If V = GNSm , then (φ, ·φ) is a quantum state for X for all unit φ ∈ V.

Definition
G-modules V with this property are quantum representations for X.

They need not be continuous, nor irreducible on transitive subgroups.

Example 1: Point-orbits

Suppose a state n of a connected Lie group H is quantum for a point-
orbit {y} ⊂ (h∗)H. Then y is integral, and n is the character such that

n(exp(Z)) = ei〈y ,Z〉. (2)

A representation of H is quantum for {y} iff it is a multiple of this n .

We will call states of G ⊃ H that restrict to (2) eigenstates belonging
to y ∈ (h∗)H — or by abuse, to the (generically coisotropic) preimage
of y in some X ⊂ g∗. Weinstein (1982) called attaching waves to
lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.
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Example 2: Prequantization is not quantum

Let L be the prequantization line bundle over X = (R2, dp ∧ dq).
The resulting representation of Aut(L) in L2(X) is not quantum for X.

Sketch of proof:
It represents the flow of the bounded hamiltonian H(p, q) = sin p by a
1-parameter group whose self-adjoint generator is unbounded — it’s
equivalent to multiplication by sin p + (k − p) cos p in L2(R2, dp dk).

Remark
We are rejecting this representation for spectral reasons. Unlike van
Hove who rejected it for being reducible on the Heisenberg subgroup,
we can still hope that Aut(L) has a representation quantizing X.

(Of course, this remains purely verbal until someone finds it!)
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On the other hand. . .

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

• G noncompact simple: every nonzero coadjoint orbit has bX = bg∗.

• G connected nilpotent: every coadjoint orbit has the same Bohr
closure as its affine hull.

Corollary

• G noncompact simple: every unitary representation is quantum for
every nonzero coadjoint orbit.

• G simply connected nilpotent: a unitary representation is quantum
for X iff the center of G/ exp(ann(X)) acts by the correct character.
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Eigenstates in nilpotent groups

Theorem
Let H ⊂ G be maximal subordinate to x ∈ X. Then there is a unique
quantum eigenstate for X belonging to {x|h} ⊂ h∗, namely

m(g) =

¨

eix ◦ log(g) if g ∈ H,

0 otherwise.

Moreover GNSm = ind(x , H) := indG
H eix ◦ log

|H (discrete induction).

a ⊂ h ⇒ x|a certain; a t h ⇒ x|a equidistributed in â.
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Eigenstates in nilpotent groups

G : connected, simply connected nilpotent Lie group,
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11 / 18



Quantization,
after Souriau

Souriau

Prequantization

Quantization?

Group algebra

Classical

Quantum

Nilpotent

Reductive

E(3)

Eigenstates in nilpotent groups

G : connected, simply connected nilpotent Lie group,
X : coadjoint orbit of G,
x : chosen point in X.
A connected subgroup H ⊂ G is subordinate to x if, equivalently,

• {x|h} is a point-orbit of H in h∗

• 〈x , [h, h]〉 = 0
• eix ◦ log

|H is a character of H.

Theorem
Let H ⊂ G be maximal subordinate to x ∈ X. Then there is a unique
quantum eigenstate for X belonging to {x|h} ⊂ h∗, namely

m(g) =

¨

eix ◦ log(g) if g ∈ H,

0 otherwise.

Moreover GNSm = ind(x , H) := indG
H eix ◦ log

|H (discrete induction).

a ⊂ h ⇒ x|a certain; a t h ⇒ x|a equidistributed in â.
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11 / 18



Quantization,
after Souriau

Souriau

Prequantization

Quantization?

Group algebra

Classical

Quantum

Nilpotent

Reductive

E(3)

Eigenstates in nilpotent groups

G : connected, simply connected nilpotent Lie group,
X : coadjoint orbit of G,
x : chosen point in X.
A connected subgroup H ⊂ G is subordinate to x if, equivalently,

• {x|h} is a point-orbit of H in h∗

• 〈x , [h, h]〉 = 0
• eix ◦ log

|H is a character of H.

Theorem
Let H ⊂ G be maximal subordinate to x ∈ X. Then there is a unique
quantum eigenstate for X belonging to {x|h} ⊂ h∗, namely

m(g) =

¨

eix ◦ log(g) if g ∈ H,

0 otherwise.

Moreover GNSm = ind(x , H) := indG
H eix ◦ log

|H (discrete induction).

a ⊂ h ⇒ x|a certain; a t h ⇒ x|a equidistributed in â.
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Eigenstates in nilpotent groups

Remark

Kirillov (1962) used Ind(x , H) := IndG
H eix ◦ log

|H (usual induction).
This is

(a) irreducible⇔ H is a polarization at x (: subordinate subgroup
such that the bound dim(G/H) > 1

2 dim(X) is attained);

(b) equivalent to Ind(x , H′) if H 6= H′ are two polarizations at x .
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Prequantization

Quantization?

Group algebra

Classical

Quantum

Nilpotent

Reductive

E(3)

Eigenstates in reductive groups

G : linear reductive Lie group (: ⊂ GLn(R), stable under transpose)
g∗: identified with g by means of the trace form 〈Z, Z′〉 = Tr(ZZ′)
x : hyperbolic element of g∗ (: diagonalizable with real eigenvalues)
u : sum of the eigenspaces belonging to positive eigenvalues of ad(x )
χ : a character of the parabolic Q = Gx exp(u) with differential ix|q.

Remark: The coadjoint orbit G(x ) = IndG
Q{x|q} (symplectic induction).

Conjecture

There is a unique state m of G that extends χ, namely

m(g) =

¨

χ(g) if g ∈ Q,

0 otherwise.

It is a quantum eigenstate for X belonging to {x|q}, and GNSm = indG
Q χ.

Theorem: The conjecture is true for G = SL2(R) or SL3(R), Q Borel.
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u : sum of the eigenspaces belonging to positive eigenvalues of ad(x )
χ : a character of the parabolic Q = Gx exp(u) with differential ix|q.

Remark: The coadjoint orbit G(x ) = IndG
Q{x|q} (symplectic induction).

Conjecture

There is a unique state m of G that extends χ, namely

m(g) =

¨

χ(g) if g ∈ Q,

0 otherwise.

It is a quantum eigenstate for X belonging to {x|q}, and GNSm = indG
Q χ.
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Euclid’s group G =
�

g =
� A c

0 1

�

: A∈SO(3)
c∈R3

	

Example: TS2

u r

G acts naturally and symplectically on
the manifold X ' TS2 of oriented lines
(a.k.a. light rays) in R3. 2-formk ,s :

ω = k d〈u, dr〉 + s AreaS2 .

The moment map

Φ(u, r) =
�

r × ku + su
ku

�

makes X into a coadjoint orbit of G.
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: A∈SO(3)
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Case s = 0:
We have unique* eigenstates belonging to 3 types of lagrangians:

tangent space at n = e3

m
�

A c
0 1

�

=

¨

ei〈n,kc〉 if An = n,
0 otherwise

zero section

m
�

A c
0 1

�

=
sin ‖kc‖
‖kc‖

equator’s normal bundle

m
�

A c
0 1

�

=

¨

J0(‖kc⊥‖) if An = ±n,
0 otherwise
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Euclid’s group G =
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� A c

0 1

�

: A∈SO(3)
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Case s = 0:
The resulting GNS modules can be realized as solution spaces of the
Helmholtz equation

Δψ + k2
ψ = 0 (3)

with scalar field G-action (gψ)(r) = ψ(A−1(r − c)) and cyclic vectors:

“plane wave” “spherical wave” “cylindrical wave”

ψ(r) = e−ikz
ψ(r) =

sin ‖kr‖
‖kr‖

ψ(r) = J0(‖kr⊥‖)

Challenge: Find all unitarizable G-modules of solutions of (3).
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Case s = 1 (zero section is no longer lagrangian):

The unique eigenstate belonging to the tangent space at n becomes

m
�

A c
0 1

�

=

¨

eiαei〈n,kc〉 if A = e j(αn),
0 otherwise

( j(α) := α× · ).

Module: GNSm = {`2 sections b of the tangent bundle TS2 → S2},
with G-action (gb)(u) = e〈u,kc〉JAb(A−1u) where Jδu = j(u)δu.
Putting

F(r) =
∑
u∈S2

e−〈u,kr〉J(b− iJb)(u)

one obtains a Hilbert space of almost-periodic solutions F = B + iE
of the reduced Maxwell equations

div F = 0, curl F = kF,

with vector field G-action (gF)(r) = AF(A−1(r − c)).
Cyclic vector: the textbook “plane wave” F(r) = e−ikz (e1 − ie2).
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