Metaplectic-c Quantization

Yucong Jiang jiangyc@math.utoronto.ca

University of Toronto

CMS Winter Meeting December 9, 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline

This is an ongoing project with Yael Karshon. Our approach of metaplectic-c quantization is based on Herald Hess [Hess, 1981]. Without using the metaplectic representation, this approach is different from the approach of Robinson and Rawsley [Robinson and Rawnsley, 1989].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The analog of half form bundles in mp-c case

Partial connections

Pairing maps and Blattner's formula

The Konstant-Souriau recipe of geometric quantization:

• A prequantizable metaplectic manifold (M, ω) .

The Konstant-Souriau recipe of geometric quantization:

- A prequantizable metaplectic manifold (M, ω) .
- ► A hermitian line bundle $L \rightarrow M$ with a hermitian connection whose curvature equals to $\frac{1}{l\hbar}\omega$.

The Konstant-Souriau recipe of geometric quantization:

- A prequantizable metaplectic manifold (M, ω) .
- ► A hermitian line bundle $L \rightarrow M$ with a hermitian connection whose curvature equals to $\frac{1}{i\hbar}\omega$.
- A polarization *F*. The metaplecitc structure on *M* enables us to define the half form bundle δ_F associated to *F*: δ_F ⊗ δ_F ≅ det(*F*).

The Konstant-Souriau recipe of geometric quantization:

- A prequantizable metaplectic manifold (M, ω) .
- ► A hermitian line bundle $L \rightarrow M$ with a hermitian connection whose curvature equals to $\frac{1}{i\hbar}\omega$.
- A polarization *F*. The metaplecitc structure on *M* enables us to define the half form bundle δ_F associated to *F*: δ_F ⊗ δ_F ≅ det(*F*).
- ► The quantization line bundle is defined as L ⊗ δ_F⁻¹ whose sections are L-valued half forms normal to F.

 A metaplectic-c manifold (M, ω) equipped with a principal mp-c bundle (P̃, γ̃) and a polarization F with typical fiber F.

- A metaplectic-c manifold (M, ω) equipped with a principal mp-c bundle (P̃, γ̃) and a polarization F with typical fiber F.
- Reduce the symplectic frame bundle P to P_F which is a Sp_F-principal bundle. Pull it back to P̃ and denote the pullback by P̃_F which is a Mp_F^c-bundle.

- A metaplectic-c manifold (M,ω) equipped with a principal mp-c bundle (P̃, γ̃) and a polarization F with typical fiber F.
- Reduce the symplectic frame bundle P to P_F which is a Sp_F-principal bundle. Pull it back to P̃ and denote the pullback by P̃_F which is a Mp^c_F-bundle.
- There is a unique homomorphism χ_F : Mp_F → C[×] such that (χ_F ∘ proj)² = det ∘res, where res : Sp_F → GL(F, C) is the restriction map to F. Define χ^c_F : Mp^c_F → C[×] by χ^c_F([g, z]) = χ_F(g)z.

- A metaplectic-c manifold (M,ω) equipped with a principal mp-c bundle (P̃, γ̃) and a polarization F with typical fiber F.
- Reduce the symplectic frame bundle P to P_F which is a Sp_F-principal bundle. Pull it back to P̃ and denote the pullback by P̃_F which is a Mp^c_F-bundle.
- There is a unique homomorphism χ_F : Mp_F → C[×] such that (χ_F ∘ proj)² = det ∘res, where res : Sp_F → GL(F, C) is the restriction map to F. Define χ^c_F : Mp^c_F → C[×] by χ^c_F([g, z]) = χ_F(g)z.
- Define the quantization line bundle as the associated line bundle to P̃_F and χ^c_ℝ:

$$Q_F := \tilde{P}_F imes_{\chi^c_F} \mathbb{C}.$$

We want to define a *F*-connection on Q_F . Let me explain the construction of partial connections in a simplified case: we assume *F* has a complement polarization *G*, i.e. $F \oplus G = TM^{\mathbb{C}}$. The goal is to construct a $\mathfrak{mp}_{\mathbb{F}}^c$ -valued connection one form θ on \tilde{P}_F such that the induced covariant derivative on Q_F along *F* does not depend on the choice of *G*.

Sketch of the construction

• The pullback $\tilde{\gamma}_F$ of $\tilde{\gamma}$ to \tilde{P}_F via $\tilde{P}_F \hookrightarrow \tilde{P}$ serves as the $\mathfrak{u}(1)$ -component of θ .

Lemma $\nabla_X^{F,G}$, $X \in F$ is independent of the choices of G. Hence we get a well-defined partial connection on Q_F .

Sketch of the construction

- The pullback $\tilde{\gamma}_F$ of $\tilde{\gamma}$ to \tilde{P}_F via $\tilde{P}_F \hookrightarrow \tilde{P}$ serves as the $\mathfrak{u}(1)$ -component of θ .
- Use the complement G and Bott connetions to define a symplectic connection on TM^C such that ∇_{TM^C}(Γ(F)) ⊂ Γ(F), ∇_{TM^C}(Γ(G)) ⊂ Γ(G). Equivalently, we obtain a principal connection on P which can be reduced to P_F. Let's denote its pullback to P̃_F by A_{F,G} which serves as the sp_F-component of θ.

Lemma

 $\nabla_X^{F,G}$, $X \in F$ is independent of the choices of G. Hence we get a well-defined partial connection on Q_F .

Sketch of the construction

- The pullback $\tilde{\gamma}_F$ of $\tilde{\gamma}$ to \tilde{P}_F via $\tilde{P}_F \hookrightarrow \tilde{P}$ serves as the $\mathfrak{u}(1)$ -component of θ .
- Use the complement G and Bott connetions to define a symplectic connection on TM^C such that ∇_{TM^C}(Γ(F)) ⊂ Γ(F), ∇_{TM^C}(Γ(G)) ⊂ Γ(G). Equivalently, we obtain a principal connection on P which can be reduced to P_F. Let's denote its pullback to P̃_F by A_{F,G} which serves as the sp_F-component of θ.
- $\theta_{F,G} = \tilde{\gamma}_F + A_{F,G}$ is an ordinary connection one form on \tilde{P}_F . As a result, we obtain a covariant derivative $\nabla^{F,G}$ on Q_F .

Lemma

 $\nabla_X^{F,G}$, $X \in F$ is independent of the choices of G. Hence we get a well-defined partial connection on Q_F .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Pairing maps

The polarization F on M^{2n} we take into account satisfies the following conditions:

- 1. Positivity: $i\omega(u, \bar{u}) \ge 0$ for all $u \in F$.
- 2. $F \cap \overline{F}$ has constant rank.

A pairing of polarizations (F_1, F_2) we take into account further satisfies $F_1 \cap \overline{F_2} = D^{\mathbb{C}}$ has a constant rank.

Theorem (Pairing maps)

There is a pairing map

$$Q_{F_1} \times_M Q_{F_2} \to \mathscr{D}^1(TM/D)$$

Note that if $F_1 = F_2 = F$, we obtain a pairing of Q_F itself.

Sketch of the proof

We consider the further reduced bundle

$$P_{1,2}=P_{F_1}\cap P_{F_2}$$

consisting of symplectic frames $(e_1, \dots, e_d, u_1, \dots, u_r, f_1, \dots, f_d, i\overline{v_1}, \dots, i\overline{v_r})$ such that $(e_1, \dots, e_d) \in \mathscr{F}(D), (e_1, \dots, e_d, u_1, \dots, u_r) \in \mathscr{F}(F_1)$ and $(e_1, \dots, e_d, v_1, \dots, v_r) \in \mathscr{F}(F_2).$ Then

$$egin{aligned} & \mathcal{Q}_{\mathcal{F}_1} = ilde{\mathcal{P}}_{1,2} imes_{\chi^c_{\mathbb{F}_1}} \mathbb{C}, \ & \mathcal{Q}_{\mathcal{F}_2} = ilde{\mathcal{P}}_{1,2} imes_{\chi^c_{\mathbb{F}_2}} \mathbb{C}. \end{aligned}$$

For $(\alpha, \beta) \in Q_1 \times_M Q_2$ and $e \in \mathscr{F}(D)$. Lift e to $\tilde{e} \in P_{1,2}$. Assume $\alpha(\tilde{e}) = \lambda$ and $\beta(\tilde{e}) = \mu$. Then define

$$\langle \alpha, \beta \rangle (e) := \lambda \bar{\mu}.$$

Blattner's formula

[Blattner, 1977] For $X \in D$, $\alpha \in \Gamma(F_1)$, and $\beta \in \Gamma(F_2)$,

$$\mathcal{L}_{\boldsymbol{X}}\langle \alpha,\beta\rangle = \langle \nabla_{\boldsymbol{X}}\alpha,\beta\rangle + \langle \alpha,\nabla_{\boldsymbol{X}}\beta\rangle + \kappa_{F_1+\bar{F}_2}(\boldsymbol{X})\langle \alpha,\beta\rangle,$$

where κ is an invariant defined on a differential system associated to $F_1 + \bar{F}_2$.

As a corollary, we have

Corollary

If $F_1 + \overline{F}_2$ is integrable, then for polarized sections $\alpha \in \Gamma(F_1)$ and $\beta \in \Gamma(F_2)$, the function $\langle \alpha, \beta \rangle$ is constant along leaves of *D*. As a result, $\langle \alpha, \beta \rangle$ descends to a 1-density on *M*/*D*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

📄 Blattner, R. J. (1977).

The metalinear geometry of non-real polarizations.

In *Differential geometrical methods in mathematical physics*, pages 11–45. Springer.

📔 Hess, H. (1981).

On a geometric quantization scheme generalizing those of kostant-souriau and czyz.

In *Differential geometric methods in mathematical physics*, pages 1–35. Springer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Robinson, P. L. and Rawnsley, J. H. (1989). The Metaplectic Representation, Mp^c Structures and Geometric Quantization.

Number 410. American Mathematical Soc.