Introduction to the SK Model

Tomas Dominguez
April 2, 2021
University of Toronto

Contents

1. Introduction
2. The Gibbs Measure
3. Existence of Limiting Free Energy
4. The Parisi Formula
5. The Ruelle Probability Cascades
6. Parisi Formula Upper Bound

Introduction

Dean's Problem

Consider:

- A group of N students indexed by $1,2, \ldots, N$.

Dean's Problem

Consider:

- A group of N students indexed by $1,2, \ldots, N$.
- Interaction parameters $\left(g_{i j}\right)_{1 \leq i, j \leq N}$:
- $g_{i j} \geq 0$ means student i likes student j,
- $g_{i j}<0$ means student i dislikes student j.

Dean's Problem

Consider:

- A group of N students indexed by $1,2, \ldots, N$.
- Interaction parameters $\left(g_{i j}\right)_{1 \leq i, j \leq N}$:
- $g_{i j} \geq 0$ means student i likes student j,
- $g_{i j}<0$ means student i dislikes student j.

Divide students into two dorms by assigning labels $\sigma_{i} \in\{-1,+1\}$:

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Sigma_{N}:=\{-1,+1\}^{N}-\text { configuration vector. }
$$

Dean's Problem

Consider:

- A group of N students indexed by $1,2, \ldots, N$.
- Interaction parameters $\left(g_{i j}\right)_{1 \leq i, j \leq N}$:
- $g_{i j} \geq 0$ means student i likes student j,
- $g_{i j}<0$ means student i dislikes student j.

Divide students into two dorms by assigning labels $\sigma_{i} \in\{-1,+1\}$:

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Sigma_{N}:=\{-1,+1\}^{N}-\text { configuration vector. }
$$

Dean's problem: maximize the comfort function

$$
C(\sigma)=\sum_{i, j=1}^{N} g_{i j} \sigma_{i} \sigma_{j}=\sum_{i \sim j} g_{i j}-\sum_{i \nsim j} g_{i j}
$$

over configurations $\sigma \in \Sigma_{N}$.

SK Model

To model typical behaviour take interaction parameters $g_{i j}$ to be i.i.d. standard Gaussian.

SK Model

To model typical behaviour take interaction parameters $g_{i j}$ to be i.i.d. standard Gaussian.

Definition

The Hamiltonian of the Sherrington-Kirkpatrick model is the Gaussian process

$$
H_{N}(\sigma)=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} g_{i j} \sigma_{i} \sigma_{j}
$$

indexed by $\sigma \in \Sigma_{N}$.

SK Model

To model typical behaviour take interaction parameters $g_{i j}$ to be i.i.d. standard Gaussian.

Definition

The Hamiltonian of the Sherrington-Kirkpatrick model is the Gaussian process

$$
H_{N}(\sigma)=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} g_{i j} \sigma_{i} \sigma_{j}
$$

indexed by $\sigma \in \Sigma_{N}$.

Question: What can we say about the maximum $\max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)$ asymptotically for systems of large size $N \rightarrow \infty$?

Towards Simplification

- What is $H_{N}(\sigma)$ for fixed N ?

Towards Simplification

- What is $H_{N}(\sigma)$ for fixed N ?
$\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i, j=1}^{N} \sigma_{i}^{1} \sigma_{j}^{1} \sigma_{k}^{2} \sigma_{l}^{2} \mathbb{E} g_{i j} g_{k l}=N\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}\right)^{2}=N R_{1,2}^{2}$,
where $R_{1,2}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}$ is the overlap between σ^{1} and σ^{2}.

Towards Simplification

- What is $H_{N}(\sigma)$ for fixed N ?

$$
\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i, j=1}^{N} \sigma_{i}^{1} \sigma_{j}^{1} \sigma_{k}^{2} \sigma_{l}^{2} \mathbb{E} g_{i j} g_{k l}=N\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}\right)^{2}=N R_{1,2}^{2},
$$

where $R_{1,2}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}$ is the overlap between σ^{1} and σ^{2}.

- Consequences:
- $C N \leq \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq C N$ for some $0<C, C<\infty$.

Towards Simplification

- What is $H_{N}(\sigma)$ for fixed N ?

$$
\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i, j=1}^{N} \sigma_{i}^{1} \sigma_{j}^{1} \sigma_{k}^{2} \sigma_{l}^{2} \mathbb{E} g_{i j} g_{k l}=N\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}\right)^{2}=N R_{1,2}^{2},
$$

where $R_{1,2}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}$ is the overlap between σ^{1} and σ^{2}.

- Consequences:
- CN $\leq \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq C N$ for some $0<c, C<\infty$.
- Maximum concentrates:

$$
\lim _{N \rightarrow \infty}\left|\frac{1}{N} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)-\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)\right|=0
$$

Towards Simplification

- What is $H_{N}(\sigma)$ for fixed N ?

$$
\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i, j=1}^{N} \sigma_{i}^{1} \sigma_{j}^{1} \sigma_{k}^{2} \sigma_{l}^{2} \mathbb{E} g_{i j} g_{k l}=N\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}\right)^{2}=N R_{1,2}^{2},
$$

where $R_{1,2}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2}$ is the overlap between σ^{1} and σ^{2}.

- Consequences:
- CN $\leq \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq C N$ for some $0<c, C<\infty$.
- Maximum concentrates:

$$
\lim _{N \rightarrow \infty}\left|\frac{1}{N} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)-\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)\right|=0
$$

Question: What can we say about $\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)$.

An Idea From Physics

Instead of studying $\max _{\sigma \in \Sigma} H_{N}(\sigma)$ first try to compute the limit of its ‘smooth approximation’

$$
\lim _{N \rightarrow \infty} \frac{1}{N \beta} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma)
$$

for every inverse temperature parameter $\beta>0$.

The Free Energy

Definition

The partition function and the free energy are

$$
Z_{N}(\beta)=\sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \text { and } F_{N}(\beta)=\frac{1}{N} \mathbb{E} \log Z_{N}(\beta) \text {. }
$$

The Free Energy

Definition

The partition function and the free energy are

$$
Z_{N}(\beta)=\sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \text { and } F_{N}(\beta)=\frac{1}{N} \mathbb{E} \log Z_{N}(\beta)
$$

Theorem (From free energy to maximum)
If the limit $F(\beta)=\lim _{N \rightarrow \infty} F_{N}(\beta)$ exists for every $\beta>0$, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)=\lim _{\beta \rightarrow \infty} \frac{F(\beta)}{\beta} .
$$

Proof

- Clearly,

$$
\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq \frac{1}{N \beta} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \leq \frac{\log 2}{\beta}+\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) .
$$

Proof

- Clearly,

$$
\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq \frac{1}{N \beta} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \leq \frac{\log 2}{\beta}+\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) .
$$

- This means

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)-\frac{F(\beta)}{\beta}\right| \leq \frac{\log 2}{\beta} .
$$

Proof

- Clearly,

$$
\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq \frac{1}{N \beta} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \leq \frac{\log 2}{\beta}+\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) .
$$

- This means

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)-\frac{F(\beta)}{\beta}\right| \leq \frac{\log 2}{\beta} .
$$

- By Hölder's inequality for sums $\beta \mapsto \beta^{-1}\left(F_{N}(\beta)-\log (2)\right)$ is increasing:

Proof

- Clearly,

$$
\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) \leq \frac{1}{N \beta} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma) \leq \frac{\log 2}{\beta}+\frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma) .
$$

- This means

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{\sigma \in \Sigma_{N}} H_{N}(\sigma)-\frac{F(\beta)}{\beta}\right| \leq \frac{\log 2}{\beta} .
$$

- By Hölder's inequality for sums $\beta \mapsto \beta^{-1}\left(F_{N}(\beta)-\log (2)\right)$ is increasing:

$$
\lim _{\beta \rightarrow \infty} \beta^{-1} F(\beta)
$$

exists.

Conclusion

To understand the Dean's problem study the limit of the free energy

$$
\lim _{N \rightarrow \infty} F_{N}(\beta)
$$

in the SK model.

The Gibbs Measure

The Gibbs Measure

Definition

The Gibbs measure is the random probability measure on Σ_{N}

$$
G_{N}(\sigma)=\frac{\exp \beta H_{N}(\sigma)}{Z_{N}(\beta)}
$$

Average with respect to $G_{N}^{\otimes \infty}$ is denoted $\langle\cdot\rangle$.

The Gibbs Measure

Definition

The Gibbs measure is the random probability measure on Σ_{N}

$$
G_{N}(\sigma)=\frac{\exp \beta H_{N}(\sigma)}{Z_{N}(\beta)}
$$

Average with respect to $G_{N}^{\otimes \infty}$ is denoted $\langle\cdot\rangle$.
Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E} G^{\otimes \infty}$:

The Gibbs Measure

Definition

The Gibbs measure is the random probability measure on Σ_{N}

$$
G_{N}(\sigma)=\frac{\exp \beta H_{N}(\sigma)}{Z_{N}(\beta)}
$$

Average with respect to $G_{N}^{\otimes \infty}$ is denoted $\langle\cdot\rangle$.
Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E} G^{\otimes \infty}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} \beta} F_{N}(\beta)=\frac{1}{N} \mathbb{E} \sum_{\sigma \in \Sigma_{N}} H_{N}(\sigma) \frac{\exp H_{N}(\sigma)}{Z_{N}(\beta)}=\frac{1}{N} \mathbb{E}\left\langle H_{N}(\sigma)\right\rangle,
$$

The Gibbs Measure

Definition

The Gibbs measure is the random probability measure on Σ_{N}

$$
G_{N}(\sigma)=\frac{\exp \beta H_{N}(\sigma)}{Z_{N}(\beta)}
$$

Average with respect to $G_{N}^{\otimes \infty}$ is denoted $\langle\cdot\rangle$.
Free energy is 'moment generating function' for distribution of Hamiltonian under average Gibbs measure $\mathbb{E} G^{\otimes \infty}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \beta} F_{N}(\beta) & =\frac{1}{N} \mathbb{E} \sum_{\sigma \in \Sigma_{N}} H_{N}(\sigma) \frac{\exp H_{N}(\sigma)}{Z_{N}(\beta)}=\frac{1}{N} \mathbb{E}\left\langle H_{N}(\sigma)\right\rangle, \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} \beta^{2}} F_{N}(\beta) & =\frac{1}{N}\left(\mathbb{E}\left\langle H_{N}(\sigma)^{2}\right\rangle-\mathbb{E}\left\langle H_{N}(\sigma)\right\rangle^{2}\right)
\end{aligned}
$$

Computing Gibbs Averages

- Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E x}(\sigma)^{2}, \mathbb{E} y(\sigma)^{2} \leq a$.

Computing Gibbs Averages

- Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E x}(\sigma)^{2}, \mathbb{E y}(\sigma)^{2} \leq a$.
- Given measure G on Σ define random probability measure

$$
G^{\prime}(\sigma)=\frac{\exp y(\sigma)}{Z} G(\sigma)
$$

Computing Gibbs Averages

- Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E x}(\sigma)^{2}, \mathbb{E y}(\sigma)^{2} \leq a$.
- Given measure G on Σ define random probability measure

$$
G^{\prime}(\sigma)=\frac{\exp y(\sigma)}{Z} G(\sigma) .
$$

- Gibbs average with respect to $\mathrm{G}^{\otimes \infty}:\langle\cdot\rangle$.

Computing Gibbs Averages

- Consider jointly Gaussian vectors $(x(\sigma))$ and $(y(\sigma))$ indexed by countably infinite set Σ with $\mathbb{E x}(\sigma)^{2}, \mathbb{E} y(\sigma)^{2} \leq a$.
- Given measure G on Σ define random probability measure

$$
G^{\prime}(\sigma)=\frac{\exp y(\sigma)}{Z} G(\sigma)
$$

- Gibbs average with respect to $G^{\otimes \infty}:\langle\cdot\rangle$.

Theorem (Gaussian integration by parts for Gibbs averages) If $C\left(\sigma^{1}, \sigma^{2}\right)=\mathbb{E x}\left(\sigma^{1}\right) y\left(\sigma^{2}\right)$, then

$$
\mathbb{E}\langle x(\sigma)\rangle=\mathbb{E}\left\langle C\left(\sigma^{1}, \sigma^{1}\right)-C\left(\sigma^{1}, \sigma^{2}\right)\right\rangle .
$$

Proof

- By approximation take Σ finite: $\mathbb{E}\langle x(\sigma)\rangle=\sum_{\sigma^{1} \in \Sigma} \mathbb{E} x\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{1}\right)$.

Proof

- By approximation take Σ finite: $\mathbb{E}\langle x(\sigma)\rangle=\sum_{\sigma^{1} \in \Sigma} \mathbb{E} x\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{1}\right)$.

Lemma (Gaussian integration by parts)
If g is a Gaussian vector in \mathbb{R}^{n} with $\mathbb{E}|\nabla F(g)|<\infty$, then

$$
\mathbb{E} g_{1} F(g)=\sum_{1 \leq l \leq n} \mathbb{E} g_{1} g_{l} \mathbb{E} \partial_{x_{l}} F(g)
$$

Proof

- By approximation take Σ finite: $\mathbb{E}\langle x(\sigma)\rangle=\sum_{\sigma^{1} \in \Sigma} \mathbb{E} x\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{1}\right)$.

Lemma (Gaussian integration by parts)
If g is a Gaussian vector in \mathbb{R}^{n} with $\mathbb{E}|\nabla F(g)|<\infty$, then

$$
\mathbb{E} g_{1} F(g)=\sum_{1 \leq l \leq n} \mathbb{E} g_{1} g_{l} \mathbb{E} \partial_{x_{l}} F(g)
$$

- Take $g=\left(x\left(\sigma^{1}\right), y\left(\sigma^{1}\right),\left(y\left(\sigma^{2}\right)\right)_{\left.\sigma^{2} \in \Sigma\right)}\right)$ and $F(g)=\frac{\exp \left(y\left(\sigma^{1}\right)\right)}{Z} G\left(\sigma^{1}\right)$:

$$
\frac{\partial F}{\partial y\left(\sigma^{1}\right)}=G^{\prime}\left(\sigma^{1}\right), \quad \frac{\partial F}{\partial y\left(\sigma^{2}\right)}=-G^{\prime}\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{2}\right)
$$

Proof

- By approximation take Σ finite: $\mathbb{E}\langle x(\sigma)\rangle=\sum_{\sigma^{1} \in \Sigma} \mathbb{E} x\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{1}\right)$.

Lemma (Gaussian integration by parts)
If g is a Gaussian vector in \mathbb{R}^{n} with $\mathbb{E}|\nabla F(g)|<\infty$, then

$$
\mathbb{E} g_{1} F(g)=\sum_{1 \leq l \leq n} \mathbb{E} g_{1} g_{l} \mathbb{E} \partial_{x_{l}} F(g)
$$

- Take $g=\left(x\left(\sigma^{1}\right), y\left(\sigma^{1}\right),\left(y\left(\sigma^{2}\right)\right)_{\left.\sigma^{2} \in \Sigma\right)}\right)$ and $F(g)=\frac{\exp \left(y\left(\sigma^{1}\right)\right)}{z} G\left(\sigma^{1}\right)$:

$$
\frac{\partial F}{\partial y\left(\sigma^{1}\right)}=G^{\prime}\left(\sigma^{1}\right), \quad \frac{\partial F}{\partial y\left(\sigma^{2}\right)}=-G^{\prime}\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{2}\right)
$$

- Gaussian integration by parts:

$$
\mathbb{E x}\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{1}\right)=C\left(\sigma^{1}, \sigma^{1}\right) \mathbb{E} G^{\prime}\left(\sigma^{1}\right)-\sum_{\sigma^{2} \in \Sigma} C\left(\sigma^{1}, \sigma^{2}\right) \mathbb{E} G^{\prime}\left(\sigma^{1}\right) G^{\prime}\left(\sigma^{2}\right) .
$$

Existence of Limiting Free Energy

Guerra-Toninelli

Theorem (Guerra-Toninelli)

The limit $\lim _{N \rightarrow \infty} F_{N}$ exists.

Guerra-Toninelli

Theorem (Guerra-Toninelli)

The limit $\lim _{N \rightarrow \infty} F_{N}$ exists.

Lemma (Fekete lemma)
If $\left(x_{n}\right)_{n=1}^{\infty}$ is a superadditive sequence $\left(x_{n}+x_{m} \leq x_{n+m}\right)$ then $\lim _{n \rightarrow \infty} n^{-1} x_{n}$ exists.

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.
- For $t \in[0,1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$
H_{t}(\sigma)=\sqrt{t} H_{N+M}(\sigma)+\sqrt{1-t}\left(H_{N}(\rho)+H_{M}(\tau)\right) .
$$

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.
- For $t \in[0,1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$
H_{t}(\sigma)=\sqrt{t} H_{N+M}(\sigma)+\sqrt{1-t}\left(H_{N}(\rho)+H_{M}(\tau)\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.
- For $t \in[0,1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$
H_{t}(\sigma)=\sqrt{t} H_{N+M}(\sigma)+\sqrt{1-t}\left(H_{N}(\rho)+H_{M}(\tau)\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy: $\varphi(t)=\frac{1}{N+M} \mathbb{E} \log Z_{t}$

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.
- For $t \in[0,1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$
H_{t}(\sigma)=\sqrt{t} H_{N+M}(\sigma)+\sqrt{1-t}\left(H_{N}(\rho)+H_{M}(\tau)\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy: $\varphi(t)=\frac{1}{N+M} \mathbb{E} \log Z_{t}$
- $\varphi(0)=\frac{N}{N+M} F_{N}+\frac{M}{N+M} F_{M}$ and $\varphi(1)=F_{N+M}$.

Proof

- By Fekete suffices to show $\left(N F_{N}\right)_{N=1}^{\infty}$ is superadditive.
- Consider independent SK Hamiltonians $H_{N}(\rho), H_{M}(\tau)$ and $H_{N+M}(\sigma)$ on Σ_{N}, Σ_{M} and $\Sigma_{N+M}=\Sigma_{N} \times \Sigma_{M}$.
- For $t \in[0,1]$ consider the Hamiltonian on Σ_{N+M} defined by

$$
H_{t}(\sigma)=\sqrt{t} H_{N+M}(\sigma)+\sqrt{1-t}\left(H_{N}(\rho)+H_{M}(\tau)\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy: $\varphi(t)=\frac{1}{N+M} \mathbb{E} \log Z_{t}$
- $\varphi(0)=\frac{N}{N+M} F_{N}+\frac{M}{N+M} F_{M}$ and $\varphi(1)=F_{N+M}$.
- Want to prove $\varphi(0) \leq \varphi(1)$ or $\varphi^{\prime}(t) \geq 0$.

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N+M} \mathbb{E}\left\langle\frac{\partial H_{t}}{\partial t}(\sigma)\right\rangle_{t}=\frac{1}{N+M} \mathbb{E}\left\langle C\left(\sigma^{1}, \sigma^{1}\right)-C\left(\sigma^{1}, \sigma^{2}\right)\right\rangle_{t},
$$

where $C\left(\sigma^{1}, \sigma^{2}\right)=\mathbb{E} \frac{\partial H_{t}}{\partial t}\left(\sigma^{1}\right) H_{t}\left(\sigma^{2}\right)$.

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N+M} \mathbb{E}\left\langle\frac{\partial H_{t}}{\partial t}(\sigma)\right\rangle_{t}=\frac{1}{N+M} \mathbb{E}\left\langle C\left(\sigma^{1}, \sigma^{1}\right)-C\left(\sigma^{1}, \sigma^{2}\right)\right\rangle_{t},
$$

where $C\left(\sigma^{1}, \sigma^{2}\right)=\mathbb{E} \frac{\partial H_{t}}{\partial t}\left(\sigma^{1}\right) H_{t}\left(\sigma^{2}\right)$.

- If $R_{1,2}=\frac{\sigma^{1} \cdot \sigma^{2}}{N+M}, R_{1,2}^{-}=\frac{\rho^{1} \cdot \rho^{2}}{N}$ and $R_{1,2}^{+}=\frac{\tau^{1} \cdot \tau^{2}}{M}$:

$$
C\left(\sigma^{1}, \sigma^{2}\right)=\frac{1}{2}\left(\mathbb{E} H_{N+M}\left(\sigma^{1}\right) H_{N+M}\left(\sigma^{2}\right)-\mathbb{E} H_{N}\left(\rho^{1}\right) H_{N}\left(\rho^{2}\right)-\mathbb{E} H_{M}\left(\tau^{1}\right) H_{M}\left(\tau^{2}\right)\right)
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N+M} \mathbb{E}\left\langle\frac{\partial H_{t}}{\partial t}(\sigma)\right\rangle_{t}=\frac{1}{N+M} \mathbb{E}\left\langle C\left(\sigma^{1}, \sigma^{1}\right)-C\left(\sigma^{1}, \sigma^{2}\right)\right\rangle_{t},
$$

where $C\left(\sigma^{1}, \sigma^{2}\right)=\mathbb{E} \frac{\partial H_{t}}{\partial t}\left(\sigma^{1}\right) H_{t}\left(\sigma^{2}\right)$.

- If $R_{1,2}=\frac{\sigma^{1} \cdot \sigma^{2}}{N+M}, R_{1,2}^{-}=\frac{\rho^{1} \cdot \rho^{2}}{N}$ and $R_{1,2}^{+}=\frac{\tau^{1} \cdot \tau^{2}}{M}$:

$$
\begin{aligned}
C\left(\sigma^{1}, \sigma^{2}\right) & =\frac{1}{2}\left(\mathbb{E} H_{N+M}\left(\sigma^{1}\right) H_{N+M}\left(\sigma^{2}\right)-\mathbb{E} H_{N}\left(\rho^{1}\right) H_{N}\left(\rho^{2}\right)-\mathbb{E} H_{M}\left(\tau^{1}\right) H_{M}\left(\tau^{2}\right)\right) \\
& =\frac{1}{2}\left[(N+M) R_{1,2}^{2}-N\left(R_{1,2}^{-}\right)^{2}-M\left(R_{1,2}^{+}\right)^{2}\right] .
\end{aligned}
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N+M} \mathbb{E}\left\langle\frac{\partial H_{t}}{\partial t}(\sigma)\right\rangle_{t}=\frac{1}{N+M} \mathbb{E}\left\langle C\left(\sigma^{1}, \sigma^{1}\right)-C\left(\sigma^{1}, \sigma^{2}\right)\right\rangle_{t},
$$

where $C\left(\sigma^{1}, \sigma^{2}\right)=\mathbb{E} \frac{\partial H_{t}}{\partial t}\left(\sigma^{1}\right) H_{t}\left(\sigma^{2}\right)$.

- If $R_{1,2}=\frac{\sigma^{1} \cdot \sigma^{2}}{N+M}, R_{1,2}^{-}=\frac{\rho^{1} \cdot \rho^{2}}{N}$ and $R_{1,2}^{+}=\frac{\tau^{1} \cdot \tau^{2}}{M}$:

$$
\begin{aligned}
C\left(\sigma^{1}, \sigma^{2}\right) & =\frac{1}{2}\left(\mathbb{E} H_{N+M}\left(\sigma^{1}\right) H_{N+M}\left(\sigma^{2}\right)-\mathbb{E} H_{N}\left(\rho^{1}\right) H_{N}\left(\rho^{2}\right)-\mathbb{E} H_{M}\left(\tau^{1}\right) H_{M}\left(\tau^{2}\right)\right) \\
& =\frac{1}{2}\left[(N+M) R_{1,2}^{2}-N\left(R_{1,2}^{-}\right)^{2}-M\left(R_{1,2}^{+}\right)^{2}\right] .
\end{aligned}
$$

- Convexity of $x \mapsto x^{2}$:

$$
\varphi^{\prime}(t)=-\frac{1}{2} \mathbb{E}\left\langle R_{1,2}^{2}-\frac{N}{N+M}\left(R_{1,2}^{-}\right)^{2}-\frac{M}{N+M}\left(R_{1,2}^{+}\right)^{2}\right\rangle_{t} \geq 0
$$

Recap

- Introduced the SK model using the Dean's problem.

Recap

- Introduced the SK model using the Dean's problem.
- Showed the Dean's problem can be understood by computing $\lim _{N \rightarrow \infty} F_{N}(\beta)$ for every $\beta>0$.

Recap

- Introduced the SK model using the Dean's problem.
- Showed the Dean's problem can be understood by computing $\lim _{N \rightarrow \infty} F_{N}(\beta)$ for every $\beta>0$.
- Showed $\lim _{N \rightarrow \infty} F_{N}(\beta)$ exists for every $\beta>0$.

Recap

- Introduced the SK model using the Dean's problem.
- Showed the Dean's problem can be understood by computing $\lim _{N \rightarrow \infty} F_{N}(\beta)$ for every $\beta>0$.
- Showed $\lim _{N \rightarrow \infty} F_{N}(\beta)$ exists for every $\beta>0$.
- Problem: The Dean still has no idea how to assign dorms...

The Parisi Formula

Historical Overview

- Formula for $\lim _{N \rightarrow \infty} F_{N}(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.

Historical Overview

- Formula for $\lim _{N \rightarrow \infty} F_{N}(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.

Historical Overview

- Formula for $\lim _{N \rightarrow \infty} F_{N}(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for $F(\beta)$ at all temperatures was famously discovered by Parisi in 1979.

Historical Overview

- Formula for $\lim _{N \rightarrow \infty} F_{N}(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for $F(\beta)$ at all temperatures was famously discovered by Parisi in 1979.
- First rigorous proof given in 2006 by Talagrand.

Historical Overview

- Formula for $\lim _{N \rightarrow \infty} F_{N}(\beta)$ proposed by Sherrington and Kirkpatrick in their original paper.
- Their solution exhibited 'unphysical behavior' at low temperature.
- Correct formula for $F(\beta)$ at all temperatures was famously discovered by Parisi in 1979.
- First rigorous proof given in 2006 by Talagrand.
- More robust proof given in 2014 by Panchenko following his famous proof of the Parisi ultrametricity conjecture.

Parisi Functional

- Given $r \geq 1$ consider two sequences of parameters

$$
\begin{aligned}
& 0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 \\
& 0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
\end{aligned}
$$

Parisi Functional

- Given $r \geq 1$ consider two sequences of parameters

$$
\begin{aligned}
& 0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 \\
& 0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
\end{aligned}
$$

- Discrete functional order parameter: $\zeta\left(\left\{q_{p}\right\}\right)=\zeta_{p}-\zeta_{p-1}$.

Parisi Functional

- Given $r \geq 1$ consider two sequences of parameters

$$
\begin{aligned}
& 0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 \\
& 0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
\end{aligned}
$$

- Discrete functional order parameter: $\zeta\left(\left\{q_{p}\right\}\right)=\zeta_{p}-\zeta_{p-1}$.
- Given i.i.d. standard Gaussian random variables $\left(\eta_{p}\right)_{1 \leq p \leq r}$ let

$$
x_{r}^{\zeta}=\log 2 \cosh \left(\sum_{1 \leq p \leq r} \sqrt{2} \beta\left(q_{p}-q_{p-1}\right)^{1 / 2} \eta_{p}\right)
$$

and $X_{l}^{\zeta}=\frac{1}{\zeta_{l}} \log \mathbb{E}_{\eta_{l+1}} \exp \zeta_{l} X_{l+1}^{\zeta}$.

Parisi Functional

- Given $r \geq 1$ consider two sequences of parameters

$$
\begin{aligned}
& 0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 \\
& 0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
\end{aligned}
$$

- Discrete functional order parameter: $\zeta\left(\left\{q_{p}\right\}\right)=\zeta_{p}-\zeta_{p-1}$.
- Given i.i.d. standard Gaussian random variables $\left(\eta_{p}\right)_{1 \leq p \leq r}$ let

$$
x_{r}^{\zeta}=\log 2 \cosh \left(\sum_{1 \leq p \leq r} \sqrt{2} \beta\left(q_{p}-q_{p-1}\right)^{1 / 2} \eta_{p}\right)
$$

and $X_{l}^{\zeta}=\frac{1}{\zeta_{l}} \log \mathbb{E}_{\eta_{l+1}} \exp \zeta_{l} X_{l+1}^{\zeta}$.

Definition

The Parisi functional is

$$
\mathcal{P}(\zeta)=X_{0}^{\zeta}-\frac{\beta^{2}}{2} \sum_{0 \leq p \leq r-1}\left(q_{p+1}^{2}-q_{p}^{2}\right) \zeta_{p}=X_{0}^{\zeta}-\beta^{2} \int_{0}^{1} t \zeta(t) \mathrm{d} t .
$$

Parisi Formula

Theorem (The Parisi formula)

The limit of the free energy in the SK model is given by

$$
\lim _{N \rightarrow \infty} F_{N}=\inf _{\zeta} \mathcal{P}(\zeta),
$$

where the infimum is taken over all discrete functional order parameters $\zeta \in \mathcal{D}[0,1]$.

The Ruelle Probability Cascades

The Object

- Random measure on separable Hilbert space.

The Object

- Random measure on separable Hilbert space.
- Points and weights indexed \mathbb{N}^{r}.

The Object

- Random measure on separable Hilbert space.
- Points and weights indexed \mathbb{N}^{r}.
- Points in support defined by sequence of parameters

$$
0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
$$

The Object

- Random measure on separable Hilbert space.
- Points and weights indexed \mathbb{N}^{r}.
- Points in support defined by sequence of parameters

$$
0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
$$

- Weights defined by sequence of parameters

$$
0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 .
$$

The Object

- Random measure on separable Hilbert space.
- Points and weights indexed \mathbb{N}^{r}.
- Points in support defined by sequence of parameters

$$
0=q_{0}<q_{1}<\ldots<q_{r-1}<q_{r}=1 .
$$

- Weights defined by sequence of parameters

$$
0=\zeta_{-1}<\zeta_{0}<\zeta_{1}<\ldots<\zeta_{r-1}<\zeta_{r}=1 .
$$

- Discrete functional order parameter: $\zeta\left(\left\{q_{p}\right\}\right)=\zeta_{p}-\zeta_{p-1}$.

Visualization

Visualization

- Identify \mathbb{N}^{r} with tree $\mathcal{A}=\mathbb{N}^{0} \cup \mathbb{N} \cup \mathbb{N}^{2} \cup \ldots \cup \mathbb{N}^{r}$.

Visualization

- Identify \mathbb{N}^{r} with tree $\mathcal{A}=\mathbb{N}^{0} \cup \mathbb{N} \cup \mathbb{N}^{2} \cup \ldots \cup \mathbb{N}^{r}$.
- For $\alpha=\left(n_{1}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$:
- children: $\alpha n=\left(n_{1}, \ldots, n_{p}, n\right) \in \mathbb{N}^{p+1}$.

Visualization

- Identify \mathbb{N}^{r} with tree $\mathcal{A}=\mathbb{N}^{0} \cup \mathbb{N} \cup \mathbb{N}^{2} \cup \ldots \cup \mathbb{N}^{r}$.
- For $\alpha=\left(n_{1}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$.
- children: $\alpha n=\left(n_{1}, \ldots, n_{p}, n\right) \in \mathbb{N}^{p+1}$.
- path to root: $p(\alpha)=\left\{n_{1},\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, \ldots, n_{p}\right)\right\}$.

Visualization

- Identify \mathbb{N}^{r} with tree $\mathcal{A}=\mathbb{N}^{0} \cup \mathbb{N} \cup \mathbb{N}^{2} \cup \ldots \cup \mathbb{N}^{r}$.
- For $\alpha=\left(n_{1}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$:
- children: $\alpha n=\left(n_{1}, \ldots, n_{p}, n\right) \in \mathbb{N}^{p+1}$.
- path to root: $p(\alpha)=\left\{n_{1},\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, \ldots, n_{p}\right)\right\}$.
- $\alpha \wedge \beta=|p(\alpha) \cap p(\beta)|$ and $|\alpha|=|p(\alpha)|$.

The Support

Definition

If $\left(e_{\alpha}\right)$ is an orthonormal sequence in H indexed by $\alpha \in \mathcal{A} \backslash \mathbb{N}^{0}$, the support of $\operatorname{RPC}(\zeta)$ is the set $\left(h_{\alpha}\right)$ defined by

$$
h_{\alpha}=\sum_{\beta \in p(\alpha)} e_{\beta}\left(q_{|\beta|}-q_{|\beta|-1}\right)^{1 / 2} .
$$

The Support

Definition

If $\left(e_{\alpha}\right)$ is an orthonormal sequence in H indexed by $\alpha \in \mathcal{A} \backslash \mathbb{N}^{0}$, the support of $\operatorname{RPC}(\zeta)$ is the set $\left(h_{\alpha}\right)$ defined by

$$
h_{\alpha}=\sum_{\beta \in p(\alpha)} e_{\beta}\left(q_{|\beta|}-q_{|\beta|-1}\right)^{1 / 2} .
$$

Lemma (RPC overlaps)

For all $\alpha, \beta \in \mathbb{N}^{r}$ we have $h_{\alpha} \cdot h_{\beta}=q_{\alpha \wedge \beta}$.

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} \mathrm{x}^{-1-\zeta_{|\alpha|}} \mathrm{d} x
$$

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x .
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x .
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.
- Generate N_{m} from Poisson distribution with mean $\mu_{|\alpha|}\left(S_{m}\right)$.

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} \mathrm{x}^{-1-\zeta_{|\alpha|} \mathrm{d} x .}
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.
- Generate N_{m} from Poisson distribution with mean $\mu_{|\alpha|}\left(S_{m}\right)$.
- On each S_{m} generate N_{m} points from $\frac{\mu_{|\alpha|}\left(\cdot \cap S_{m}\right)}{\mu_{|\alpha|}\left(S_{m}\right)}$.

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} x^{-1-\zeta_{|\alpha|}} \mathrm{d} x .
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.
- Generate N_{m} from Poisson distribution with mean $\mu_{|\alpha|}\left(S_{m}\right)$.
- On each S_{m} generate N_{m} points from $\frac{\mu_{|\alpha|}\left(\cdot \cap S_{m}\right)}{\mu_{|\alpha|}\left(S_{m}\right)}$.
- Let $\left(u_{\alpha n}\right)_{n \geq 1}$ be the decreasing enumeration of Π_{α}.

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} \mathrm{x}^{-1-\zeta_{|\alpha|} \mathrm{d} x .}
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.
- Generate N_{m} from Poisson distribution with mean $\mu_{|\alpha|}\left(S_{m}\right)$.
- On each S_{m} generate N_{m} points from $\frac{\mu_{|\alpha|}\left(\cdot \cap S_{m}\right)}{\left.\mu_{|\alpha|} S_{m}\right)}$.
- Let $\left(u_{\alpha n}\right)_{n \geq 1}$ be the decreasing enumeration of Π_{α}.
- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{0}$ define $w_{\alpha}=\prod_{\beta \in p(\alpha)} u_{\beta}$. The weights of $\operatorname{RPC}(\zeta)$ are

$$
\nu_{\alpha}=\frac{w_{\alpha}}{\sum_{\beta \in \mathbb{N}^{\prime}} W_{\beta}} .
$$

The Weights

- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{r}$, let Π_{α} be a Poisson process on $(0, \infty)$ with mean measure

$$
\mu_{|\alpha|}(\mathrm{d} x)=\zeta_{|\alpha|} \mathrm{x}^{-1-\zeta_{|\alpha|} \mathrm{d} x .}
$$

- Partition $(0, \infty)=\cup_{m \geq 1} S_{m}$ for $S_{1}=[1, \infty)$ and $S_{m}=\left[\frac{1}{m}, \frac{1}{m-1}\right)$.
- Generate N_{m} from Poisson distribution with mean $\mu_{|\alpha|}\left(S_{m}\right)$.
- On each S_{m} generate N_{m} points from $\frac{\mu_{|\alpha|}\left(\cdot \cap S_{m}\right)}{\mu_{|\alpha|}\left(S_{m}\right)}$.
- Let $\left(u_{\alpha n}\right)_{n \geq 1}$ be the decreasing enumeration of Π_{α}.
- For $\alpha \in \mathcal{A} \backslash \mathbb{N}^{0}$ define $w_{\alpha}=\prod_{\beta \in p(\alpha)} u_{\beta}$. The weights of $\operatorname{RPC}(\zeta)$ are

$$
\nu_{\alpha}=\frac{w_{\alpha}}{\sum_{\beta \in \mathbb{N}^{\prime}} W_{\beta}} .
$$

- $\operatorname{RPC}(\zeta)$ is the random measure G on H defined by $G\left(h_{\alpha}\right)=\nu_{\alpha}$.

RPC and Parisi Formula

- $\left(\omega_{p}\right)_{1 \leq p \leq r}$ i.i.d. uniform random variables on $[0,1]$.

RPC and Parisi Formula

- $\left(\omega_{p}\right)_{1 \leq p \leq r}$ i.i.d. uniform random variables on $[0,1]$.
- For $X_{r}=X_{r}\left(\omega_{1}, \ldots, \omega_{r}\right)$ let $X_{l}=\frac{1}{\zeta_{l}} \log \mathbb{E}_{\omega_{l+1}} \exp \zeta_{l} X_{l+1}$.

RPC and Parisi Formula

- $\left(\omega_{p}\right)_{1 \leq p \leq r}$ i.i.d. uniform random variables on $[0,1]$.
- For $X_{r}=X_{r}\left(\omega_{1}, \ldots, \omega_{r}\right)$ let $X_{l}=\frac{1}{\zeta_{l}} \log \mathbb{E}_{\omega_{l+1}} \exp \zeta_{l} X_{l+1}$.

Theorem (RPC averages)
For $\zeta \in \mathcal{D}[0,1]$

$$
X_{0}=\mathbb{E} \log \left\langle\exp X_{r}\left(\left(\omega_{\beta}\right)_{\beta \in p(\alpha)}\right)\right\rangle=\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} \exp X_{r}\left(\left(\omega_{\beta}\right)_{\beta \in p(\alpha)}\right),
$$

where $\langle\cdot\rangle$ denotes the average with respect to $\operatorname{RPC}(\zeta)$.

RPC and Parisi Formula

- Consider Gaussian processes $\left(Z\left(h_{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{r}}$ and $\left(Y\left(h_{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{r}}$ with

$$
\begin{aligned}
& \mathbb{E} Z\left(h_{\alpha^{1}}\right) Z\left(h_{\alpha^{2}}\right)=2 h_{\alpha^{1}} \cdot h_{\alpha^{2}}=2 q_{\alpha^{1} \wedge \alpha^{2}} \\
& \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)=\left(h_{\alpha^{1}} \cdot h_{\alpha^{2}}\right)^{2}=q_{\alpha^{1} \wedge \alpha^{2}}^{2} .
\end{aligned}
$$

RPC and Parisi Formula

- Consider Gaussian processes $\left(Z\left(h_{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{r}}$ and $\left(Y\left(h_{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{r}}$ with

$$
\begin{aligned}
& \mathbb{E} Z\left(h_{\alpha^{1}}\right) Z\left(h_{\alpha^{2}}\right)=2 h_{\alpha^{1}} \cdot h_{\alpha^{2}}=2 q_{\alpha^{1} \wedge \alpha^{2}} \\
& \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)=\left(h_{\alpha^{1}} \cdot h_{\alpha^{2}}\right)^{2}=q_{\alpha^{1} \wedge \alpha^{2}}^{2} .
\end{aligned}
$$

Theorem (Parisi functional in terms of RPC)

For $\zeta \in \mathcal{D}[0,1]$

$$
\begin{aligned}
\mathcal{P}(\zeta) & =\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} 2 \cosh \beta Z\left(h_{\alpha}\right)-\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} \exp \beta \gamma\left(h_{\alpha}\right) \\
& =\mathbb{E} \log \langle 2 \cosh \beta Z(\sigma)\rangle-\mathbb{E} \log \langle\exp \beta Y(\sigma)\rangle,
\end{aligned}
$$

where $\langle\cdot\rangle$ denotes the average with respect to $\operatorname{RPC}(\zeta)$.

Parisi Formula Upper Bound

Guerra RSB Interpolation

Theorem (Guerra's RSB bound)
For any $\zeta \in \mathcal{D}[0,1]$ and every $N \in \mathbb{N}$ we have $F_{N} \leq \mathcal{P}(\zeta)$.

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.
- For $t \in[0,1]$ consider the Hamiltonian on $\Sigma_{N} \times \mathbb{N}^{r}$ defined by

$$
H_{N, t}(\sigma, \alpha)=\sqrt{t} H_{N}(\sigma)+\sqrt{1-t} \sum_{i=1}^{N} Z_{i}\left(h_{\alpha}\right) \sigma_{i}+\sqrt{t} \sum_{i=1}^{N} Y_{i}\left(h_{\alpha}\right) .
$$

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.
- For $t \in[0,1]$ consider the Hamiltonian on $\Sigma_{N} \times \mathbb{N}^{r}$ defined by

$$
H_{N, t}(\sigma, \alpha)=\sqrt{t} H_{N}(\sigma)+\sqrt{1-t} \sum_{i=1}^{N} Z_{i}\left(h_{\alpha}\right) \sigma_{i}+\sqrt{t} \sum_{i=1}^{N} Y_{i}\left(h_{\alpha}\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.
- For $t \in[0,1]$ consider the Hamiltonian on $\Sigma_{N} \times \mathbb{N}^{r}$ defined by

$$
H_{N, t}(\sigma, \alpha)=\sqrt{t} H_{N}(\sigma)+\sqrt{1-t} \sum_{i=1}^{N} Z_{i}\left(h_{\alpha}\right) \sigma_{i}+\sqrt{t} \sum_{i=1}^{N} Y_{i}\left(h_{\alpha}\right)
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy:

$$
\varphi(t)=\frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N, t}(\sigma, \alpha) .
$$

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.
- For $t \in[0,1]$ consider the Hamiltonian on $\Sigma_{N} \times \mathbb{N}^{r}$ defined by

$$
H_{N, t}(\sigma, \alpha)=\sqrt{t} H_{N}(\sigma)+\sqrt{1-t} \sum_{i=1}^{N} Z_{i}\left(h_{\alpha}\right) \sigma_{i}+\sqrt{t} \sum_{i=1}^{N} Y_{i}\left(h_{\alpha}\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy:

$$
\varphi(t)=\frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N, t}(\sigma, \alpha) .
$$

- Can shown:

$$
\begin{aligned}
& \varphi(1)=\frac{1}{N} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma)+\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} \exp \beta Y_{1}\left(h_{\alpha}\right), \\
& \varphi(0)=\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} 2 \cosh \beta Z_{1}\left(h_{\alpha}\right) .
\end{aligned}
$$

Proof

- For $1 \leq i \leq N$ let $\left(Z_{i}\left(h_{\alpha}\right)\right)$ and $\left(Y_{i}\left(h_{\alpha}\right)\right)$ be independent copies of $\left(Z\left(h_{\alpha}\right)\right)$ and $\left(Y\left(h_{\alpha}\right)\right)$.
- For $t \in[0,1]$ consider the Hamiltonian on $\Sigma_{N} \times \mathbb{N}^{r}$ defined by

$$
H_{N, t}(\sigma, \alpha)=\sqrt{t} H_{N}(\sigma)+\sqrt{1-t} \sum_{i=1}^{N} Z_{i}\left(h_{\alpha}\right) \sigma_{i}+\sqrt{t} \sum_{i=1}^{N} Y_{i}\left(h_{\alpha}\right) .
$$

- Gibbs average: $\langle\cdot\rangle_{t}$,
- interpolating free energy:

$$
\varphi(t)=\frac{1}{N} \mathbb{E} \log \sum_{\sigma, \alpha} \nu_{\alpha} \exp \beta H_{N, t}(\sigma, \alpha) .
$$

- Can shown:

$$
\begin{aligned}
& \varphi(1)=\frac{1}{N} \mathbb{E} \log \sum_{\sigma \in \Sigma_{N}} \exp \beta H_{N}(\sigma)+\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} \exp \beta Y_{1}\left(h_{\alpha}\right), \\
& \varphi(0)=\mathbb{E} \log \sum_{\alpha \in \mathbb{N}^{r}} \nu_{\alpha} 2 \cosh \beta Z_{1}\left(h_{\alpha}\right) .
\end{aligned}
$$

- Want to prove $\varphi(1) \leq \varphi(0)$ or $\varphi^{\prime}(t) \leq 0$.

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N} \mathbb{E}\left\langle\frac{\partial H_{N, t}(\rho)}{\partial t}\right\rangle_{t}=\frac{1}{N} \mathbb{E}\left\langle C\left(\rho^{1}, \rho^{1}\right)-C\left(\rho^{1}, \rho^{2}\right)\right\rangle_{t},
$$

where $\rho=(\sigma, \alpha)$ and

$$
C\left(\rho^{1}, \rho^{2}\right)=\mathbb{E} \frac{\partial H_{N, t}\left(\rho^{1}\right)}{\partial t} H_{N, t}\left(\rho^{2}\right)
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N} \mathbb{E}\left\langle\frac{\partial H_{N, t}(\rho)}{\partial t}\right\rangle_{t}=\frac{1}{N} \mathbb{E}\left\langle C\left(\rho^{1}, \rho^{1}\right)-C\left(\rho^{1}, \rho^{2}\right)\right\rangle_{t},
$$

where $\rho=(\sigma, \alpha)$ and

$$
\begin{aligned}
C\left(\rho^{1}, \rho^{2}\right)= & \mathbb{E} \frac{\partial H_{N, t}\left(\rho^{1}\right)}{\partial t} H_{N, t}\left(\rho^{2}\right) \\
= & \frac{1}{2}\left(\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)+N \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)\right. \\
& \left.-\sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}\left(h_{\alpha^{1}}\right) Z_{i}\left(h_{\alpha^{2}}\right)\right)
\end{aligned}
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N} \mathbb{E}\left\langle\frac{\partial H_{N, t}(\rho)}{\partial t}\right\rangle_{t}=\frac{1}{N} \mathbb{E}\left\langle C\left(\rho^{1}, \rho^{1}\right)-C\left(\rho^{1}, \rho^{2}\right)\right\rangle_{t},
$$

where $\rho=(\sigma, \alpha)$ and

$$
\begin{aligned}
C\left(\rho^{1}, \rho^{2}\right)= & \mathbb{E} \frac{\partial H_{N, t}\left(\rho^{1}\right)}{\partial t} H_{N, t}\left(\rho^{2}\right) \\
= & \frac{1}{2}\left(\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)+N \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)\right. \\
& \left.-\sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}\left(h_{\alpha^{1}}\right) Z_{i}\left(h_{\alpha^{2}}\right)\right) \\
= & \frac{1}{2}\left(N R_{1,2}^{2}+N q_{\alpha^{1} \wedge \alpha^{2}}^{2}-2 q_{\alpha^{1} \wedge \alpha^{2}} N R_{1,2}\right)
\end{aligned}
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N} \mathbb{E}\left\langle\frac{\partial H_{N, t}(\rho)}{\partial t}\right\rangle_{t}=\frac{1}{N} \mathbb{E}\left\langle C\left(\rho^{1}, \rho^{1}\right)-C\left(\rho^{1}, \rho^{2}\right)\right\rangle_{t},
$$

where $\rho=(\sigma, \alpha)$ and

$$
\begin{aligned}
C\left(\rho^{1}, \rho^{2}\right)= & \mathbb{E} \frac{\partial H_{N, t}\left(\rho^{1}\right)}{\partial t} H_{N, t}\left(\rho^{2}\right) \\
= & \frac{1}{2}\left(\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)+N \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)\right. \\
& \left.-\sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}\left(h_{\alpha^{1}}\right) Z_{i}\left(h_{\alpha^{2}}\right)\right) \\
= & \frac{1}{2}\left(N R_{1,2}^{2}+N q_{\alpha^{1} \wedge \alpha^{2}}^{2}-2 q_{\alpha^{1} \wedge \alpha^{2}} N R_{1,2}\right) \\
= & \frac{N}{2}\left(R_{1,2}-q_{\alpha^{1} \wedge \alpha^{2}}\right)^{2} .
\end{aligned}
$$

Proof

- Gaussian integration by parts:

$$
\varphi^{\prime}(t)=\frac{1}{N} \mathbb{E}\left\langle\frac{\partial H_{N, t}(\rho)}{\partial t}\right\rangle_{t}=\frac{1}{N} \mathbb{E}\left\langle C\left(\rho^{1}, \rho^{1}\right)-C\left(\rho^{1}, \rho^{2}\right)\right\rangle_{t},
$$

where $\rho=(\sigma, \alpha)$ and

$$
\begin{aligned}
C\left(\rho^{1}, \rho^{2}\right)= & \mathbb{E} \frac{\partial H_{N, t}\left(\rho^{1}\right)}{\partial t} H_{N, t}\left(\rho^{2}\right) \\
= & \frac{1}{2}\left(\mathbb{E} H_{N}\left(\sigma^{1}\right) H_{N}\left(\sigma^{2}\right)+N \mathbb{E} Y\left(h_{\alpha^{1}}\right) Y\left(h_{\alpha^{2}}\right)\right. \\
& \left.-\sum_{i=1}^{N} \sigma_{i}^{1} \sigma_{i}^{2} \mathbb{E} Z_{i}\left(h_{\alpha^{1}}\right) Z_{i}\left(h_{\alpha^{2}}\right)\right) \\
= & \frac{1}{2}\left(N R_{1,2}^{2}+N q_{\alpha^{1} \wedge \alpha^{2}}^{2}-2 q_{\alpha^{1} \wedge \alpha^{2}} N R_{1,2}\right) \\
= & \frac{N}{2}\left(R_{1,2}-q_{\alpha^{1} \wedge \alpha^{2}}\right)^{2} .
\end{aligned}
$$

- Since $C\left(\rho^{1}, \rho^{1}\right)=0$ this shows $\varphi^{\prime}(t) \leq 0$.

The End
Thank you!

Bibliography

Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Communications in Mathematical Physics, 233(1), 1-12.

Panchenko, D. (2013). The Sherrington-Kirkpatrick model. Springer New York.
Panchenko, D. (2014a). Introduction to the SK model.
Panchenko, D. (2014b). The Parisi formula for mixed p-spin models. The Annals of Probability, 42(3).

Panchenko, D. (2019). Lecture notes on probability theory.
Parisi, G. (1979). Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 43, 1754-1756.

Parisi, G. (1980). A sequence of approximated solutions to the SK model for spin glasses. Journal of Physics A: Mathematical and General, 13(4), L115-L121.

