Wasserstein 1 Distance for Generative Models

Tristan Milne

March 12th, 2021

Introduction

(1) Introduction

- Generative Modelling
(2) Background on OT
- Kantorovich Relaxation
- Duality
- Comparing $p=1$ to $p>1$
(3) Obtaining an optimal map for $p=1$
- History of solutions
- Properties of the potential
- Constructing a map
(4) Applications of $W_{1}(\mu, \nu)$ for generative models
- Neural Networks
- Wasserstein GANs (WGANs)
- Open Questions

I know what you're all here for...

I know what you're all here for... celebrity quizzes

Celebrity Quiz

Figure: Can you name these A-list celebs?

[^0]
Celebrity Quiz

Figure: Can you name these A-list celebs?
Name them whatever you want, because they're not real people ${ }^{1}$

[^1]
Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...

Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...
- have some samples of ν, but want more.

[^2]
Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...
- have some samples of ν, but want more.

Let μ be a distribution we can sample

Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...
- have some samples of ν, but want more.

Let μ be a distribution we can sample

- e.g. $G_{w}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is a function (the "generator") with parameters w, $\zeta=\mathcal{N}\left(0, I_{m}\right)$,

$$
\mu=\left(G_{w}\right)_{\#} \zeta
$$

${ }^{2}$ Arjovsky et. al. [1]

Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...
- have some samples of ν, but want more.

Let μ be a distribution we can sample

- e.g. $G_{w}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is a function (the "generator") with parameters w, $\zeta=\mathcal{N}\left(0, I_{m}\right)$,

$$
\mu=\left(G_{w}\right)_{\#} \zeta
$$

Want to choose w so that $\mu \approx \nu$.
${ }^{2}$ Arjovsky et. al. [1]

Generative Modelling

Suppose $\Omega \subset \mathbb{R}^{d}$ is compact, and $\nu \in \mathcal{P}(\Omega)$ is a distribution we want to sample.

- e.g. pictures of celebrities, bank data, medical information for rare diseases ...
- have some samples of ν, but want more.

Let μ be a distribution we can sample

- e.g. $G_{w}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is a function (the "generator") with parameters w, $\zeta=\mathcal{N}\left(0, I_{m}\right)$,

$$
\mu=\left(G_{w}\right)_{\#} \zeta
$$

Want to choose w so that $\mu \approx \nu$.
I'll explain how to do this using Wasserstein Generative Adversarial Networks (WGANs) ${ }^{2}$
${ }^{2}$ Arjovsky et. al. [1]

Testing if $\mu \approx \nu$

How do we test if $\mu \approx \nu$?

Testing if $\mu \approx \nu$

How do we test if $\mu \approx \nu$?

- We put a metric on $\mathcal{P}(\Omega)$.

Testing if $\mu \approx \nu$

How do we test if $\mu \approx \nu$?

- We put a metric on $\mathcal{P}(\Omega)$.
- The Wasserstein distance for the Euclidean cost is a convenient choice.

Background on OT

Monge's problem

Problem Data

- $\Omega \subset \mathbb{R}^{d}$ a compact set.
- $c: \Omega \times \Omega \rightarrow \mathbb{R}$ a cost function (e.g. $c(x, y)=|x-y|^{p}, p \geq 1$.)
- $\mu, \nu \in \mathcal{P}(\Omega)$ two probability measures.

Monge's problem

Problem Data

- $\Omega \subset \mathbb{R}^{d}$ a compact set.
- $c: \Omega \times \Omega \rightarrow \mathbb{R}$ a cost function (e.g. $c(x, y)=|x-y|^{p}, p \geq 1$.)
- $\mu, \nu \in \mathcal{P}(\Omega)$ two probability measures.

For a measurable map $T: \Omega \rightarrow \Omega$ the pushforward measure $T_{\#} \mu$ is

$$
T_{\#} \mu(E)=\mu\left(T^{-1}(E)\right)
$$

Monge's problem

Problem Data

- $\Omega \subset \mathbb{R}^{d}$ a compact set.
- $c: \Omega \times \Omega \rightarrow \mathbb{R}$ a cost function (e.g. $c(x, y)=|x-y|^{p}, p \geq 1$.)
- $\mu, \nu \in \mathcal{P}(\Omega)$ two probability measures.

For a measurable map $T: \Omega \rightarrow \Omega$ the pushforward measure $T_{\#} \mu$ is

$$
T_{\#} \mu(E)=\mu\left(T^{-1}(E)\right)
$$

Monge's Problem

$$
\min _{T_{\#} \mu=\nu} \int_{\Omega} c(x, T(x)) d \mu
$$

Kantorovich Relaxation

Requiring a map T is quite strong.

Kantorovich Relaxation

Requiring a map T is quite strong.

- The admissible set $T_{\#} \mu=\nu$ is non-convex and possibly empty.

Kantorovich Relaxation

Requiring a map T is quite strong.

- The admissible set $T_{\#} \mu=\nu$ is non-convex and possibly empty.
- It requires that mass from each point x be sent to exactly one point y.

Kantorovich Relaxation

Requiring a map T is quite strong.

- The admissible set $T_{\#} \mu=\nu$ is non-convex and possibly empty.
- It requires that mass from each point x be sent to exactly one point y. The Kantorovich Relaxation allows for mass at one point x to be sent to multiple points y.

Kantorovich Relaxation

Requiring a map T is quite strong.

- The admissible set $T_{\#} \mu=\nu$ is non-convex and possibly empty.
- It requires that mass from each point x be sent to exactly one point y. The Kantorovich Relaxation allows for mass at one point x to be sent to multiple points y.
Kantorovich Problem

$$
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} c(x, y) d \gamma \quad(\mathrm{KP})
$$

where $\Pi(\mu, \nu)$ is the set of admissible plans

$$
\Pi(\mu, \nu)=\left\{\gamma \in \mathcal{P}(\Omega \times \Omega) \mid\left(\pi_{x}\right)_{\#} \gamma=\mu,\left(\pi_{y}\right)_{\#} \gamma=\nu\right\}
$$

About $\Pi(\mu, \nu)$

The set of admissible plans is non-empty

About $\Pi(\mu, \nu)$

The set of admissible plans is non-empty

- For example,

$$
\gamma\left(E_{1} \times E_{2}\right)=\mu\left(E_{1}\right) \nu\left(E_{2}\right)
$$

About $\Pi(\mu, \nu)$

The set of admissible plans is non-empty

- For example,

$$
\gamma\left(E_{1} \times E_{2}\right)=\mu\left(E_{1}\right) \nu\left(E_{2}\right) .
$$

- In general, for $\gamma \in \Pi(\mu, \nu)$,

$$
\gamma\left(E_{1} \times E_{2}\right)
$$

measures how much mass γ moves from E_{1} to E_{2}.

Existence of optimal plan

Theorem

If Ω is compact and $c: \Omega \times \Omega \rightarrow \mathbb{R}$ is continuous, then (KP) admits a solution γ_{0} which we call an optimal transport plan.

Existence of optimal plan

Theorem

If Ω is compact and $c: \Omega \times \Omega \rightarrow \mathbb{R}$ is continuous, then (KP) admits a solution γ_{0} which we call an optimal transport plan.

Important Question: Is $\gamma_{0}=\left(I, T_{0}\right)_{\#} \mu$ for some map T_{0} ?

Existence of optimal plan

Theorem

If Ω is compact and $c: \Omega \times \Omega \rightarrow \mathbb{R}$ is continuous, then (KP) admits a solution γ_{0} which we call an optimal transport plan.

Important Question: Is $\gamma_{0}=\left(I, T_{0}\right)_{\#} \mu$ for some map T_{0} ?

- Such a map is automatically optimal for Monge's Problem.

Kantorovich duality

Under mild conditions,

$$
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} c(x, y) d \gamma=\max _{\varphi, \psi \in C(\Omega), \varphi \oplus \psi \leq c} \int_{\Omega} \varphi d \mu+\int_{\Omega} \psi d \nu .
$$

Maximizing (φ, ψ) are called Kantorovich potentials.

Kantorovich duality

Under mild conditions,

$$
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} c(x, y) d \gamma=\max _{\varphi, \psi \in C(\Omega), \varphi \oplus \psi \leq c} \int_{\Omega} \varphi d \mu+\int_{\Omega} \psi d \nu .
$$

Maximizing (φ, ψ) are called Kantorovich potentials.
For c symmetric, define the c-transform

$$
\varphi^{c}(y)=\inf _{x \in \Omega} c(x, y)-\varphi(x)
$$

we have

$$
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} c(x, y) d \gamma=\max _{\varphi, \psi \in C(\Omega)} \int_{\Omega} \varphi d \mu+\int_{\Omega} \varphi^{c} d \nu
$$

c-concave functions

We say φ is c-concave (or $\varphi \in c$-conc (Ω)) if there exists ψ such that

$$
\varphi(y)=\psi^{c}(y)
$$

c-concave functions

We say φ is c-concave (or $\varphi \in c$-conc (Ω)) if there exists ψ such that

$$
\varphi(y)=\psi^{c}(y) .
$$

Lemma

For $\varphi: \Omega \rightarrow \mathbb{R}$,

$$
\varphi^{c c} \geq \varphi, \quad \varphi^{c c c}=\varphi^{c}
$$

c-concave functions

We say φ is c-concave (or $\varphi \in c$-conc (Ω)) if there exists ψ such that

$$
\varphi(y)=\psi^{c}(y)
$$

Lemma

For $\varphi: \Omega \rightarrow \mathbb{R}$,

$$
\varphi^{c c} \geq \varphi, \quad \varphi^{c c c}=\varphi^{c}
$$

Means we can write

$$
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} c(x, y) d \gamma=\max _{\varphi \in c-\operatorname{conc}(\Omega)} \int_{\Omega} \varphi d \mu+\int_{\Omega} \varphi^{c} d \nu
$$

Relationship between φ and γ

Lemma

If $\gamma \in \Pi(\mu, \nu)$ is an optimal plan and φ is a potential, then

$$
\operatorname{spt}(\gamma) \subset\left\{(x, y) \in \Omega^{2} \mid \varphi(x)+\varphi^{c}(y)=c(x, y)\right\}
$$

Proof.

Hint for constructing a map

If γ is optimal, it must satisfy

$$
\varphi(x)+\varphi^{c}(y)=c(x, y)
$$

for all $(x, y) \in \operatorname{spt}(\gamma)$.

Hint for constructing a map

If γ is optimal, it must satisfy

$$
\varphi(x)+\varphi^{c}(y)=c(x, y)
$$

for all $(x, y) \in \operatorname{spt}(\gamma)$.
Recalling the definition of φ^{c},

$$
c(x, y)-\varphi(x)=\varphi^{c}(y)=\min _{z} c(z, y)-\varphi(z) .
$$

Hint for constructing a map

If γ is optimal, it must satisfy

$$
\varphi(x)+\varphi^{c}(y)=c(x, y)
$$

for all $(x, y) \in \operatorname{spt}(\gamma)$.
Recalling the definition of φ^{c},

$$
c(x, y)-\varphi(x)=\varphi^{c}(y)=\min _{z} c(z, y)-\varphi(z)
$$

Hence,

$$
x \in \operatorname{argmin}_{z} c(z, y)-\varphi(z)
$$

So if the set of y for which x is in this argmin is a singleton we have $T(x)$.

The choice of c

For the rest of this talk, take

$$
c(x, y)=|x-y|^{p} \quad p \geq 1 .
$$

KP becomes

$$
W_{p}^{p}(\mu, \nu):=\min _{\gamma \in \Pi(\mu, \nu)} \int_{\Omega}|x-y|^{p} d \gamma
$$

- $p=1$, measures work, (Optimal map found in 1999, 2001, 2002)
- $p=2$, measures kinetic energy. (Optimal map found in 1987)

The choice of c affects the map

Figure: Each blue x is a point in $\operatorname{spt}(\mu)$, and red circle is a point in $\operatorname{spt}(\nu)$, all with equal mass. Left: the optimal map with $p=1$. Right: the optimal map with $p=2$.

3
${ }^{3}$ Figure taken from Hartmann and Schuhmacher [5]

Given φ, finding a map is easy with $p>1$

Theorem

If $p>1, \mu \ll \mathcal{L}, \mathcal{L}(\partial \Omega)=0$, and φ is a potential, then

$$
T(x)=x-\left(\nabla|\cdot|^{p}\right)^{-1}(\nabla \varphi(x))
$$

is an optimal map for $W_{p}(\mu, \nu)$.

Given φ, finding a map is easy with $p>1$

Theorem

If $p>1, \mu \ll \mathcal{L}, \mathcal{L}(\partial \Omega)=0$, and φ is a potential, then

$$
T(x)=x-\left(\nabla|\cdot|^{p}\right)^{-1}(\nabla \varphi(x))
$$

is an optimal map for $W_{p}(\mu, \nu)$.
No such theorem for $p=1$

Given φ, finding a map is easy with $p>1$

Theorem

If $p>1, \mu \ll \mathcal{L}, \mathcal{L}(\partial \Omega)=0$, and φ is a potential, then

$$
T(x)=x-\left(\nabla|\cdot|^{p}\right)^{-1}(\nabla \varphi(x))
$$

is an optimal map for $W_{p}(\mu, \nu)$.
No such theorem for $p=1$

- But a potential u is instrumental in constructing a map.

Given φ, finding a map is easy with $p>1$

Theorem

If $p>1, \mu \ll \mathcal{L}, \mathcal{L}(\partial \Omega)=0$, and φ is a potential, then

$$
T(x)=x-\left(\nabla|\cdot|^{p}\right)^{-1}(\nabla \varphi(x))
$$

is an optimal map for $W_{p}(\mu, \nu)$.
No such theorem for $p=1$

- But a potential u is instrumental in constructing a map.
- Just no simple formula.

The c-transform for $p=1$ is simple to compute

Lemma

If $c(x, y)=|x-y|$, then

$$
\varphi^{c}(y)=\inf _{x \in \Omega}|x-y|-\varphi(x)
$$

is 1-Lipschitz.

The c-transform for $p=1$ is simple to compute

Lemma

If $c(x, y)=|x-y|$, then

$$
\varphi^{c}(y)=\inf _{x \in \Omega}|x-y|-\varphi(x)
$$

is 1-Lipschitz.

Lemma

If $c(x, y)=|x-y|$ and $\varphi \in 1-\operatorname{Lip}(\Omega)$, then

$$
\varphi^{c}=-\varphi .
$$

Thus,

$$
c-\operatorname{conc}(\Omega)=1-\operatorname{Lip}(\Omega) .
$$

Computational complexity of $W_{1}(\mu, \nu)$ is lower than $p>1$

Suppose we calculate $W_{p}(\mu, \nu)$ by the dual

$$
W_{p}(\mu, \nu)=\max _{\varphi \in c-\operatorname{conc}(\Omega)} \int_{\Omega} \varphi d \mu+\int_{\Omega} \varphi^{c} d \nu
$$

If $p=1$, this becomes

$$
W_{1}(\mu, \nu)=\max _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u d \mu-\int_{\Omega} u d \nu
$$

Computational complexity of $W_{1}(\mu, \nu)$ is lower than $p>1$

Suppose we calculate $W_{p}(\mu, \nu)$ by the dual

$$
W_{p}(\mu, \nu)=\max _{\varphi \in c-\operatorname{conc}(\Omega)} \int_{\Omega} \varphi d \mu+\int_{\Omega} \varphi^{c} d \nu
$$

If $p=1$, this becomes

$$
W_{1}(\mu, \nu)=\max _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u d \mu-\int_{\Omega} u d \nu
$$

Compare: computing φ^{c} for $p=2$ is equivalent to computing a Legendre dual

Computational complexity of $W_{1}(\mu, \nu)$ is lower than $p>1$

Suppose we calculate $W_{p}(\mu, \nu)$ by the dual

$$
W_{p}(\mu, \nu)=\max _{\varphi \in c-\operatorname{conc}(\Omega)} \int_{\Omega} \varphi d \mu+\int_{\Omega} \varphi^{c} d \nu
$$

If $p=1$, this becomes

$$
W_{1}(\mu, \nu)=\max _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u d \mu-\int_{\Omega} u d \nu
$$

Compare: computing φ^{c} for $p=2$ is equivalent to computing a Legendre dual

- On a grid with n points per dimension, complexity of $O\left(n^{d}\right)$.

Summary

p	c-transform is easy	a potential gives a map
1	\checkmark	X
>1	X	\checkmark

Obtaining an optimal map for $p=1$

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.
The first partial solution came from Sudakov in [8]

- Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.
The first partial solution came from Sudakov in [8]

- Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04
- First correct proof from Evans and Gangbo [3] with PDE methods for Lipschitz densities.

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.
The first partial solution came from Sudakov in [8]

- Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04
- First correct proof from Evans and Gangbo [3] with PDE methods for Lipschitz densities.
- Proof for less regular densities from Caffarelli, Feldman, and McCann in [2] and Trudinger and Wang in [9].

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.
The first partial solution came from Sudakov in [8]

- Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04
- First correct proof from Evans and Gangbo [3] with PDE methods for Lipschitz densities.
- Proof for less regular densities from Caffarelli, Feldman, and McCann in [2] and Trudinger and Wang in [9].
All methods use the properties of a potential u.

History of solutions

Theorem

If $\mu \ll \mathcal{L}$, there is an optimal transport map T for $W_{1}(\mu, \nu)$.
The first partial solution came from Sudakov in [8]

- Proof was discovered to have a gap by L. Ambrosio, fixed in 2003-04
- First correct proof from Evans and Gangbo [3] with PDE methods for Lipschitz densities.
- Proof for less regular densities from Caffarelli, Feldman, and McCann in [2] and Trudinger and Wang in [9].
All methods use the properties of a potential u.
The method I'll sketch here is that of [2] and [9].

A first observation

Lemma

If $\gamma \in \Pi(\mu, \nu)$ is optimal for $W_{1}(\mu, \nu)$, and $u \in 1-\operatorname{Lip}(\Omega)$ is a potential, then

$$
\operatorname{spt}(\gamma) \subset\left\{(x, y) \in \Omega^{2}|u(x)-u(y)=|x-y|\}\right.
$$

A first observation

Lemma

If $\gamma \in \Pi(\mu, \nu)$ is optimal for $W_{1}(\mu, \nu)$, and $u \in 1-\operatorname{Lip}(\Omega)$ is a potential, then

$$
\operatorname{spt}(\gamma) \subset\left\{(x, y) \in \Omega^{2}|u(x)-u(y)=|x-y|\}\right.
$$

This is just the theorem we had before translated to the case $p=1$.

A first observation

Lemma

If $\gamma \in \Pi(\mu, \nu)$ is optimal for $W_{1}(\mu, \nu)$, and $u \in 1-\operatorname{Lip}(\Omega)$ is a potential, then

$$
\operatorname{spt}(\gamma) \subset\left\{(x, y) \in \Omega^{2}|u(x)-u(y)=|x-y|\}\right.
$$

This is just the theorem we had before translated to the case $p=1$. Let's examine this set!

u is affine on some segments

Lemma

If $u \in 1-\operatorname{Lip}(\Omega)$ and

$$
u(x)-u(y)=|x-y|,
$$

then for all $z \in[x, y]:=\{(1-t) x+t y \mid t \in[0,1]\}$,

$$
u(x)-u(z)=|x-z| .
$$

Proof.

Transport rays

Definition

We call a segment $[x, y]$ a transport ray if

$$
u(x)-u(y)=|x-y|, \quad x \neq y
$$

and $[x, y]$ is the largest such segment containing x and y.

Examples:

Transport rays are almost disjoint

Lemma

Let $[x, y]$ be a transport ray. Then for all $z \in] x, y[, \nabla u(z)$ exists and satisfies

$$
\nabla u(z)=\frac{x-y}{|x-y|}
$$

As such, two transport rays can only intersect at their endpoints.

Proof.

Ω decomposes into rays

Ω can be decomposed ${ }^{4}$ into transport rays that only intersect at their endpoints.
${ }^{4}$ almost; what about the points in no transport ray?

Ω decomposes into rays

Ω can be decomposed ${ }^{4}$ into transport rays that only intersect at their endpoints.

- By Rademacher's Theorem, the set of ray intersections have \mathcal{L} measure 0 .
${ }^{4}$ almost; what about the points in no transport ray?

Ω decomposes into rays

Ω can be decomposed ${ }^{4}$ into transport rays that only intersect at their endpoints.

- By Rademacher's Theorem, the set of ray intersections have \mathcal{L} measure 0 .

Figure: For u the distance to the parabola $y=x^{2}$, the blue lines are some transport rays, and the purple line together with the parabola is the set of ray ends.
${ }^{4}$ almost; what about the points in no transport ray?

Sufficient condition for optimality

Lemma

If T is a map satisfying $T_{\#} \mu=\nu$ and for all $x \in \Omega$,

$$
u(x)-u(T(x))=|x-T(x)|
$$

then T is optimal.

Proof.

Strategy for constructing T

Need to construct a map T such that

- T preserves transport rays

Strategy for constructing T

Need to construct a map T such that

- T preserves transport rays
- T balances mass on each ray (so that $T_{\#} \mu=\nu$).

Strategy for constructing T

Need to construct a map T such that

- T preserves transport rays
- T balances mass on each ray (so that $T_{\#} \mu=\nu$).

But mass balance is easy for 1-D problems with an AC source

A clever change of variable

Reduction to proving that μ can be disintegrated along T-rays such that we get AC measures on each ray.

A clever change of variable

Reduction to proving that μ can be disintegrated along T-rays such that we get AC measures on each ray.

Using a Lipschitz change of variable that straightens rays, can get desired disintegration.

What does u give directly?

Let T be optimal for $W_{1}(\mu, \nu)$. Then if u is differentiable at x,

$$
\begin{equation*}
\nabla u(x)=\frac{x-T(x)}{|x-T(x)|} \tag{1}
\end{equation*}
$$

What does u give directly?

Let T be optimal for $W_{1}(\mu, \nu)$. Then if u is differentiable at x,

$$
\begin{equation*}
\nabla u(x)=\frac{x-T(x)}{|x-T(x)|} \tag{1}
\end{equation*}
$$

So ∇u gives direction of transport, not distance.

What does u give directly?

Let T be optimal for $W_{1}(\mu, \nu)$. Then if u is differentiable at x,

$$
\begin{equation*}
\nabla u(x)=\frac{x-T(x)}{|x-T(x)|} \tag{1}
\end{equation*}
$$

So ∇u gives direction of transport, not distance.

p	c-transform is easy	a potential gives a map
1	\checkmark	X, but gives direction
>1	X	\checkmark

Applications of $W_{1}(\mu, \nu)$ for generative models

Measuring similarity of measures

How do we test if $\left(G_{w}\right)_{\#} \zeta \approx \nu$?

- Put a metric on $\mathcal{P}(\Omega)$

Measuring similarity of measures

How do we test if $\left(G_{w}\right)_{\#} \zeta \approx \nu$?

- Put a metric on $\mathcal{P}(\Omega)$
- $W_{1}(\mu, \nu)$ is a convenient choice.

Measuring similarity of measures

How do we test if $\left(G_{w}\right)_{\#} \zeta \approx \nu$?

- Put a metric on $\mathcal{P}(\Omega)$
- $W_{1}(\mu, \nu)$ is a convenient choice.

Questions

- How do we design G_{w} to have a hope of approximating ν ?

Measuring similarity of measures

How do we test if $\left(G_{w}\right)_{\#} \zeta \approx \nu$?

- Put a metric on $\mathcal{P}(\Omega)$
- $W_{1}(\mu, \nu)$ is a convenient choice.

Questions

- How do we design G_{w} to have a hope of approximating ν ?
- How do we compute $W_{1}\left(\left(G_{w}\right) \neq \eta, \nu\right)$?

Measuring similarity of measures

How do we test if $\left(G_{w}\right)_{\#} \zeta \approx \nu$?

- Put a metric on $\mathcal{P}(\Omega)$
- $W_{1}(\mu, \nu)$ is a convenient choice.

Questions

- How do we design G_{w} to have a hope of approximating ν ?
- How do we compute $W_{1}\left(\left(G_{w}\right) \neq \eta, \nu\right)$?
- How do we find a good w ?

Neural Networks

We will use feedforward neural networks for G_{w} and to calculate $W_{1}\left(\left(G_{w}\right) \# \eta, \nu\right)$

Neural Networks

We will use feedforward neural networks for G_{w} and to calculate $W_{1}\left(\left(G_{w}\right)_{\#} \eta, \nu\right)$

Feedforward neural networks are a broad class of parametrized functions.

Neural Networks

We will use feedforward neural networks for G_{w} and to calculate $W_{1}\left(\left(G_{w}\right)_{\#} \eta, \nu\right)$

Feedforward neural networks are a broad class of parametrized functions.

- Constructed by composing simple functions, called "layers". Usually

$$
f(x)=\sigma(W x+b), \quad \sigma\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{+}, \ldots, z_{n}^{+}\right)
$$

(W, b) are the parameters of the layer, and the parameters for all layers make up w.

Neural Networks

We will use feedforward neural networks for G_{w} and to calculate $W_{1}\left(\left(G_{w}\right)_{\#} \eta, \nu\right)$

Feedforward neural networks are a broad class of parametrized functions.

- Constructed by composing simple functions, called "layers". Usually

$$
f(x)=\sigma(W x+b), \quad \sigma\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{+}, \ldots, z_{n}^{+}\right)
$$

(W, b) are the parameters of the layer, and the parameters for all layers make up w.

- Given enough parameters, they can approximate any continuous function ${ }^{5}$.

[^3]
Neural network facts cont.

Feedforward neural networks are a broad class of parametrized functions.

Neural network facts cont.

Feedforward neural networks are a broad class of parametrized functions.

- The process of finding good parameters w is called training the network; usually done by applying stochastic gradient descent to a loss function measuring performance.

Neural network facts cont.

Feedforward neural networks are a broad class of parametrized functions.

- The process of finding good parameters w is called training the network; usually done by applying stochastic gradient descent to a loss function measuring performance.
- A type of NN known as a convolutional neural network (CNN) excels at imaging tasks. For a CNN, general linear maps W are replaced by matrices associated with convolutions.

Neural network facts cont.

Feedforward neural networks are a broad class of parametrized functions.

- The process of finding good parameters w is called training the network; usually done by applying stochastic gradient descent to a loss function measuring performance.
- A type of NN known as a convolutional neural network (CNN) excels at imaging tasks. For a CNN, general linear maps W are replaced by matrices associated with convolutions.
- Huge amounts of engineering required in design; not a lot of good math explanations, but that's slowly changing.

Estimating $W_{1}\left(\left(G_{w}\right) \# \zeta, \nu\right)$

The distance $\left.W_{1}\left(G_{w}\right)_{\#} \zeta, \nu\right)$ is estimated by solving the dual problem

$$
\begin{equation*}
W_{1}(\mu, \nu)=\sup _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u(d \mu-d \nu) \tag{2}
\end{equation*}
$$

Note the importance of $p=1$!

Estimating $W_{1}\left(\left(G_{w}\right) \# \zeta, \nu\right)$

The distance $\left.W_{1}\left(G_{w}\right)_{\#} \zeta, \nu\right)$ is estimated by solving the dual problem

$$
\begin{equation*}
W_{1}(\mu, \nu)=\sup _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u(d \mu-d \nu) \tag{2}
\end{equation*}
$$

Note the importance of $p=1$!
Estimate by parametrizing $u=u_{\theta}$, a neural network.

$$
\begin{equation*}
\sup _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u\left(d\left(G_{w}\right)_{\#} \zeta-d \nu\right) \approx \sup _{\theta, u_{\theta} \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u_{\theta}\left(d\left(G_{w}\right)_{\#} \zeta-d \nu\right) . \tag{3}
\end{equation*}
$$

Estimating $W_{1}\left(\left(G_{w}\right)_{\# \zeta, \nu)}\right.$

The distance $\left.W_{1}\left(G_{w}\right)_{\#} \zeta, \nu\right)$ is estimated by solving the dual problem

$$
\begin{equation*}
W_{1}(\mu, \nu)=\sup _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u(d \mu-d \nu) \tag{2}
\end{equation*}
$$

Note the importance of $p=1$!
Estimate by parametrizing $u=u_{\theta}$, a neural network.

$$
\begin{equation*}
\sup _{u \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u\left(d\left(G_{w}\right)_{\#} \zeta-d \nu\right) \approx \sup _{\theta, u_{\theta} \in 1-\operatorname{Lip}(\Omega)} \int_{\Omega} u_{\theta}\left(d\left(G_{w}\right)_{\#} \zeta-d \nu\right) . \tag{3}
\end{equation*}
$$

How is $u_{\theta} \in 1-\operatorname{Lip}(\Omega)$ enforced? Researchers have found adding a regularizer works best.

$$
\begin{equation*}
\min _{\theta} \int_{\Omega} u_{\theta}\left(d \nu-d\left(G_{w}\right)_{\#} \zeta\right)+\lambda R\left[\nabla u_{\theta}\right] \tag{4}
\end{equation*}
$$

Enforcing $u_{\theta} \in 1-\operatorname{Lip}(\Omega)$

Various regularizers are used to penalize large gradients of u_{θ}.

Enforcing $u_{\theta} \in 1-\operatorname{Lip}(\Omega)$

Various regularizers are used to penalize large gradients of u_{θ}.
One idea ${ }^{6}$: For a suitably chosen distribution σ,

$$
\begin{equation*}
\lambda R\left[\nabla u_{\theta}\right]=\lambda \int_{\Omega}\left(\left|\nabla_{x} u_{\theta}(x)\right|-1\right)^{2} d \sigma(x) \tag{5}
\end{equation*}
$$

Enforcing $u_{\theta} \in 1-\operatorname{Lip}(\Omega)$

Various regularizers are used to penalize large gradients of u_{θ}.
One idea ${ }^{6}$: For a suitably chosen distribution σ,

$$
\begin{equation*}
\lambda R\left[\nabla u_{\theta}\right]=\lambda \int_{\Omega}\left(\left|\nabla_{x} u_{\theta}(x)\right|-1\right)^{2} d \sigma(x) \tag{5}
\end{equation*}
$$

We know $|\nabla u(x)|=1$ on transport rays, so this regularization makes some sense.

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.
- Take real samples $\left\{y_{i}\right\}_{i=1}^{N}$ from ν.

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.
- Take real samples $\left\{y_{i}\right\}_{i=1}^{N}$ from ν.
- For each pair x_{i}, y_{i}, sample $t_{i} \sim U([0,1])$

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.
- Take real samples $\left\{y_{i}\right\}_{i=1}^{N}$ from ν.
- For each pair x_{i}, y_{i}, sample $t_{i} \sim U([0,1])$
- Approximate

$$
\begin{aligned}
\int_{\Omega} u_{\theta_{0}}(d \nu-d & \left.\left(G_{w_{0}}\right) \# \zeta\right)+\lambda R\left[\nabla u_{\theta_{0}}\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(y_{i}\right)-u_{\theta_{0}}\left(x_{i}\right)+\lambda\left(\left\|\nabla u_{\theta_{0}}\left(\left(1-t_{i}\right) x_{i}+t_{i} y_{i}\right)\right\|-1\right)^{2} \\
& =: \hat{L}\left(\theta_{0}\right)
\end{aligned}
$$

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.
- Take real samples $\left\{y_{i}\right\}_{i=1}^{N}$ from ν.
- For each pair x_{i}, y_{i}, sample $t_{i} \sim U([0,1])$
- Approximate

$$
\begin{aligned}
\int_{\Omega} u_{\theta_{0}}(d \nu- & \left.d\left(G_{w_{0}}\right) \# \zeta\right)+\lambda R\left[\nabla u_{\theta_{0}}\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(y_{i}\right)-u_{\theta_{0}}\left(x_{i}\right)+\lambda\left(\left\|\nabla u_{\theta_{0}}\left(\left(1-t_{i}\right) x_{i}+t_{i} y_{i}\right)\right\|-1\right)^{2} \\
& =: \hat{L}\left(\theta_{0}\right)
\end{aligned}
$$

- Update θ_{0} by gradient descent

$$
\theta_{0}^{\text {new }}=\theta_{0}-\eta \nabla \hat{L}\left(\theta_{0}\right)
$$

Training the potential u_{θ}

Given a current value of $w=w_{0}$ and $\theta=\theta_{0}$,

- Generate fake samples $\left\{x_{i}\right\}_{i=1}^{N}, x_{i}=G_{w_{0}}\left(z_{i}\right), z_{i} \sim \zeta$.
- Take real samples $\left\{y_{i}\right\}_{i=1}^{N}$ from ν.
- For each pair x_{i}, y_{i}, sample $t_{i} \sim U([0,1])$
- Approximate

$$
\begin{aligned}
\int_{\Omega} u_{\theta_{0}}(d \nu- & \left.d\left(G_{w_{0}}\right) \# \zeta\right)+\lambda R\left[\nabla u_{\theta_{0}}\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(y_{i}\right)-u_{\theta_{0}}\left(x_{i}\right)+\lambda\left(\left\|\nabla u_{\theta_{0}}\left(\left(1-t_{i}\right) x_{i}+t_{i} y_{i}\right)\right\|-1\right)^{2} \\
& =: \hat{L}\left(\theta_{0}\right)
\end{aligned}
$$

- Update θ_{0} by gradient descent

$$
\theta_{0}^{\text {new }}=\theta_{0}-\eta \nabla \hat{L}\left(\theta_{0}\right) .
$$

- Repeat until the value of $\hat{L}(\theta)$ stabilizes, or predetermined max iter.

Training the generator G_{w}

Given initial parameters w_{0},

Training the generator G_{w}

Given initial parameters w_{0},

- Compute $u_{\theta_{0}}$ using method from last slide.

Training the generator G_{w}

Given initial parameters w_{0},

- Compute $u_{\theta_{0}}$ using method from last slide.
- Generate fake data $\left\{G_{w_{0}}\left(z_{i}\right)\right\}_{i=1}^{N}, z_{i} \sim \zeta$, and sample real data $\left\{y_{j}\right\}_{j=1}^{N}$, $y_{j} \sim \nu$.

Training the generator G_{w}

Given initial parameters w_{0},

- Compute $u_{\theta_{0}}$ using method from last slide.
- Generate fake data $\left\{G_{w_{0}}\left(z_{i}\right)\right\}_{i=1}^{N}, z_{i} \sim \zeta$, and sample real data $\left\{y_{j}\right\}_{j=1}^{N}$, $y_{j} \sim \nu$.
- Estimate $W_{1}\left(\left(G_{w_{0}}\right)_{\#} \zeta, \nu\right)$ using $u_{\theta_{0}}$ and samples

$$
W_{1}\left(\left(G_{w_{0}}\right)_{\#} \zeta, \nu\right) \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(G_{w_{0}}\left(z_{i}\right)\right)-u_{\theta_{0}}\left(y_{i}\right)
$$

Training the generator G_{w}

Given initial parameters w_{0},

- Compute $u_{\theta_{0}}$ using method from last slide.
- Generate fake data $\left\{G_{w_{0}}\left(z_{i}\right)\right\}_{i=1}^{N}, z_{i} \sim \zeta$, and sample real data $\left\{y_{j}\right\}_{j=1}^{N}$, $y_{j} \sim \nu$.
- Estimate $W_{1}\left(\left(G_{w_{0}}\right)_{\#} \zeta, \nu\right)$ using $u_{\theta_{0}}$ and samples

$$
W_{1}\left(\left(G_{w_{0}}\right) \# \zeta, \nu\right) \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(G_{w_{0}}\left(z_{i}\right)\right)-u_{\theta_{0}}\left(y_{i}\right)
$$

- Perform gradient descent on estimate of Wasserstein distance

$$
\begin{equation*}
w_{0}^{\mathrm{new}}=w_{0}-\left.\epsilon \nabla_{w}\right|_{w=w_{0}} \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(G_{w}\left(z_{i}\right)\right) \tag{6}
\end{equation*}
$$

Training the generator G_{w}

Given initial parameters w_{0},

- Compute $u_{\theta_{0}}$ using method from last slide.
- Generate fake data $\left\{G_{w_{0}}\left(z_{i}\right)\right\}_{i=1}^{N}, z_{i} \sim \zeta$, and sample real data $\left\{y_{j}\right\}_{j=1}^{N}$, $y_{j} \sim \nu$.
- Estimate $W_{1}\left(\left(G_{w_{0}}\right)_{\#} \zeta, \nu\right)$ using $u_{\theta_{0}}$ and samples

$$
W_{1}\left(\left(G_{w_{0}}\right)_{\# \zeta} \zeta, \nu\right) \approx \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(G_{w_{0}}\left(z_{i}\right)\right)-u_{\theta_{0}}\left(y_{i}\right)
$$

- Perform gradient descent on estimate of Wasserstein distance

$$
\begin{equation*}
w_{0}^{\mathrm{new}}=w_{0}-\left.\epsilon \nabla_{w}\right|_{w=w_{0}} \frac{1}{N} \sum_{i=1}^{N} u_{\theta_{0}}\left(G_{w}\left(z_{i}\right)\right) \tag{6}
\end{equation*}
$$

- Repeat until samples $\left\{G_{w_{0}}\left(z_{i}\right)\right\}_{i=1}^{N}$ are of sufficient visual quality.

More WGAN Results

Figure: More results from a different dataset. ${ }^{7}$
${ }^{7}$ from Karras et. al. [6]

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

- The optimization problems for finding w and θ are massively high dimensional and non-convex; why does gradient descent with sampling (SGD) work so well?

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

- The optimization problems for finding w and θ are massively high dimensional and non-convex; why does gradient descent with sampling (SGD) work so well?
- Does solving

$$
\min _{\theta} \int_{\Omega} u_{\theta}\left(d \nu-d\left(G_{w_{0}}\right)_{\#} \zeta\right)+\lambda R\left[\nabla u_{\theta}\right]
$$

actually produce a Kantorovich potential?

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

- The optimization problems for finding w and θ are massively high dimensional and non-convex; why does gradient descent with sampling (SGD) work so well?
- Does solving

$$
\min _{\theta} \int_{\Omega} u_{\theta}\left(d \nu-d\left(G_{w_{0}}\right)_{\#} \zeta\right)+\lambda R\left[\nabla u_{\theta}\right]
$$

actually produce a Kantorovich potential?

- The W_{1} distance is known to have horrible sample complexity; how do we get good results despite this?

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

- The optimization problems for finding w and θ are massively high dimensional and non-convex; why does gradient descent with sampling (SGD) work so well?
- Does solving

$$
\min _{\theta} \int_{\Omega} u_{\theta}\left(d \nu-d\left(G_{w_{0}}\right) \not{ }_{\#} \zeta\right)+\lambda R\left[\nabla u_{\theta}\right]
$$

actually produce a Kantorovich potential?

- The W_{1} distance is known to have horrible sample complexity; how do we get good results despite this?
- In reality we do not train θ to completion before updating w; how do the dynamics of these two descent schemes affect each other?

Open questions for WGANs

Despite this empirical success, there are many theoretical mysteries:

- The optimization problems for finding w and θ are massively high dimensional and non-convex; why does gradient descent with sampling (SGD) work so well?
- Does solving

$$
\min _{\theta} \int_{\Omega} u_{\theta}\left(d \nu-d\left(G_{w_{0}}\right)_{\#} \zeta\right)+\lambda R\left[\nabla u_{\theta}\right]
$$

actually produce a Kantorovich potential?

- The W_{1} distance is known to have horrible sample complexity; how do we get good results despite this?
- In reality we do not train θ to completion before updating w; how do the dynamics of these two descent schemes affect each other?
We should also consider the ethical implications.

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1$ a potential gives only direction of transport.

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1 \mathrm{a}$ potential gives only direction of transport.
- With $p=1$, the c-transform is easier to compute; this is why $p=1$ is more popular in ML.

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1 \mathrm{a}$ potential gives only direction of transport.
- With $p=1$, the c-transform is easier to compute; this is why $p=1$ is more popular in ML.
We sketched a method for constructing an optimal map for $W_{1}(\mu, \nu)$

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1 \mathrm{a}$ potential gives only direction of transport.
- With $p=1$, the c-transform is easier to compute; this is why $p=1$ is more popular in ML.
We sketched a method for constructing an optimal map for $W_{1}(\mu, \nu)$
- We decompose the space into transport rays, and solve the resulting 1-D problems.

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1 \mathrm{a}$ potential gives only direction of transport.
- With $p=1$, the c-transform is easier to compute; this is why $p=1$ is more popular in ML.
We sketched a method for constructing an optimal map for $W_{1}(\mu, \nu)$
- We decompose the space into transport rays, and solve the resulting 1-D problems.
We went over the algorithm for training WGANs.

Summary

We discussed how W_{p} for $p>1$ compares to W_{1}

- With $p>1$, a potential gives an optimal map, whereas for $p=1 \mathrm{a}$ potential gives only direction of transport.
- With $p=1$, the c-transform is easier to compute; this is why $p=1$ is more popular in ML.
We sketched a method for constructing an optimal map for $W_{1}(\mu, \nu)$
- We decompose the space into transport rays, and solve the resulting 1-D problems.
We went over the algorithm for training WGANs.
- Many open questions, and serious ethical issues.

围 M．Arjovsky，S．Chintala，and L．Bottou．
Wasserstein GAN．
arXiv preprint arXiv：1701．07875， 2017.
圊 L．Caffarelli，M．Feldman，and R．McCann．
Constructing optimal maps for monge＇s transport problem as a limit of strictly convex costs．
Journal of the American Mathematical Society，15（1）：1－26， 2002.
圊 L．C．Evans and W．Gangbo．
Differential equations methods for the Monge－Kantorovich mass transfer problem．
Number 653．American Mathematical Soc．， 1999.
I．Gulrajani，F．Ahmed，M．Arjovsky，V．Dumoulin，and A．C．Courville． Improved training of Wasserstein GANs．
In Advances in neural information processing systems，pages 5767－5777， 2017.

圊 V．Hartmann and D．Schuhmacher．
Semi－discrete optimal transport：a solution procedure for the unsquared euclidean distance case．
Mathematical Methods of Operations Research，pages 1－31， 2020.
T. Karras, T. Aila, S. Laine, and J. Lehtinen.

Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.
围 M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken.
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.
Neural Networks, 1993.

V. N. Sudakov.

Geometric problems in the theory of infinite-dimensional probability distributions, volume 141.
American Mathematical Soc., 1979.
围 N. S. Trudinger and X.-J. Wang.
On the monge mass transfer problem.
Calculus of Variations and Partial Differential Equations, 13(1):19-31, 2001.

[^0]: ${ }^{1}$ From Karras et. al. [6]

[^1]: ${ }^{1}$ From Karras et. al. [6]

[^2]: ${ }^{2}$ Arjovsky et. al. [1]

[^3]: ${ }^{5}$ See Leshno et. al. [7]

