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Consider:
» A group of N students indexed by 1,2, ..., N.
> (Gih<ij<n:

* gjj > 0 means student i likes student j,
- gjj < 0 means student i dislikes student j.

Divide students into two dorms by assigning labels o; € {1, +1}:

o=(01,...,0n) €y = {-1,+1}" —

Dean’s problem: maximize the
N
Clo) = _gjoioj=> _gj— Y _gj
ij=1 imf it

over configurations o € Xy.
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To model take interaction parameters g;; to be i.i.d.
standard Gaussian.

Definition
The Hamiltonian of the is the
Gaussian process

N
;
Hy(o) = N Z gijoio;j
=1

indexed by o € Zy.

Question: What can we say about the maximum max,¢y, Hy(o)
asymptotically for systems of large size N — oo?
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Towards Simplification

» What is Hy(o) for fixed N?

N
1 2
EHy (o ZO’ O’kU tEGiigr = (N Zagaiz) = NR?,,
ij=1 i=1
where Ry = ¢ Z _,0lo?isthe between ¢' and o2

» Consequences:
- ¢N < Emaxges, Hy(o) < CN for some 0 < ¢, C < oo.
- Maximum :

1 1
lim |— H - =K H = 0.
T [ T, () = g g ()] = 0

Question: What can we say about limy_ .« %E maxqcy, Hu(o).



An Idea From Physics

Instead of studying max,esx Hy(o) first try to compute the limit of its

lim LEIog Z exp SHy(o)

N—oo N
gEXY

for every 8> 0.
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The Free Energy

Definition
The and the are

Zu(B) = 3 exp fHu(0) and Fu(B) = ~ElogZu(8).

N
oEXy

Theorem (From free energy to maximum)
If the limit F(8) = limy_o Fn(8) exists for every 5 > 0, then

lim lE max Hy(o) = lim F5)

N— 0o CEXN Booo B
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» Clearly,

1 1 log2 1
NE ¢ Hn(o) < WEIOg ; exp SHy(o) < 5 + NIE J Hy(o).
oEXY

» This means

lim lE max Hy(o) — FB) <

N—oo N  ocexy [3

log2.
8

» By Holder's inequality for sums 8~ B="(Fn(8) — log(2)) is
increasing:



» Clearly,
%E(Qaﬁ Hin(o) < /\/ig]E log U;N exp SHy (o) < k)%z + %E max Hy(o)-
» This means
i, g g ) - 2 < 22

» By Holder's inequality for sums 8~ B="(Fn(8) — log(2)) is
increasing:

lim B7'F(B)

B—ro0

exists. -



Conclusion

To understand the Dean'’s problem study the limit of the free energy

[im FN(/)))

N—oo

in the SK model.
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The Gibbs Measure

Definition
The is the random probability measure on X
exp BHy(o)
G =———"
o) ==78)

Average with respect to G > is denoted (-).

Free energy is for distribution of
Hamiltonian under average Gibbs measure EG®*°:

i Z eXp HN( ) _ 1 o
dﬁFN ]EUGZN HN ﬁ) a N]E<HN( )>*
2

T52P(0) = 7 (E((o ) ~ Bltin(@)2).
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Computing Gibbs Averages

» Consider vectors (x(¢)) and (y(o)) indexed by
countably infinite set ¥ with Ex(0)?, Ey(c)? < a.

» Given measure G on X define

G'(0) = eng(g)G(a).

with respect to G'®>:

Theorem (Gaussian integration by parts for Gibbs averages)
If C(o,0%) = Ex(a")y(c?), then

E(x(0)) = E(C(o",0") — C(a1,02)>.
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» By approximation take X finite: E(x(c)) = > o5 Ex(c')G'(0").
Lemma (Gaussian integration by parts)
If g is a Gaussian vector in R" with E|VF(g)| < oo, then

EgiF(9) = > EgigEdyF(g).

1<l<n

> Take g = (x(0),¥(0"), (¥(0?))ex) and F(g) = 24D G(o ")
oF

_ 101 /02'

Ex(c")G'(¢") = C(o!, e EG (o) — Z C(o',0))EG ()G (c?).
o’ex
|

1



Existence of Limiting Free Energy
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Guerra-Toninelli

Theorem (Guerra-Toninelli)
The limit limy_ o Fy exists.

Lemma (Fekete lemma)

If (Xn)22, is a (Xn + Xm < Xnym) then
limp_ oo N~ X, eXists.
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» By Fekete suffices to show (NFy)R2, is

» Consider independent SK Hamiltonians Hy(p), Hu(7) and
HN+/\/|(O') on Xy, xm and ZN+M =N X Xm.

» Fort € [0,1] consider the Hamiltonian on Xy, u defined by

= VtHniu(o) + VT = t(Hu(p) + Hm(r)).

()t
o(t) = ymElog Z;

> ©(0) = wimFn + 7w Fm and o(1) = Fyim.

» Want to prove ¢(0) < (1) or
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where C(a',0?) = E%(H)Ht(oz).
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>

1 <8Ht 1

= mE E(O’)>t =—F <C(O’1,O'1) — C(U1702)>t’

/
t
(1) N+ M

where C(a',0?) = E%(H)Ht(oz).
1.2 1.2

1.2
__ oo — _ p-p P o
> |fR172— N+M'RW,2_ N and R‘\,Z_ M-
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>

(0 = 5B G (0)), = (G Y = o o),
where C(o”,0?) = E%( NHe(0?).

ol.o? = 1 7l
>|fR172_N+M'RW2_ N andRWz— M-

C(017 02)

> (Bttim(o")Hnn(o) — EHu(p")Hn(6?) = Etu(r ()

= 5 [(N+ MR, = N(RT,)? — M(R},)?

I\)\AI\)\

14



>

(0 = 5B G (0)), = (G Y = o o),
where C(o”,0?) = E%( NHe(0?).

ol.o? = 1 7l
>|fR172_N+M'RW2_ N andRWz— :

M
(0", %) = 5 (Mo Vs (o) — B YHiu(e?) — BHu(r (7))
% (N + MR, = N(RT,) — MR,
> of X — x%:

14
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» Introduced the SK model using the Dean’s problem.

» Showed the Dean’s problem can be understood by
limy_ oo Fn(B) for every 5 > 0.

» Showed limy_o Fn(B) for every 5 > 0.

» Problem: The Dean still has how to assign dorms...
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Historical Overview

» Formula for limy_,~ Fn(8) proposed by Sherrington and
Kirkpatrick in their original paper.

» Their solution exhibited at low
temperature.

» Correct formula for F(3) at all temperatures was famously
by Parisi in 1979.

» First proof given in 2006 by Talagrand.

» More proof given in 2014 by Panchenko following his
famous proof of the Parisi ultrametricity conjecture.

16
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Parisi Functional

» Given r > 1 consider two sequences of parameters

0=(1<GO<G<...<¢<¢=1
O=Go<1 <...<@qr1<qgr="1

> C({ap}) = ¢ — Gp—1-

» Given i.i.d. standard Gaussian random variables (1,)1<p<r let

XS = log 2 cosh ( Z V2B(qp — qD—W)T/an)

1<p<r
1
and X[C =z log E,,.,, exp QXf+T
Definition

The is

_ 47@2 2 2 — xS _ 32 1
PO =X~ >, @G -a)p=X -5 [ t(bat

0<p<r—1 D



Theorem (The Parisi formula)
The limit of the free energy in the SK model is given by

lim Fy =infP(¢),

N—oo ¢

where the infimum is taken over all discrete functional order
parameters ¢ € D[0,1].
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The Object

> on separable Hilbert space.
» Points and weights indexed

» Points in support defined by sequence of parameters

0=¢o<h <...<@qr1<qg,r="1

» Weights defined by sequence of parameters

O0=C1<@<G<...<G1<¢=1

> ¢({ap}) = ¢ — Gp—r.
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The Support

Definition

If (e.) is an orthonormal sequence in H indexed by a € A\ N°, the
is the set (h,) defined by

ha= Y es(aqs —q5-1)""
pep(a)

Lemma (RPC overlaps)
For all o, B € N" we have h,, - hg = Gang.

21
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» Fora e A\N', letl, bea on (0, c0) with mean
measure
M\al(dx) = C|a\Xﬁ17CM‘dx-

« Partition (0, 00) = Um>1Sm for Sy = [1,00) and Sy, = [£, —).

m> m—1
- Generate Ny, from Poisson distribution with mean gq((Sm).

- On each S, generate Ny, points from %7(22?)
> Let (Uan)n>1 be the of M.

» Fora € A\ N° define w, = [Tsep(a) Us- The

are
Wa

Vp= —2> .
¢ Z@eNf Wg

> is the random measure G on H defined by G(h,) = v,.

22
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RPC and Parisi Formula

» (wp)i<p<r I.L.d. uniform random variables on [0, 1].

> For X, = Xp(wr,...,wr) let X, = é log Ee,,,, exp (iXi41-

Theorem (RPC averages)
For ¢ € D[0,1]

Xo = Elog(exp Xr((ws)sep(a))) = Elog Z Vo exp Xr((wg)sep(a));
aeNr

where (-) denotes the average with respect to RPC(().
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RPC and Parisi Formula

» Consider Gaussian processes (Z(ha))aen and (Y(ha))aen with
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RPC and Parisi Formula

» Consider Gaussian processes (Z(ha))aen and (Y(ha))aenr with

]EZ(haw)Z(haz) = 2haw . haz = anw/\az
EY(haw)Y(haz) = (hoﬂ ’ ha2)2 = qimaz'

Theorem (Parisi functional in terms of RPC)
For ¢ € D[0,1]
P(¢) =Elog Z Vo2 cosh 8Z(h,,) — Elog Z Ve exp BY(hy)
aeNr aeNr

— Elog(2 cosh 8Z(c)) — E log(exp BY(c)),

where (-) denotes the average with respect to RPC(().
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Parisi Formula Upper Bound




Guerra RSB Interpolation

Theorem (Guerra’s RSB bound)
For any ¢ € D[0,1] and every N € N we have Fy < P({).
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» Fort e [0,1] consider the Hamiltonian on Xy x N' defined by

= VtHy(o)+ V1 —t Zz a,+\/ZY

=1 =1

()t

1
o(t) = NE log UZQ: Vo exp BHy (0, c).
» Can shown: ’

o(1) = %Elog Z exp SHy(o) + Elog Z Vo exp BY1(ha),

OEXY aeN"

©(0) = Elog Z V2 cosh Z1(hy,).
aeNr
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» For1<i<Nlet(Zh,))and (Yi(h,)) be independent copies of
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» Fort e [0,1] consider the Hamiltonian on Xy x N' defined by

= VtHy(o)+ V1 —t Zz a,+\/ZY

=1 =1
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1
o(t) = NE log UZQ: Vo exp BHy (0, c).
» Can shown: ’

o(1) = %Elog Z exp SHy(o) + Elog Z Vo exp BY1(ha),

oEYY aeNr
©(0) =Elog Y _ va2cosh BZi(ha).
aeN"

» Want to prove (1) < ¢(0) or
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>

¢'(t) = %E<6H7§;(p)>t = %E<C(p3p1) —Cp', P,

where p = (0, a) and

OHn(p")
E ot

Clp',p?) = Hu,e(p?)

27



>

¢'(t) = %E<6H7§;(p)>t = %E<C(p3p1) —Cp', P,

where p = (0, a) and

H
C(pwv pZ) =E

27



>

¢'(t) = %E<6H7§;(p)>t = %E<C(p3p1) —Cp', P,
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H
C(pwv pZ) =E
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>

¢'(t) = %E<6H$;(p)>t = %E<C(p3p1) —Cp', P,

where p = (0, a) and

DMy 1(p"
(o, ?) 2Dy (2)

_ %(EHN(U1)HN(02) + NEY(hy )Y(h,e)

N
- Za}afﬁz,—(ha1)z,-(ha2))
=1

1
= (NR{Z + NG — 2C]awAaz/\/Rq7z)

N
= E(Ruz — Gatpa2)’-
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>

gy _ OHn,(p) _ ] 11 12
o'(t) = NE< 5t >t = E(C(p) = Clo, )
where p = (0, a) and

OH f
C(pW’ pZ) - N,t(P )HN,t(pz)

_ %(EHN(U1)HN(02) + NEY(hy )Y(h,e)

N
=Y~ 01oPBZ (ha)Zi(hae)
i=1

1
=3 (NR{Z + NQiU\aZ — 200 ne2 NRW,Z)
N
= E(RLZ = C]aw/\az)z.
» Since C(p', p') = 0 this shows ¢/(t) < 0. [
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The End
Thank you!
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