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I know what you’re all here for...

celebrity quizzes
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Celebrity Quiz

Figure: Can you name these A-list celebs?

Name them whatever you want, because they’re not real people1

1From Karras et. al. [6]
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Generative Modelling

Suppose Ω ⊂ Rd is compact, and ν ∈ P(Ω) is a distribution we want to
sample.

e.g. pictures of celebrities, bank data, medical information for rare
diseases ...

have some samples of ν, but want more.

Let µ be a distribution we can sample

e.g. Gw : Rm → Rd is a function (the “generator”) with parameters w,
ζ = N (0, Im),

µ = (Gw)#ζ

Want to choose w so that µ ≈ ν.

I’ll explain how to do this using Wasserstein Generative Adversarial
Networks (WGANs)2

2Arjovsky et. al. [1]
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Testing if µ ≈ ν

How do we test if µ ≈ ν?

We put a metric on P(Ω).

The Wasserstein distance for the Euclidean cost is a convenient choice.
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Background on OT
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Monge’s problem

Problem Data

Ω ⊂ Rd a compact set.

c : Ω× Ω→ R a cost function (e.g. c(x, y) = |x− y|p, p ≥ 1.)

µ, ν ∈ P(Ω) two probability measures.

For a measurable map T : Ω→ Ω the pushforward measure T#µ is

T#µ(E) = µ(T−1(E))

Monge’s Problem

min
T#µ=ν

∫
Ω

c(x, T (x))dµ.
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Kantorovich Relaxation

Requiring a map T is quite strong.

The admissible set T#µ = ν is non-convex and possibly empty.

It requires that mass from each point x be sent to exactly one point y.

The Kantorovich Relaxation allows for mass at one point x to be sent to
multiple points y.
Kantorovich Problem

min
γ∈Π(µ,ν)

∫
Ω

c(x, y)dγ (KP)

where Π(µ, ν) is the set of admissible plans

Π(µ, ν) = {γ ∈ P(Ω× Ω) | (πx)#γ = µ, (πy)#γ = ν}.
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About Π(µ, ν)

The set of admissible plans is non-empty

For example,
γ(E1 × E2) = µ(E1)ν(E2).

In general, for γ ∈ Π(µ, ν),

γ(E1 × E2)

measures how much mass γ moves from E1 to E2.
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Existence of optimal plan

Theorem

If Ω is compact and c : Ω× Ω→ R is continuous, then (KP) admits a solution
γ0 which we call an optimal transport plan.

Important Question: Is γ0 = (I, T0)#µ for some map T0?

Such a map is automatically optimal for Monge’s Problem.
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Kantorovich duality

Under mild conditions,

min
γ∈Π(µ,ν)

∫
Ω

c(x, y)dγ = max
ϕ,ψ∈C(Ω),ϕ⊕ψ≤c

∫
Ω

ϕdµ+

∫
Ω

ψdν.

Maximizing (ϕ,ψ) are called Kantorovich potentials.

For c symmetric, define the c-transform

ϕc(y) = inf
x∈Ω

c(x, y)− ϕ(x),

we have

min
γ∈Π(µ,ν)

∫
Ω

c(x, y)dγ = max
ϕ,ψ∈C(Ω)

∫
Ω

ϕdµ+

∫
Ω

ϕcdν
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c-concave functions

We say ϕ is c-concave (or ϕ ∈ c-conc(Ω)) if there exists ψ such that

ϕ(y) = ψc(y).

Lemma
For ϕ : Ω→ R,

ϕcc ≥ ϕ, ϕccc = ϕc

Means we can write

min
γ∈Π(µ,ν)

∫
Ω

c(x, y)dγ = max
ϕ∈c-conc(Ω)

∫
Ω

ϕdµ+

∫
Ω

ϕcdν
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Relationship between ϕ and γ

Lemma

If γ ∈ Π(µ, ν) is an optimal plan and ϕ is a potential, then

spt(γ) ⊂ {(x, y) ∈ Ω2 | ϕ(x) + ϕc(y) = c(x, y)}

Proof.

Tristan Milne W1 dist. for gen. models March 12th, 2021 15 / 44



Hint for constructing a map

If γ is optimal, it must satisfy

ϕ(x) + ϕc(y) = c(x, y)

for all (x, y) ∈ spt(γ).

Recalling the definition of ϕc,

c(x, y)− ϕ(x) = ϕc(y) = min
z
c(z, y)− ϕ(z).

Hence,

x ∈ argminzc(z, y)− ϕ(z).

So if the set of y for which x is in this argmin is a singleton we have
T (x).
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The choice of c

For the rest of this talk, take

c(x, y) = |x− y|p p ≥ 1.

KP becomes

W p
p (µ, ν) := min

γ∈Π(µ,ν)

∫
Ω

|x− y|pdγ

p = 1, measures work, (Optimal map found in 1999, 2001, 2002)

p = 2, measures kinetic energy. (Optimal map found in 1987)
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The choice of c affects the map

Figure: Each blue x is a point in spt(µ), and red circle is a point in spt(ν), all with
equal mass. Left: the optimal map with p = 1. Right: the optimal map with p = 2.

3

3Figure taken from Hartmann and Schuhmacher [5]
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Given ϕ, finding a map is easy with p > 1

Theorem

If p > 1, µ� L, L(∂Ω) = 0, and ϕ is a potential, then

T (x) = x− (∇| · |p)−1(∇ϕ(x))

is an optimal map for Wp(µ, ν).

No such theorem for p = 1

But a potential u is instrumental in constructing a map.

Just no simple formula.
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The c-transform for p = 1 is simple to compute

Lemma

If c(x, y) = |x− y|, then

ϕc(y) = inf
x∈Ω
|x− y| − ϕ(x)

is 1-Lipschitz.

Lemma

If c(x, y) = |x− y| and ϕ ∈ 1-Lip(Ω), then

ϕc = −ϕ.

Thus,
c-conc(Ω) = 1-Lip(Ω).
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Computational complexity of W1(µ, ν) is lower than
p > 1

Suppose we calculate Wp(µ, ν) by the dual

Wp(µ, ν) = max
ϕ∈c-conc(Ω)

∫
Ω

ϕdµ+

∫
Ω

ϕcdν

If p = 1, this becomes

W1(µ, ν) = max
u∈1-Lip(Ω)

∫
Ω

udµ−
∫

Ω

udν

Compare: computing ϕc for p = 2 is equivalent to computing a Legendre
dual

On a grid with n points per dimension, complexity of O(nd).

Tristan Milne W1 dist. for gen. models March 12th, 2021 21 / 44



Computational complexity of W1(µ, ν) is lower than
p > 1

Suppose we calculate Wp(µ, ν) by the dual

Wp(µ, ν) = max
ϕ∈c-conc(Ω)

∫
Ω

ϕdµ+

∫
Ω

ϕcdν

If p = 1, this becomes

W1(µ, ν) = max
u∈1-Lip(Ω)

∫
Ω

udµ−
∫

Ω

udν

Compare: computing ϕc for p = 2 is equivalent to computing a Legendre
dual

On a grid with n points per dimension, complexity of O(nd).

Tristan Milne W1 dist. for gen. models March 12th, 2021 21 / 44



Computational complexity of W1(µ, ν) is lower than
p > 1

Suppose we calculate Wp(µ, ν) by the dual

Wp(µ, ν) = max
ϕ∈c-conc(Ω)

∫
Ω

ϕdµ+

∫
Ω

ϕcdν

If p = 1, this becomes

W1(µ, ν) = max
u∈1-Lip(Ω)

∫
Ω

udµ−
∫

Ω

udν

Compare: computing ϕc for p = 2 is equivalent to computing a Legendre
dual

On a grid with n points per dimension, complexity of O(nd).

Tristan Milne W1 dist. for gen. models March 12th, 2021 21 / 44



Summary

p c-transform is easy a potential gives a map
1 X X
> 1 X X
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Obtaining an optimal map for p = 1
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History of solutions

Theorem

If µ� L, there is an optimal transport map T for W1(µ, ν).

The first partial solution came from Sudakov in [8]

Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04

First correct proof from Evans and Gangbo [3] with PDE methods for
Lipschitz densities.

Proof for less regular densities from Caffarelli, Feldman, and McCann in
[2] and Trudinger and Wang in [9].

All methods use the properties of a potential u.

The method I’ll sketch here is that of [2] and [9].
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A first observation

Lemma

If γ ∈ Π(µ, ν) is optimal for W1(µ, ν), and u ∈ 1-Lip(Ω) is a potential, then

spt(γ) ⊂ {(x, y) ∈ Ω2 | u(x)− u(y) = |x− y|}

This is just the theorem we had before translated to the case p = 1.

Let’s examine this set!
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u is affine on some segments

Lemma

If u ∈ 1-Lip(Ω) and
u(x)− u(y) = |x− y|,

then for all z ∈ [x, y] := {(1− t)x+ ty | t ∈ [0, 1]},

u(x)− u(z) = |x− z|.

Proof.
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Transport rays

Definition

We call a segment [x, y] a transport ray if

u(x)− u(y) = |x− y|, x 6= y

and [x, y] is the largest such segment containing x and y.

Examples:
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Transport rays are almost disjoint

Lemma

Let [x, y] be a transport ray. Then for all z ∈]x, y[, ∇u(z) exists and satisfies

∇u(z) =
x− y
|x− y|

.

As such, two transport rays can only intersect at their endpoints.

Proof.

Tristan Milne W1 dist. for gen. models March 12th, 2021 28 / 44



Ω decomposes into rays

Ω can be decomposed4 into transport rays that only intersect at their
endpoints.

By Rademacher’s Theorem, the set of ray intersections have L
measure 0.

Figure: For u the distance to the parabola y = x2, the blue lines are some transport
rays, and the purple line together with the parabola is the set of ray ends.

4almost; what about the points in no transport ray?
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Sufficient condition for optimality

Lemma
If T is a map satisfying T#µ = ν and for all x ∈ Ω,

u(x)− u(T (x)) = |x− T (x)|

then T is optimal.

Proof.
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Strategy for constructing T

Need to construct a map T such that

T preserves transport rays

T balances mass on each ray (so that T#µ = ν) .

But mass balance is easy for 1-D problems with an AC source
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A clever change of variable

Reduction to proving that µ can be disintegrated along T-rays such that
we get AC measures on each ray.

Using a Lipschitz change of variable that straightens rays, can get desired
disintegration.

Tristan Milne W1 dist. for gen. models March 12th, 2021 32 / 44



A clever change of variable

Reduction to proving that µ can be disintegrated along T-rays such that
we get AC measures on each ray.

Using a Lipschitz change of variable that straightens rays, can get desired
disintegration.

Tristan Milne W1 dist. for gen. models March 12th, 2021 32 / 44



What does u give directly?

Let T be optimal for W1(µ, ν). Then if u is differentiable at x,

∇u(x) =
x− T (x)

|x− T (x)|
. (1)

So ∇u gives direction of transport, not distance.

p c-transform is easy a potential gives a map
1 X X, but gives direction
> 1 X X
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Applications of W1(µ, ν) for generative models
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Measuring similarity of measures

How do we test if (Gw)#ζ ≈ ν?

Put a metric on P(Ω)

W1(µ, ν) is a convenient choice.

Questions

How do we design Gw to have a hope of approximating ν?

How do we compute W1((Gw)#η, ν)?

How do we find a good w?
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Neural Networks

We will use feedforward neural networks for Gw and to calculate
W1((Gw)#η, ν)

Feedforward neural networks are a broad class of parametrized
functions.

Constructed by composing simple functions, called “layers”. Usually

f(x) = σ(Wx+ b), σ(z1, . . . , zn) = (z+
1 , . . . , z

+
n )

(W, b) are the parameters of the layer, and the parameters for all layers
make up w.

Given enough parameters, they can approximate any continuous
function5.

5See Leshno et. al. [7]
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Neural network facts cont.

Feedforward neural networks are a broad class of parametrized
functions.

The process of finding good parameters w is called training the
network; usually done by applying stochastic gradient descent to a loss
function measuring performance.

A type of NN known as a convolutional neural network (CNN)
excels at imaging tasks. For a CNN, general linear maps W are replaced
by matrices associated with convolutions.

Huge amounts of engineering required in design; not a lot of good math
explanations, but that’s slowly changing.
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Estimating W1((Gw)#ζ, ν)

The distance W1(Gw)#ζ, ν) is estimated by solving the dual problem

W1(µ, ν) = sup
u∈1−Lip(Ω)

∫
Ω

u(dµ− dν) (2)

Note the importance of p = 1!

Estimate by parametrizing u = uθ, a neural network.

sup
u∈1−Lip(Ω)

∫
Ω

u(d(Gw)#ζ − dν) ≈ sup
θ,uθ∈1−Lip(Ω)

∫
Ω

uθ(d(Gw)#ζ − dν). (3)

How is uθ ∈ 1− Lip(Ω) enforced? Researchers have found adding a
regularizer works best.

min
θ

∫
Ω

uθ(dν − d(Gw)#ζ) + λR[∇uθ] (4)
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Enforcing uθ ∈ 1− Lip(Ω)

Various regularizers are used to penalize large gradients of uθ.

One idea6: For a suitably chosen distribution σ,

λR[∇uθ] = λ

∫
Ω

(|∇xuθ(x)| − 1)2dσ(x) (5)

We know |∇u(x)| = 1 on transport rays, so this regularization makes some
sense.

6Gulrajani et. al., [4]
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Training the potential uθ

Given a current value of w = w0 and θ = θ0,

Generate fake samples {xi}Ni=1, xi = Gw0(zi), zi ∼ ζ.

Take real samples {yi}Ni=1 from ν.

For each pair xi, yi, sample ti ∼ U([0, 1])

Approximate∫
Ω

uθ0(dν−d(Gw0
)#ζ) + λR[∇uθ0 ],

≈ 1

N

N∑
i=1

uθ0(yi)− uθ0(xi) + λ(||∇uθ0((1− ti)xi + tiyi)|| − 1)2,

=: L̂(θ0)

Update θ0 by gradient descent

θnew
0 = θ0 − η∇L̂(θ0).

Repeat until the value of L̂(θ) stabilizes, or predetermined max iter.
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Training the generator Gw

Given initial parameters w0,

Compute uθ0 using method from last slide.

Generate fake data {Gw0
(zi)}Ni=1, zi ∼ ζ, and sample real data {yj}Nj=1,

yj ∼ ν.

Estimate W1((Gw0)#ζ, ν) using uθ0 and samples

W1((Gw0
)#ζ, ν) ≈ 1

N

N∑
i=1

uθ0(Gw0
(zi))− uθ0(yi)

Perform gradient descent on estimate of Wasserstein distance

wnew
0 = w0 − ε∇w|w=w0

1

N

N∑
i=1

uθ0(Gw(zi)) (6)

Repeat until samples {Gw0
(zi)}Ni=1 are of sufficient visual quality.
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More WGAN Results

Figure: More results from a different dataset.7

7from Karras et. al. [6]
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Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

The optimization problems for finding w and θ are massively high
dimensional and non-convex; why does gradient descent with
sampling (SGD) work so well?

Does solving

min
θ

∫
Ω

uθ(dν − d(Gw0)#ζ) + λR[∇uθ]

actually produce a Kantorovich potential?

The W1 distance is known to have horrible sample complexity; how
do we get good results despite this?

In reality we do not train θ to completion before updating w; how do the
dynamics of these two descent schemes affect each other?

We should also consider the ethical implications.
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Summary

We discussed how Wp for p > 1 compares to W1

With p > 1, a potential gives an optimal map, whereas for p = 1 a
potential gives only direction of transport.

With p = 1, the c-transform is easier to compute; this is why p = 1 is
more popular in ML.

We sketched a method for constructing an optimal map for W1(µ, ν)

We decompose the space into transport rays, and solve the
resulting 1-D problems.

We went over the algorithm for training WGANs.

Many open questions, and serious ethical issues.
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