Introduction to the SK Model

Tomas Dominguez April 2, 2021

University of Toronto

- 1. Introduction
- 2. The Gibbs Measure
- 3. Existence of Limiting Free Energy
- 4. The Parisi Formula
- 5. The Ruelle Probability Cascades
- 6. Parisi Formula Upper Bound

Introduction

Consider:

▶ A group of N students indexed by 1, 2, ..., N.

Consider:

• A group of N students indexed by $1, 2, \ldots, N$.

- ▶ Interaction parameters $(g_{ij})_{1 \le i,j \le N}$:
 - $g_{ij} \ge 0$ means student *i* likes student *j*,
 - $g_{ij} < 0$ means student *i* dislikes student *j*.

Consider:

• A group of N students indexed by $1, 2, \ldots, N$.

- ▶ Interaction parameters $(g_{ij})_{1 \le i,j \le N}$:
 - $g_{ij} \ge 0$ means student *i* likes student *j*,
 - $g_{ij} < 0$ means student *i* dislikes student *j*.

Divide students into two dorms by assigning labels $\sigma_i \in \{-1, +1\}$:

$$\sigma = (\sigma_1, \ldots, \sigma_N) \in \Sigma_N := \{-1, +1\}^N - \text{configuration vector.}$$

Consider:

• A group of N students indexed by $1, 2, \ldots, N$.

- ▶ Interaction parameters $(g_{ij})_{1 \le i,j \le N}$:
 - $g_{ij} \ge 0$ means student *i* likes student *j*,
 - $g_{ij} < 0$ means student *i* dislikes student *j*.

Divide students into two dorms by assigning labels $\sigma_i \in \{-1, +1\}$:

$$\sigma = (\sigma_1, \ldots, \sigma_N) \in \Sigma_N := \{-1, +1\}^N - \text{configuration vector.}$$

Dean's problem: maximize the comfort function

$$C(\sigma) = \sum_{i,j=1}^{N} g_{ij}\sigma_i\sigma_j = \sum_{i\sim j} g_{ij} - \sum_{i\neq j} g_{ij}$$

over configurations $\sigma \in \Sigma_N$.

To model typical behaviour take interaction parameters g_{ij} to be i.i.d. standard Gaussian.

To model typical behaviour take interaction parameters g_{ij} to be i.i.d. standard Gaussian.

Definition

The Hamiltonian of the Sherrington-Kirkpatrick model is the Gaussian process

$$H_N(\sigma) = rac{1}{\sqrt{N}} \sum_{i,j=1}^N g_{ij} \sigma_i \sigma_j$$

indexed by $\sigma \in \Sigma_N$.

To model typical behaviour take interaction parameters g_{ij} to be i.i.d. standard Gaussian.

Definition

The Hamiltonian of the Sherrington-Kirkpatrick model is the Gaussian process

$$H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{i,j=1}^N g_{ij} \sigma_i \sigma_j$$

indexed by $\sigma \in \Sigma_N$.

Question: What can we say about the maximum $\max_{\sigma \in \Sigma_N} H_N(\sigma)$ asymptotically for systems of large size $N \to \infty$?

• What is $H_N(\sigma)$ for fixed N?

• What is $H_N(\sigma)$ for fixed N?

$$\mathbb{E}H_{N}(\sigma^{1})H_{N}(\sigma^{2}) = \frac{1}{N}\sum_{i,j=1}^{N}\sigma_{i}^{1}\sigma_{j}^{1}\sigma_{k}^{2}\sigma_{l}^{2}\mathbb{E}g_{ij}g_{kl} = N\left(\frac{1}{N}\sum_{i=1}^{N}\sigma_{i}^{1}\sigma_{i}^{2}\right)^{2} = NR_{1,2}^{2},$$

where $R_{1,2} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2$ is the overlap between σ^1 and σ^2 .

• What is $H_N(\sigma)$ for fixed N?

$$\mathbb{E}H_{N}(\sigma^{1})H_{N}(\sigma^{2}) = \frac{1}{N}\sum_{i,j=1}^{N}\sigma_{i}^{1}\sigma_{j}^{1}\sigma_{k}^{2}\sigma_{l}^{2}\mathbb{E}g_{ij}g_{kl} = N\left(\frac{1}{N}\sum_{i=1}^{N}\sigma_{i}^{1}\sigma_{i}^{2}\right)^{2} = NR_{1,2}^{2},$$

where $R_{1,2} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2$ is the overlap between σ^1 and σ^2 .

- ► Consequences:
 - $cN \leq \mathbb{E} \max_{\sigma \in \Sigma_N} H_N(\sigma) \leq CN$ for some $0 < c, C < \infty$.

• What is $H_N(\sigma)$ for fixed N?

$$\mathbb{E}H_{N}(\sigma^{1})H_{N}(\sigma^{2}) = \frac{1}{N}\sum_{i,j=1}^{N}\sigma_{i}^{1}\sigma_{j}^{1}\sigma_{k}^{2}\sigma_{l}^{2}\mathbb{E}g_{ij}g_{kl} = N\left(\frac{1}{N}\sum_{i=1}^{N}\sigma_{i}^{1}\sigma_{i}^{2}\right)^{2} = NR_{1,2}^{2},$$

where $R_{1,2} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2$ is the overlap between σ^1 and σ^2 .

- ► Consequences:
 - $cN \leq \mathbb{E} \max_{\sigma \in \Sigma_N} H_N(\sigma) \leq CN$ for some $0 < c, C < \infty$.
 - Maximum concentrates:

$$\lim_{N\to\infty} \left| \frac{1}{N} \max_{\sigma\in\Sigma_N} H_N(\sigma) - \frac{1}{N} \mathbb{E} \max_{\sigma\in\Sigma_N} H_N(\sigma) \right| = 0.$$

• What is $H_N(\sigma)$ for fixed N?

$$\mathbb{E}H_{N}(\sigma^{1})H_{N}(\sigma^{2}) = \frac{1}{N}\sum_{i,j=1}^{N}\sigma_{i}^{1}\sigma_{j}^{1}\sigma_{k}^{2}\sigma_{l}^{2}\mathbb{E}g_{ij}g_{kl} = N\left(\frac{1}{N}\sum_{i=1}^{N}\sigma_{i}^{1}\sigma_{i}^{2}\right)^{2} = NR_{1,2}^{2},$$

where $R_{1,2} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2$ is the overlap between σ^1 and σ^2 .

- ► Consequences:
 - $cN \leq \mathbb{E} \max_{\sigma \in \Sigma_N} H_N(\sigma) \leq CN$ for some $0 < c, C < \infty$.
 - Maximum concentrates:

$$\lim_{N\to\infty} \left| \frac{1}{N} \max_{\sigma\in\Sigma_N} H_N(\sigma) - \frac{1}{N} \mathbb{E} \max_{\sigma\in\Sigma_N} H_N(\sigma) \right| = 0.$$

Question: What can we say about $\lim_{N\to\infty} \frac{1}{N} \mathbb{E} \max_{\sigma \in \Sigma_N} H_N(\sigma)$.

Instead of studying $\max_{\sigma \in \Sigma} H_N(\sigma)$ first try to compute the limit of its 'smooth approximation'

$$\lim_{N\to\infty}\frac{1}{N\beta}\mathbb{E}\log\sum_{\sigma\in\Sigma_N}\exp\beta H_N(\sigma)$$

for every inverse temperature parameter $\beta > 0$.

Definition

The partition function and the free energy are

$$Z_N(\beta) = \sum_{\sigma \in \Sigma_N} \exp eta H_N(\sigma) ext{ and } F_N(eta) = rac{1}{N} \mathbb{E} \log Z_N(eta).$$

Definition

The partition function and the free energy are

$$Z_N(\beta) = \sum_{\sigma \in \Sigma_N} \exp eta H_N(\sigma) \text{ and } F_N(\beta) = rac{1}{N} \mathbb{E} \log Z_N(\beta).$$

Theorem (From free energy to maximum)

If the limit $F(\beta) = \lim_{N \to \infty} F_N(\beta)$ exists for every $\beta > 0$, then

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_N}H_N(\sigma)=\lim_{\beta\to\infty}\frac{F(\beta)}{\beta}.$$

► Clearly,

$$\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma)\leq\frac{1}{N\beta}\mathbb{E}\log\sum_{\sigma\in\Sigma_{N}}\exp\beta H_{N}(\sigma)\leq\frac{\log 2}{\beta}+\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma).$$

► Clearly,

$$\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma)\leq\frac{1}{N\beta}\mathbb{E}\log\sum_{\sigma\in\Sigma_{N}}\exp\beta H_{N}(\sigma)\leq\frac{\log 2}{\beta}+\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma).$$

► This means

$$\Big|\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_N}H_N(\sigma)-\frac{F(\beta)}{\beta}\Big|\leq \frac{\log 2}{\beta}.$$

► Clearly,

$$\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma)\leq\frac{1}{N\beta}\mathbb{E}\log\sum_{\sigma\in\Sigma_{N}}\exp\beta H_{N}(\sigma)\leq\frac{\log 2}{\beta}+\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma).$$

▶ This means

$$\Big|\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_N}H_N(\sigma)-\frac{F(\beta)}{\beta}\Big|\leq \frac{\log 2}{\beta}.$$

▶ By Hölder's inequality for sums $\beta \mapsto \beta^{-1}(F_N(\beta) - \log(2))$ is increasing:

► Clearly,

$$\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma)\leq\frac{1}{N\beta}\mathbb{E}\log\sum_{\sigma\in\Sigma_{N}}\exp\beta H_{N}(\sigma)\leq\frac{\log 2}{\beta}+\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_{N}}H_{N}(\sigma).$$

▶ This means

$$\Big|\lim_{N\to\infty}\frac{1}{N}\mathbb{E}\max_{\sigma\in\Sigma_N}H_N(\sigma)-\frac{F(\beta)}{\beta}\Big|\leq \frac{\log 2}{\beta}.$$

▶ By Hölder's inequality for sums $\beta \mapsto \beta^{-1}(F_N(\beta) - \log(2))$ is increasing:

$$\lim_{\beta\to\infty}\beta^{-1}F(\beta)$$

exists.

To understand the Dean's problem study the limit of the free energy

 $\lim_{N\to\infty}F_N(\beta)$

in the SK model.

Definition

The Gibbs measure is the random probability measure on Σ_N

$$G_N(\sigma) = rac{\expeta H_N(\sigma)}{Z_N(eta)}.$$

Average with respect to $G_N^{\otimes \infty}$ is denoted $\langle \cdot \rangle$.

Definition

The Gibbs measure is the random probability measure on Σ_N

$$G_N(\sigma) = rac{\expeta H_N(\sigma)}{Z_N(eta)}.$$

Average with respect to $G_N^{\otimes \infty}$ is denoted $\langle \cdot \rangle$.

Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E}G^{\otimes\infty}$:

Definition

The Gibbs measure is the random probability measure on Σ_N

$$G_N(\sigma) = rac{\expeta H_N(\sigma)}{Z_N(eta)}.$$

Average with respect to $G_N^{\otimes \infty}$ is denoted $\langle \cdot \rangle$.

Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E}G^{\otimes\infty}$:

$$\frac{\mathrm{d}}{\mathrm{d}\beta}F_N(\beta) = \frac{1}{N}\mathbb{E}\sum_{\sigma\in\Sigma_N}H_N(\sigma)\frac{\exp H_N(\sigma)}{Z_N(\beta)} = \frac{1}{N}\mathbb{E}\langle H_N(\sigma)\rangle$$

Definition

The Gibbs measure is the random probability measure on Σ_N

$$G_N(\sigma) = rac{\expeta H_N(\sigma)}{Z_N(eta)}.$$

Average with respect to $G_N^{\otimes \infty}$ is denoted $\langle \cdot \rangle$.

Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E}G^{\otimes\infty}$:

$$\frac{\mathrm{d}}{\mathrm{d}\beta}F_{N}(\beta) = \frac{1}{N}\mathbb{E}\sum_{\sigma\in\Sigma_{N}}H_{N}(\sigma)\frac{\exp H_{N}(\sigma)}{Z_{N}(\beta)} = \frac{1}{N}\mathbb{E}\langle H_{N}(\sigma)\rangle,$$
$$\frac{\mathrm{d}^{2}}{\mathrm{d}\beta^{2}}F_{N}(\beta) = \frac{1}{N}\Big(\mathbb{E}\langle H_{N}(\sigma)^{2}\rangle - \mathbb{E}\langle H_{N}(\sigma)\rangle^{2}\Big).$$

► Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E}x(\sigma)^2$, $\mathbb{E}y(\sigma)^2 \leq a$.

- ► Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E}x(\sigma)^2$, $\mathbb{E}y(\sigma)^2 \leq a$.
- Given measure G on Σ define random probability measure

$$G'(\sigma) = \frac{\exp y(\sigma)}{Z}G(\sigma).$$

- ► Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E}x(\sigma)^2$, $\mathbb{E}y(\sigma)^2 \leq a$.
- Given measure G on Σ define random probability measure

$$G'(\sigma) = \frac{\exp y(\sigma)}{Z}G(\sigma).$$

• Gibbs average with respect to $G'^{\otimes \infty}$: $\langle \cdot \rangle$.

- ► Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E}x(\sigma)^2$, $\mathbb{E}y(\sigma)^2 \leq a$.
- Given measure G on Σ define random probability measure

$$G'(\sigma) = \frac{\exp y(\sigma)}{Z}G(\sigma).$$

• Gibbs average with respect to $G'^{\otimes \infty}$: $\langle \cdot \rangle$.

Theorem (Gaussian integration by parts for Gibbs averages) If $C(\sigma^1, \sigma^2) = \mathbb{E}x(\sigma^1)y(\sigma^2)$, then

$$\mathbb{E}\langle X(\sigma)\rangle = \mathbb{E}\langle C(\sigma^1, \sigma^1) - C(\sigma^1, \sigma^2)\rangle.$$

• By approximation take Σ finite: $\mathbb{E}\langle x(\sigma) \rangle = \sum_{\sigma^1 \in \Sigma} \mathbb{E}x(\sigma^1)G'(\sigma^1)$.

► By approximation take Σ finite: $\mathbb{E}\langle x(\sigma) \rangle = \sum_{\sigma^1 \in \Sigma} \mathbb{E}x(\sigma^1)G'(\sigma^1)$. Lemma (Gaussian integration by parts)

If g is a Gaussian vector in \mathbb{R}^n with $\mathbb{E}|
abla F(g)| < \infty$, then

$$\mathbb{E}g_1F(g)=\sum_{1\leq l\leq n}\mathbb{E}g_1g_l\mathbb{E}\partial_{x_l}F(g).$$

► By approximation take Σ finite: $\mathbb{E}\langle x(\sigma) \rangle = \sum_{\sigma^1 \in \Sigma} \mathbb{E}x(\sigma^1)G'(\sigma^1)$. **Lemma (Gaussian integration by parts)** If g is a Gaussian vector in \mathbb{R}^n with $\mathbb{E}|\nabla F(g)| < \infty$, then

$$\mathbb{E}g_1F(g)=\sum_{1\leq l\leq n}\mathbb{E}g_1g_l\mathbb{E}\partial_{x_l}F(g).$$

► Take $g = (x(\sigma^1), y(\sigma^1), (y(\sigma^2))_{\sigma^2 \in \Sigma})$ and $F(g) = \frac{\exp(y(\sigma^1))}{Z}G(\sigma^1)$: $\frac{\partial F}{\partial y(\sigma^1)} = G'(\sigma^1), \qquad \frac{\partial F}{\partial y(\sigma^2)} = -G'(\sigma^1)G'(\sigma^2).$

► By approximation take Σ finite: $\mathbb{E}\langle x(\sigma) \rangle = \sum_{\sigma^1 \in \Sigma} \mathbb{E}x(\sigma^1)G'(\sigma^1)$. **Lemma (Gaussian integration by parts)** If g is a Gaussian vector in \mathbb{R}^n with $\mathbb{E}|\nabla F(g)| < \infty$, then

$$\mathbb{E}g_1F(g)=\sum_{1\leq l\leq n}\mathbb{E}g_1g_l\mathbb{E}\partial_{x_l}F(g).$$

► Take $g = (x(\sigma^1), y(\sigma^1), (y(\sigma^2))_{\sigma^2 \in \Sigma})$ and $F(g) = \frac{\exp(y(\sigma^1))}{Z}G(\sigma^1)$: $\frac{\partial F}{\partial y(\sigma^1)} = G'(\sigma^1), \qquad \frac{\partial F}{\partial y(\sigma^2)} = -G'(\sigma^1)G'(\sigma^2).$

Gaussian integration by parts:

$$\mathbb{E}x(\sigma^{1})G'(\sigma^{1}) = C(\sigma^{1},\sigma^{1})\mathbb{E}G'(\sigma^{1}) - \sum_{\sigma^{2}\in\Sigma} C(\sigma^{1},\sigma^{2})\mathbb{E}G'(\sigma^{1})G'(\sigma^{2}).$$
Existence of Limiting Free Energy

Theorem (Guerra-Toninelli)

The limit $\lim_{N\to\infty} F_N$ exists.

Theorem (Guerra-Toninelli)

The limit $\lim_{N\to\infty} F_N$ exists.

Lemma (Fekete lemma)

If $(x_n)_{n=1}^{\infty}$ is a superadditive sequence $(x_n + x_m \le x_{n+m})$ then $\lim_{n\to\infty} n^{-1}x_n$ exists.

▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

► For $t \in [0, 1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$H_t(\sigma) = \sqrt{t}H_{N+M}(\sigma) + \sqrt{1-t}(H_N(\rho) + H_M(\tau)).$$

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

► For $t \in [0, 1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$H_t(\sigma) = \sqrt{t}H_{N+M}(\sigma) + \sqrt{1-t}(H_N(\rho) + H_M(\tau)).$$

• Gibbs average: $\langle \cdot \rangle_t$,

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

► For $t \in [0, 1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$H_t(\sigma) = \sqrt{t}H_{N+M}(\sigma) + \sqrt{1-t}(H_N(\rho) + H_M(\tau)).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy: $\varphi(t) = \frac{1}{N+M} \mathbb{E} \log Z_t$

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

► For $t \in [0, 1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$H_{t}(\sigma) = \sqrt{t}H_{N+M}(\sigma) + \sqrt{1-t}(H_{N}(\rho) + H_{M}(\tau)).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy: $\varphi(t) = \frac{1}{N+M} \mathbb{E} \log Z_t$

•
$$\varphi(0) = \frac{N}{N+M}F_N + \frac{M}{N+M}F_M$$
 and $\varphi(1) = F_{N+M}$.

- ▶ By Fekete suffices to show $(NF_N)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_N(\rho)$, $H_M(\tau)$ and $H_{N+M}(\sigma)$ on Σ_N , Σ_M and $\Sigma_{N+M} = \Sigma_N \times \Sigma_M$.

► For $t \in [0, 1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$H_t(\sigma) = \sqrt{t}H_{N+M}(\sigma) + \sqrt{1-t}(H_N(\rho) + H_M(\tau)).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy: $\varphi(t) = \frac{1}{N+M} \mathbb{E} \log Z_t$

•
$$\varphi(0) = \frac{N}{N+M}F_N + \frac{M}{N+M}F_M$$
 and $\varphi(1) = F_{N+M}$.

• Want to prove $\varphi(0) \leq \varphi(1)$ or $\varphi'(t) \geq 0$.

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N+M} \mathbb{E} \left\langle \frac{\partial H_t}{\partial t}(\sigma) \right\rangle_t = \frac{1}{N+M} \mathbb{E} \left\langle C(\sigma^1, \sigma^1) - C(\sigma^1, \sigma^2) \right\rangle_t,$$

where $C(\sigma^1, \sigma^2) = \mathbb{E} \frac{\partial H_t}{\partial t}(\sigma^1) H_t(\sigma^2)$.

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N+M} \mathbb{E} \left\langle \frac{\partial H_t}{\partial t}(\sigma) \right\rangle_t = \frac{1}{N+M} \mathbb{E} \left\langle C(\sigma^1, \sigma^1) - C(\sigma^1, \sigma^2) \right\rangle_t,$$

where
$$C(\sigma^1, \sigma^2) = \mathbb{E} \frac{\partial H_t}{\partial t}(\sigma^1) H_t(\sigma^2)$$
.
• If $R_{1,2} = \frac{\sigma^1 \cdot \sigma^2}{N+M}$, $R_{1,2}^- = \frac{\rho^1 \cdot \rho^2}{N}$ and $R_{1,2}^+ = \frac{\tau^1 \cdot \tau^2}{M}$:

$$C(\sigma^{1},\sigma^{2}) = \frac{1}{2} \Big(\mathbb{E}H_{N+M}(\sigma^{1})H_{N+M}(\sigma^{2}) - \mathbb{E}H_{N}(\rho^{1})H_{N}(\rho^{2}) - \mathbb{E}H_{M}(\tau^{1})H_{M}(\tau^{2}) \Big)$$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N+M} \mathbb{E} \left\langle \frac{\partial H_t}{\partial t}(\sigma) \right\rangle_t = \frac{1}{N+M} \mathbb{E} \left\langle C(\sigma^1, \sigma^1) - C(\sigma^1, \sigma^2) \right\rangle_t,$$

where
$$C(\sigma^1, \sigma^2) = \mathbb{E} \frac{\partial H_t}{\partial t}(\sigma^1) H_t(\sigma^2)$$
.
• If $R_{1,2} = \frac{\sigma^1 \cdot \sigma^2}{N+M}$, $R_{1,2}^- = \frac{\rho^1 \cdot \rho^2}{N}$ and $R_{1,2}^+ = \frac{\tau^1 \cdot \tau^2}{M}$:

$$C(\sigma^{1}, \sigma^{2}) = \frac{1}{2} \Big(\mathbb{E}H_{N+M}(\sigma^{1})H_{N+M}(\sigma^{2}) - \mathbb{E}H_{N}(\rho^{1})H_{N}(\rho^{2}) - \mathbb{E}H_{M}(\tau^{1})H_{M}(\tau^{2}) \Big)$$

= $\frac{1}{2} \Big[(N+M)R_{1,2}^{2} - N(R_{1,2}^{-})^{2} - M(R_{1,2}^{+})^{2} \Big].$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N+M} \mathbb{E} \left\langle \frac{\partial H_t}{\partial t}(\sigma) \right\rangle_t = \frac{1}{N+M} \mathbb{E} \left\langle C(\sigma^1, \sigma^1) - C(\sigma^1, \sigma^2) \right\rangle_t,$$

where
$$C(\sigma^1, \sigma^2) = \mathbb{E} \frac{\partial H_t}{\partial t}(\sigma^1) H_t(\sigma^2)$$
.
• If $R_{1,2} = \frac{\sigma^{1} \cdot \sigma^2}{N+M}$, $R_{1,2}^- = \frac{\rho^{1} \cdot \rho^2}{N}$ and $R_{1,2}^+ = \frac{\tau^{1} \cdot \tau^2}{M}$:

$$C(\sigma^{1}, \sigma^{2}) = \frac{1}{2} \Big(\mathbb{E}H_{N+M}(\sigma^{1})H_{N+M}(\sigma^{2}) - \mathbb{E}H_{N}(\rho^{1})H_{N}(\rho^{2}) - \mathbb{E}H_{M}(\tau^{1})H_{M}(\tau^{2}) \Big)$$

= $\frac{1}{2} \Big[(N+M)R_{1,2}^{2} - N(R_{1,2}^{-})^{2} - M(R_{1,2}^{+})^{2} \Big].$

• Convexity of $x \mapsto x^2$:

$$\varphi'(t) = -\frac{1}{2} \mathbb{E} \left\langle R_{1,2}^2 - \frac{N}{N+M} (R_{1,2}^-)^2 - \frac{M}{N+M} (R_{1,2}^+)^2 \right\rangle_t \ge 0.$$

Showed the Dean's problem can be understood by computing $\lim_{N\to\infty} F_N(\beta)$ for every $\beta > 0$.

Showed the Dean's problem can be understood by computing $\lim_{N\to\infty} F_N(\beta)$ for every $\beta > 0$.

Showed $\lim_{N\to\infty} F_N(\beta)$ exists for every $\beta > 0$.

Showed the Dean's problem can be understood by computing $\lim_{N\to\infty} F_N(\beta)$ for every $\beta > 0$.

Showed $\lim_{N\to\infty} F_N(\beta)$ exists for every $\beta > 0$.

▶ Problem: The Dean still has no idea how to assign dorms...

The Parisi Formula

Formula for lim_{N→∞} F_N(β) proposed by Sherrington and Kirkpatrick in their original paper.

- Formula for lim_{N→∞} F_N(β) proposed by Sherrington and Kirkpatrick in their original paper.
- ► Their solution exhibited 'unphysical behavior' at low temperature.

- Formula for $\lim_{N\to\infty} F_N(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for F(β) at all temperatures was famously discovered by Parisi in 1979.

- Formula for $\lim_{N\to\infty} F_N(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for F(β) at all temperatures was famously discovered by Parisi in 1979.
- ▶ First rigorous proof given in 2006 by Talagrand.

- Formula for $\lim_{N\to\infty} F_N(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for F(β) at all temperatures was famously discovered by Parisi in 1979.
- ▶ First rigorous proof given in 2006 by Talagrand.
- More robust proof given in 2014 by Panchenko following his famous proof of the Parisi ultrametricity conjecture.

• Given $r \ge 1$ consider two sequences of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \ldots < \zeta_{r-1} < \zeta_r = 1$$

$$0 = q_0 < q_1 < \ldots < q_{r-1} < q_r = 1.$$

• Given $r \ge 1$ consider two sequences of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \dots < \zeta_{r-1} < \zeta_r = 1$$

$$0 = q_0 < q_1 < \dots < q_{r-1} < q_r = 1.$$

▶ Discrete functional order parameter: $\zeta(\{q_p\}) = \zeta_p - \zeta_{p-1}$.

• Given $r \ge 1$ consider two sequences of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \dots < \zeta_{r-1} < \zeta_r = 1$$

$$0 = q_0 < q_1 < \dots < q_{r-1} < q_r = 1.$$

Discrete functional order parameter: ζ({q_p}) = ζ_p − ζ_{p−1}.
 Given i.i.d. standard Gaussian random variables (η_p)_{1<p<r} let

$$X_r^{\zeta} = \log 2 \cosh \left(\sum_{1 \le p \le r} \sqrt{2} \beta (q_p - q_{p-1})^{1/2} \eta_p \right)$$

and $X_l^{\zeta} = \frac{1}{\zeta_l} \log \mathbb{E}_{\eta_{l+1}} \exp \zeta_l X_{l+1}^{\zeta}$.

• Given $r \ge 1$ consider two sequences of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \dots < \zeta_{r-1} < \zeta_r = 1$$

$$0 = q_0 < q_1 < \dots < q_{r-1} < q_r = 1.$$

Discrete functional order parameter: ζ({q_p}) = ζ_p − ζ_{p−1}.
 Given i.i.d. standard Gaussian random variables (η_p)_{1<p<r} let

$$X_r^{\zeta} = \log 2 \cosh \left(\sum_{1 \le p \le r} \sqrt{2} \beta (q_p - q_{p-1})^{1/2} \eta_p \right)$$

and
$$X_l^{\zeta} = \frac{1}{\zeta_l} \log \mathbb{E}_{\eta_{l+1}} \exp \zeta_l X_{l+1}^{\zeta}$$
.

Definition

The Parisi functional is

$$\mathcal{P}(\zeta) = X_0^{\zeta} - \frac{\beta^2}{2} \sum_{0 \le p \le r-1} (q_{p+1}^2 - q_p^2) \zeta_p = X_0^{\zeta} - \beta^2 \int_0^1 t\zeta(t) \mathrm{d}t.$$

Theorem (The Parisi formula)

The limit of the free energy in the SK model is given by

$$\lim_{N\to\infty}F_N=\inf_{\zeta}\mathcal{P}(\zeta),$$

where the infimum is taken over all discrete functional order parameters $\zeta \in \mathcal{D}[0, 1]$.

The Ruelle Probability Cascades

▶ Random measure on separable Hilbert space.

- ▶ Random measure on separable Hilbert space.
- ▶ Points and weights indexed \mathbb{N}^r .

- ▶ Random measure on separable Hilbert space.
- ▶ Points and weights indexed \mathbb{N}^r .
- ▶ Points in support defined by sequence of parameters

$$0 = q_0 < q_1 < \ldots < q_{r-1} < q_r = 1.$$

- ▶ Random measure on separable Hilbert space.
- ▶ Points and weights indexed \mathbb{N}^r .
- ▶ Points in support defined by sequence of parameters

$$0 = q_0 < q_1 < \ldots < q_{r-1} < q_r = 1.$$

▶ Weights defined by sequence of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \ldots < \zeta_{r-1} < \zeta_r = 1.$$

- ▶ Random measure on separable Hilbert space.
- ▶ Points and weights indexed \mathbb{N}^r .
- ▶ Points in support defined by sequence of parameters

$$0 = q_0 < q_1 < \ldots < q_{r-1} < q_r = 1.$$

▶ Weights defined by sequence of parameters

$$0 = \zeta_{-1} < \zeta_0 < \zeta_1 < \ldots < \zeta_{r-1} < \zeta_r = 1.$$

▶ Discrete functional order parameter: $\zeta(\{q_p\}) = \zeta_p - \zeta_{p-1}$.

Visualization

▶ Identify \mathbb{N}^r with tree $\mathcal{A} = \mathbb{N}^0 \cup \mathbb{N} \cup \mathbb{N}^2 \cup \ldots \cup \mathbb{N}^r$.

▶ Identify \mathbb{N}^r with tree $\mathcal{A} = \mathbb{N}^0 \cup \mathbb{N} \cup \mathbb{N}^2 \cup \ldots \cup \mathbb{N}^r$.

▶ For
$$\alpha = (n_1, \ldots, n_p) \in \mathbb{N}^p$$
:

• children: $\alpha n = (n_1, \ldots, n_p, n) \in \mathbb{N}^{p+1}$.

▶ Identify \mathbb{N}^r with tree $\mathcal{A} = \mathbb{N}^0 \cup \mathbb{N} \cup \mathbb{N}^2 \cup \ldots \cup \mathbb{N}^r$.

▶ For
$$\alpha = (n_1, \ldots, n_p) \in \mathbb{N}^p$$
:

- children: $\alpha n = (n_1, \ldots, n_p, n) \in \mathbb{N}^{p+1}$.
- path to root: $p(\alpha) = \{n_1, (n_1, n_2), \dots, (n_1, \dots, n_p)\}.$

▶ Identify \mathbb{N}^r with tree $\mathcal{A} = \mathbb{N}^0 \cup \mathbb{N} \cup \mathbb{N}^2 \cup \ldots \cup \mathbb{N}^r$.

▶ For
$$\alpha = (n_1, \ldots, n_p) \in \mathbb{N}^p$$
:

- children: $\alpha n = (n_1, \ldots, n_p, n) \in \mathbb{N}^{p+1}$.
- path to root: $p(\alpha) = \{n_1, (n_1, n_2), \dots, (n_1, \dots, n_p)\}.$
- $\alpha \wedge \beta = |p(\alpha) \cap p(\beta)|$ and $|\alpha| = |p(\alpha)|$.

Definition

If (e_{α}) is an orthonormal sequence in H indexed by $\alpha \in \mathcal{A} \setminus \mathbb{N}^{0}$, the support of $\operatorname{RPC}(\zeta)$ is the set (h_{α}) defined by

$$h_{\alpha} = \sum_{\beta \in p(\alpha)} e_{\beta} (q_{|\beta|} - q_{|\beta|-1})^{1/2}.$$

Definition

If (e_{α}) is an orthonormal sequence in H indexed by $\alpha \in \mathcal{A} \setminus \mathbb{N}^{0}$, the support of $\operatorname{RPC}(\zeta)$ is the set (h_{α}) defined by

$$h_{\alpha} = \sum_{\beta \in p(\alpha)} e_{\beta} (q_{|\beta|} - q_{|\beta|-1})^{1/2}.$$

Lemma (RPC overlaps)

For all $\alpha, \beta \in \mathbb{N}^r$ we have $h_{\alpha} \cdot h_{\beta} = q_{\alpha \wedge \beta}$.

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

1

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

• Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

- Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.
- Generate N_m from Poisson distribution with mean $\mu_{|\alpha|}(S_m)$.

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

- Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.
- Generate N_m from Poisson distribution with mean $\mu_{|\alpha|}(S_m)$.
- On each S_m generate N_m points from $\frac{\mu_{|\alpha|}(\cdot \cap S_m)}{\mu_{|\alpha|}(S_m)}$.

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

- Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.
- Generate N_m from Poisson distribution with mean $\mu_{|\alpha|}(S_m)$.
- On each S_m generate N_m points from $\frac{\mu_{|\alpha|}(\cdot \cap S_m)}{\mu_{|\alpha|}(S_m)}$.
- Let $(u_{\alpha n})_{n\geq 1}$ be the decreasing enumeration of Π_{α} .

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

- Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.
- Generate N_m from Poisson distribution with mean $\mu_{|\alpha|}(S_m)$.
- On each S_m generate N_m points from $\frac{\mu_{|\alpha|}(\cdot \Gamma \mid S_m)}{\mu_{|\alpha|}(S_m)}$.
- ▶ Let $(u_{\alpha n})_{n \ge 1}$ be the decreasing enumeration of Π_{α} .
- ► For $\alpha \in \mathcal{A} \setminus \mathbb{N}^0$ define $w_\alpha = \prod_{\beta \in p(\alpha)} u_\beta$. The weights of RPC(ζ) are

$$\nu_{\alpha} = \frac{W_{\alpha}}{\sum_{\beta \in \mathbb{N}^r} W_{\beta}}.$$

For $\alpha \in \mathcal{A} \setminus \mathbb{N}^r$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$u_{|\alpha|}(\mathrm{d} x) = \zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x.$$

- Partition $(0,\infty) = \bigcup_{m \ge 1} S_m$ for $S_1 = [1,\infty)$ and $S_m = [\frac{1}{m}, \frac{1}{m-1})$.
- Generate N_m from Poisson distribution with mean $\mu_{|\alpha|}(S_m)$.
- On each S_m generate N_m points from $\frac{\mu_{|\alpha|}(\cdot \Gamma \mid S_m)}{\mu_{|\alpha|}(S_m)}$.
- ▶ Let $(u_{\alpha n})_{n \ge 1}$ be the decreasing enumeration of Π_{α} .
- ► For $\alpha \in \mathcal{A} \setminus \mathbb{N}^0$ define $w_\alpha = \prod_{\beta \in p(\alpha)} u_\beta$. The weights of RPC(ζ) are

$$\nu_{\alpha} = \frac{\mathsf{W}_{\alpha}}{\sum_{\beta \in \mathbb{N}^r} \mathsf{W}_{\beta}}.$$

▶ $\operatorname{RPC}(\zeta)$ is the random measure *G* on *H* defined by $G(h_{\alpha}) = \nu_{\alpha}$.

• $(\omega_p)_{1 \le p \le r}$ i.i.d. uniform random variables on [0, 1].

• $(\omega_p)_{1 \le p \le r}$ i.i.d. uniform random variables on [0, 1].

• For
$$X_r = X_r(\omega_1, \dots, \omega_r)$$
 let $X_l = \frac{1}{\zeta_l} \log \mathbb{E}_{\omega_{l+1}} \exp \zeta_l X_{l+1}$.

• $(\omega_p)_{1 \le p \le r}$ i.i.d. uniform random variables on [0, 1].

• For
$$X_r = X_r(\omega_1, \ldots, \omega_r)$$
 let $X_l = \frac{1}{\zeta_l} \log \mathbb{E}_{\omega_{l+1}} \exp \zeta_l X_{l+1}$.

Theorem (RPC averages) For $\zeta \in \mathcal{D}[0, 1]$ $X_0 = \mathbb{E} \log \langle \exp X_r((\omega_\beta)_{\beta \in p(\alpha)}) \rangle = \mathbb{E} \log \sum_{\alpha \in \mathbb{N}^r} \nu_\alpha \exp X_r((\omega_\beta)_{\beta \in p(\alpha)}),$

where $\langle \cdot \rangle$ denotes the average with respect to RPC(ζ).

▶ Consider Gaussian processes $(Z(h_{\alpha}))_{\alpha \in \mathbb{N}'}$ and $(Y(h_{\alpha}))_{\alpha \in \mathbb{N}'}$ with

$$\mathbb{E}Z(h_{\alpha^1})Z(h_{\alpha^2}) = 2h_{\alpha^1} \cdot h_{\alpha^2} = 2q_{\alpha^1 \wedge \alpha^2}$$
$$\mathbb{E}Y(h_{\alpha^1})Y(h_{\alpha^2}) = (h_{\alpha^1} \cdot h_{\alpha^2})^2 = q_{\alpha^1 \wedge \alpha^2}^2.$$

▶ Consider Gaussian processes $(Z(h_{\alpha}))_{\alpha \in \mathbb{N}}$ and $(Y(h_{\alpha}))_{\alpha \in \mathbb{N}}$ with

$$\mathbb{E}Z(h_{\alpha^1})Z(h_{\alpha^2}) = 2h_{\alpha^1} \cdot h_{\alpha^2} = 2q_{\alpha^1 \wedge \alpha^2}$$
$$\mathbb{E}Y(h_{\alpha^1})Y(h_{\alpha^2}) = (h_{\alpha^1} \cdot h_{\alpha^2})^2 = q_{\alpha^1 \wedge \alpha^2}^2.$$

Theorem (Parisi functional in terms of RPC) For $\zeta \in \mathcal{D}[0, 1]$ $\mathcal{P}(\zeta) = \mathbb{E} \log \sum_{\alpha \in \mathbb{N}^r} \nu_{\alpha} 2 \cosh \beta Z(h_{\alpha}) - \mathbb{E} \log \sum_{\alpha \in \mathbb{N}^r} \nu_{\alpha} \exp \beta Y(h_{\alpha})$ $= \mathbb{E} \log \langle 2 \cosh \beta Z(\sigma) \rangle - \mathbb{E} \log \langle \exp \beta Y(\sigma) \rangle,$

where $\langle \cdot \rangle$ denotes the average with respect to RPC(ζ).

Parisi Formula Upper Bound

Theorem (Guerra's RSB bound) For any $\zeta \in \mathcal{D}[0, 1]$ and every $N \in \mathbb{N}$ we have $F_N \leq \mathcal{P}(\zeta)$.

For 1 ≤ i ≤ N let (Z_i(h_α)) and (Y_i(h_α)) be independent copies of (Z(h_α)) and (Y(h_α)).

For $1 \le i \le N$ let $(Z_i(h_\alpha))$ and $(Y_i(h_\alpha))$ be independent copies of $(Z(h_\alpha))$ and $(Y(h_\alpha))$.

▶ For $t \in [0, 1]$ consider the Hamiltonian on $\Sigma_N \times \mathbb{N}^r$ defined by

$$H_{N,t}(\sigma,\alpha) = \sqrt{t}H_N(\sigma) + \sqrt{1-t}\sum_{i=1}^N Z_i(h_\alpha)\sigma_i + \sqrt{t}\sum_{i=1}^N Y_i(h_\alpha).$$

- For 1 ≤ i ≤ N let (Z_i(h_α)) and (Y_i(h_α)) be independent copies of (Z(h_α)) and (Y(h_α)).
- ▶ For $t \in [0, 1]$ consider the Hamiltonian on $\Sigma_N \times \mathbb{N}^r$ defined by

$$H_{N,t}(\sigma,\alpha) = \sqrt{t}H_N(\sigma) + \sqrt{1-t}\sum_{i=1}^N Z_i(h_\alpha)\sigma_i + \sqrt{t}\sum_{i=1}^N Y_i(h_\alpha).$$

• Gibbs average: $\langle \cdot \rangle_t$,

- For 1 ≤ i ≤ N let (Z_i(h_α)) and (Y_i(h_α)) be independent copies of (Z(h_α)) and (Y(h_α)).
- ▶ For $t \in [0, 1]$ consider the Hamiltonian on $\Sigma_N \times \mathbb{N}^r$ defined by

$$H_{N,t}(\sigma,\alpha) = \sqrt{t}H_N(\sigma) + \sqrt{1-t}\sum_{i=1}^N Z_i(h_\alpha)\sigma_i + \sqrt{t}\sum_{i=1}^N Y_i(h_\alpha).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy:

$$\varphi(t) = \frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N,t}(\sigma, \alpha).$$

- For $1 \le i \le N$ let $(Z_i(h_\alpha))$ and $(Y_i(h_\alpha))$ be independent copies of $(Z(h_\alpha))$ and $(Y(h_\alpha))$.
- ▶ For $t \in [0, 1]$ consider the Hamiltonian on $\Sigma_N \times \mathbb{N}^r$ defined by

$$H_{N,t}(\sigma,\alpha) = \sqrt{t}H_N(\sigma) + \sqrt{1-t}\sum_{i=1}^N Z_i(h_\alpha)\sigma_i + \sqrt{t}\sum_{i=1}^N Y_i(h_\alpha).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy:

$$\varphi(t) = \frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N,t}(\sigma, \alpha).$$

► Can shown:

$$\begin{split} \varphi(1) &= \frac{1}{N} \mathbb{E} \log \sum_{\sigma \in \Sigma_N} \exp \beta H_N(\sigma) + \mathbb{E} \log \sum_{\alpha \in \mathbb{N}'} \nu_\alpha \exp \beta Y_1(h_\alpha), \\ \varphi(0) &= \mathbb{E} \log \sum_{\alpha \in \mathbb{N}'} \nu_\alpha 2 \cosh \beta Z_1(h_\alpha). \end{split}$$

- For 1 ≤ i ≤ N let (Z_i(h_α)) and (Y_i(h_α)) be independent copies of (Z(h_α)) and (Y(h_α)).
- ▶ For $t \in [0, 1]$ consider the Hamiltonian on $\Sigma_N \times \mathbb{N}^r$ defined by

$$H_{N,t}(\sigma,\alpha) = \sqrt{t}H_N(\sigma) + \sqrt{1-t}\sum_{i=1}^N Z_i(h_\alpha)\sigma_i + \sqrt{t}\sum_{i=1}^N Y_i(h_\alpha).$$

- Gibbs average: $\langle \cdot \rangle_t$,
- interpolating free energy:

$$\varphi(t) = \frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N,t}(\sigma, \alpha).$$

► Can shown:

$$arphi(1) = rac{1}{N} \mathbb{E} \log \sum_{\sigma \in \Sigma_N} \exp eta H_N(\sigma) + \mathbb{E} \log \sum_{lpha \in \mathbb{N}'}
u_lpha \exp eta Y_1(h_lpha),$$

 $arphi(0) = \mathbb{E} \log \sum_{lpha \in \mathbb{N}'}
u_lpha^2 \cosh eta Z_1(h_lpha).$

• Want to prove $\varphi(1) \leq \varphi(0)$ or $\varphi'(t) \leq 0$.

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N} \mathbb{E} \left\langle \frac{\partial H_{N,t}(\rho)}{\partial t} \right\rangle_t = \frac{1}{N} \mathbb{E} \langle C(\rho^1, \rho^1) - C(\rho^1, \rho^2) \rangle_t,$$

$$C(\rho^{1},\rho^{2}) = \mathbb{E}\frac{\partial H_{N,t}(\rho^{1})}{\partial t}H_{N,t}(\rho^{2})$$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N} \mathbb{E} \left\langle \frac{\partial H_{N,t}(\rho)}{\partial t} \right\rangle_t = \frac{1}{N} \mathbb{E} \langle C(\rho^1, \rho^1) - C(\rho^1, \rho^2) \rangle_t,$$

$$C(\rho^{1}, \rho^{2}) = \mathbb{E} \frac{\partial H_{N,t}(\rho^{1})}{\partial t} H_{N,t}(\rho^{2})$$

= $\frac{1}{2} \Big(\mathbb{E} H_{N}(\sigma^{1}) H_{N}(\sigma^{2}) + N\mathbb{E} Y(h_{\alpha^{1}}) Y(h_{\alpha^{2}})$
 $- \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}(h_{\alpha^{1}}) Z_{i}(h_{\alpha^{2}}) \Big)$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N} \mathbb{E} \left\langle \frac{\partial H_{N,t}(\rho)}{\partial t} \right\rangle_t = \frac{1}{N} \mathbb{E} \langle C(\rho^1, \rho^1) - C(\rho^1, \rho^2) \rangle_t,$$

$$C(\rho^{1}, \rho^{2}) = \mathbb{E} \frac{\partial H_{N,t}(\rho^{1})}{\partial t} H_{N,t}(\rho^{2})$$

= $\frac{1}{2} \left(\mathbb{E} H_{N}(\sigma^{1}) H_{N}(\sigma^{2}) + N\mathbb{E} Y(h_{\alpha^{1}}) Y(h_{\alpha^{2}}) - \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}(h_{\alpha^{1}}) Z_{i}(h_{\alpha^{2}}) \right)$
= $\frac{1}{2} \left(N R_{1,2}^{2} + N q_{\alpha^{1} \wedge \alpha^{2}}^{2} - 2 q_{\alpha^{1} \wedge \alpha^{2}} N R_{1,2} \right)$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N} \mathbb{E} \left\langle \frac{\partial H_{N,t}(\rho)}{\partial t} \right\rangle_t = \frac{1}{N} \mathbb{E} \langle C(\rho^1, \rho^1) - C(\rho^1, \rho^2) \rangle_t,$$

$$C(\rho^{1}, \rho^{2}) = \mathbb{E} \frac{\partial H_{N,t}(\rho^{1})}{\partial t} H_{N,t}(\rho^{2})$$

= $\frac{1}{2} \left(\mathbb{E} H_{N}(\sigma^{1}) H_{N}(\sigma^{2}) + N\mathbb{E} Y(h_{\alpha^{1}}) Y(h_{\alpha^{2}}) - \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}(h_{\alpha^{1}}) Z_{i}(h_{\alpha^{2}}) \right)$
= $\frac{1}{2} \left(NR_{1,2}^{2} + Nq_{\alpha^{1} \wedge \alpha^{2}}^{2} - 2q_{\alpha^{1} \wedge \alpha^{2}} NR_{1,2} \right)$
= $\frac{N}{2} (R_{1,2} - q_{\alpha^{1} \wedge \alpha^{2}})^{2}.$

► Gaussian integration by parts:

$$\varphi'(t) = \frac{1}{N} \mathbb{E} \left\langle \frac{\partial H_{N,t}(\rho)}{\partial t} \right\rangle_t = \frac{1}{N} \mathbb{E} \langle C(\rho^1, \rho^1) - C(\rho^1, \rho^2) \rangle_t,$$

where $\rho = (\sigma, \alpha)$ and

$$C(\rho^{1}, \rho^{2}) = \mathbb{E} \frac{\partial H_{N,t}(\rho^{1})}{\partial t} H_{N,t}(\rho^{2})$$

= $\frac{1}{2} \Big(\mathbb{E} H_{N}(\sigma^{1}) H_{N}(\sigma^{2}) + N\mathbb{E} Y(h_{\alpha^{1}}) Y(h_{\alpha^{2}}) \Big)$
 $- \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}(h_{\alpha^{1}}) Z_{i}(h_{\alpha^{2}}) \Big)$
= $\frac{1}{2} \Big(NR_{1,2}^{2} + Nq_{\alpha^{1} \wedge \alpha^{2}}^{2} - 2q_{\alpha^{1} \wedge \alpha^{2}} NR_{1,2} \Big)$
= $\frac{N}{2} (R_{1,2} - q_{\alpha^{1} \wedge \alpha^{2}})^{2}.$

• Since $C(\rho^1, \rho^1) = 0$ this shows $\varphi'(t) \le 0$.

The End Thank you!

Bibliography

Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Communications in Mathematical Physics, 233(1), 1–12.

Panchenko, D. (2013). The Sherrington-Kirkpatrick model. Springer New York.

Panchenko, D. (2014a). Introduction to the SK model.

Panchenko, D. (2014b). The Parisi formula for mixed p-spin models. The Annals of Probability, 42(3).

Panchenko, D. (2019). Lecture notes on probability theory.

Parisi, G. (1979). Infinite number of order parameters for spin-glasses. *Phys.* Rev. Lett., 43, 1754-1756.

Parisi, G. (1980). A sequence of approximated solutions to the SK model for spin glasses. Journal of Physics A: Mathematical and General, 13(4), 1115-1121