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Introduction



Dean’s Problem

Consider:
▶ A group of N students indexed by 1, 2, . . . ,N.

▶ Interaction parameters (gij)1≤i,j≤N:
• gij ≥ 0 means student i likes student j,
• gij < 0 means student i dislikes student j.

Divide students into two dorms by assigning labels σi ∈ {−1,+1}:

σ = (σ1, . . . , σN) ∈ ΣN := {−1,+1}N − configuration vector.

Dean’s problem: maximize the comfort function

C(σ) =
N∑

i,j=1

gijσiσj =
∑
i∼j

gij −
∑
i̸∼j

gij

over configurations σ ∈ ΣN.
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SK Model

To model typical behaviour take interaction parameters gij to be i.i.d.
standard Gaussian.

Definition
The Hamiltonian of the Sherrington-Kirkpatrick model is the
Gaussian process

HN(σ) =
1√
N

N∑
i,j=1

gijσiσj

indexed by σ ∈ ΣN.

Question: What can we say about the maximum maxσ∈ΣN HN(σ)
asymptotically for systems of large size N→ ∞?

3



SK Model

To model typical behaviour take interaction parameters gij to be i.i.d.
standard Gaussian.

Definition
The Hamiltonian of the Sherrington-Kirkpatrick model is the
Gaussian process

HN(σ) =
1√
N

N∑
i,j=1

gijσiσj

indexed by σ ∈ ΣN.

Question: What can we say about the maximum maxσ∈ΣN HN(σ)
asymptotically for systems of large size N→ ∞?

3



SK Model

To model typical behaviour take interaction parameters gij to be i.i.d.
standard Gaussian.

Definition
The Hamiltonian of the Sherrington-Kirkpatrick model is the
Gaussian process

HN(σ) =
1√
N

N∑
i,j=1

gijσiσj

indexed by σ ∈ ΣN.

Question: What can we say about the maximum maxσ∈ΣN HN(σ)
asymptotically for systems of large size N→ ∞?

3



Towards Simplification

▶ What is HN(σ) for fixed N?

EHN(σ1)HN(σ2) =
1
N

N∑
i,j=1

σ1i σ
1
j σ

2
kσ

2
l Egijgkl = N

( 1
N

N∑
i=1

σ1i σ
2
i

)2
= NR21,2,

where R1,2 = 1
N
∑N

i=1 σ
1
i σ

2
i is the overlap between σ1 and σ2.

▶ Consequences:
• cN ≤ Emaxσ∈ΣN HN(σ) ≤ CN for some 0 < c, C < ∞.
• Maximum concentrates:

lim
N→∞

∣∣∣ 1N max
σ∈ΣN

HN(σ)−
1
NE max

σ∈ΣN
HN(σ)

∣∣∣ = 0.

Question: What can we say about limN→∞
1
NEmaxσ∈ΣN HN(σ).
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An Idea From Physics

Instead of studying maxσ∈Σ HN(σ) first try to compute the limit of its
‘smooth approximation’

lim
N→∞

1
NβE log

∑
σ∈ΣN

expβHN(σ)

for every inverse temperature parameter β > 0.
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The Free Energy

Definition
The partition function and the free energy are

ZN(β) =
∑
σ∈ΣN

expβHN(σ) and FN(β) =
1
NE log ZN(β).

Theorem (From free energy to maximum)
If the limit F(β) = limN→∞ FN(β) exists for every β > 0, then

lim
N→∞

1
NE max

σ∈ΣN
HN(σ) = lim

β→∞

F(β)
β

.
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Proof

▶ Clearly,

1
NE max

σ∈ΣN
HN(σ) ≤

1
NβE log

∑
σ∈ΣN

expβHN(σ) ≤
log 2
β

+
1
NE max

σ∈ΣN
HN(σ).

▶ This means ∣∣∣ lim
N→∞

1
NE max

σ∈ΣN
HN(σ)−

F(β)
β

∣∣∣ ≤ log 2
β

.

▶ By Hölder’s inequality for sums β 7→ β−1(FN(β)− log(2)) is
increasing:

lim
β→∞

β−1F(β)

exists. ■
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Conclusion

To understand the Dean’s problem study the limit of the free energy

lim
N→∞

FN(β)

in the SK model.
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The Gibbs Measure



The Gibbs Measure

Definition
The Gibbs measure is the random probability measure on ΣN

GN(σ) =
expβHN(σ)
ZN(β)

.

Average with respect to G⊗∞
N is denoted 〈·〉.

Free energy is‘moment generating function’ for distribution of
Hamiltonian under average Gibbs measure EG⊗∞:

d
dβ FN(β) =

1
NE

∑
σ∈ΣN

HN(σ)
expHN(σ)
ZN(β)

=
1
NE〈HN(σ)〉,

d2
dβ2 FN(β) =

1
N

(
E〈HN(σ)2〉 − E〈HN(σ)〉2

)
.
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Computing Gibbs Averages

▶ Consider jointly Gaussian vectors (x(σ)) and (y(σ)) indexed by
countably infinite set Σ with Ex(σ)2,Ey(σ)2 ≤ a.

▶ Given measure G on Σ define random probability measure

G′(σ) =
exp y(σ)

Z G(σ).

• Gibbs average with respect to G′⊗∞: 〈·〉.

Theorem (Gaussian integration by parts for Gibbs averages)
If C(σ1, σ2) = Ex(σ1)y(σ2), then

E〈x(σ)〉 = E〈C(σ1, σ1)− C(σ1, σ2)〉.
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Proof
▶ By approximation take Σ finite: E〈x(σ)〉 =

∑
σ1∈Σ Ex(σ1)G′(σ1).

Lemma (Gaussian integration by parts)
If g is a Gaussian vector in Rn with E|∇F(g)| < ∞, then

Eg1F(g) =
∑
1≤l≤n

Eg1glE∂xlF(g).

▶ Take g = (x(σ1), y(σ1), (y(σ2))σ2∈Σ) and F(g) = exp(y(σ1))
Z G(σ1):

∂F
∂y(σ1) = G′(σ1),

∂F
∂y(σ2) = −G′(σ1)G′(σ2).

▶ Gaussian integration by parts:

Ex(σ1)G′(σ1) = C(σ1, σ1)EG′(σ1)−
∑
σ2∈Σ

C(σ1, σ2)EG′(σ1)G′(σ2).

■
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Existence of Limiting Free Energy



Guerra-Toninelli

Theorem (Guerra-Toninelli)
The limit limN→∞ FN exists.

Lemma (Fekete lemma)
If (xn)∞n=1 is a superadditive sequence (xn + xm ≤ xn+m) then
limn→∞ n−1xn exists.
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Proof

▶ By Fekete suffices to show (NFN)∞N=1 is superadditive.

▶ Consider independent SK Hamiltonians HN(ρ), HM(τ) and
HN+M(σ) on ΣN, ΣM and ΣN+M = ΣN × ΣM.

▶ For t ∈ [0, 1] consider the Hamiltonian on ΣN+M defined by

Ht(σ) =
√
tHN+M(σ) +

√
1− t(HN(ρ) + HM(τ)).

• Gibbs average: 〈·〉t,
• interpolating free energy: φ(t) = 1

N+ME log Zt

▶ φ(0) = N
N+MFN + M

N+MFM and φ(1) = FN+M.

▶ Want to prove φ(0) ≤ φ(1) or φ′(t) ≥ 0.
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Proof
▶ Gaussian integration by parts:

φ′(t) = 1
N+ME

〈∂Ht
∂t (σ)

〉
t
=

1
N+ME

〈
C(σ1, σ1)− C(σ1, σ2)

〉
t ,

where C(σ1, σ2) = E∂Ht
∂t (σ

1)Ht(σ2).

▶ If R1,2 = σ1·σ2
N+M , R

−
1,2 =

ρ1·ρ2
N and R+1,2 = τ 1·τ 2

M :

C(σ1, σ2) = 1
2

(
EHN+M(σ1)HN+M(σ2)− EHN(ρ1)HN(ρ2)− EHM(τ 1)HM(τ 2)

)
=
1
2

[
(N+M)R21,2 − N(R−1,2)

2 −M(R+1,2)
2
]
.

▶ Convexity of x 7→ x2:

φ′(t) = − 12E
〈
R21,2 −

N
N+M (R−1,2)

2 − M
N+M (R+1,2)

2
〉
t
≥ 0.

■
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Recap

▶ Introduced the SK model using the Dean’s problem.

▶ Showed the Dean’s problem can be understood by computing
limN→∞ FN(β) for every β > 0.

▶ Showed limN→∞ FN(β) exists for every β > 0.

▶ Problem: The Dean still has no idea how to assign dorms...
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The Parisi Formula



Historical Overview

▶ Formula for limN→∞ FN(β) proposed by Sherrington and
Kirkpatrick in their original paper.

▶ Their solution exhibited‘unphysical behavior’ at low
temperature.

▶ Correct formula for F(β) at all temperatures was famously
discovered by Parisi in 1979.

▶ First rigorous proof given in 2006 by Talagrand.

▶ More robust proof given in 2014 by Panchenko following his
famous proof of the Parisi ultrametricity conjecture.
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Parisi Functional
▶ Given r ≥ 1 consider two sequences of parameters

0 = ζ−1 < ζ0 < ζ1 < . . . < ζr−1 < ζr = 1
0 = q0 < q1 < . . . < qr−1 < qr = 1.

▶ Discrete functional order parameter: ζ({qp}) = ζp − ζp−1.
▶ Given i.i.d. standard Gaussian random variables (ηp)1≤p≤r let

Xζr = log 2 cosh
( ∑
1≤p≤r

√
2β(qp − qp−1)1/2ηp

)
and Xζl =

1
ζl
logEηl+1 exp ζlX

ζ
l+1.

Definition
The Parisi functional is

P(ζ) = Xζ0 −
β2

2
∑

0≤p≤r−1
(q2p+1 − q2p)ζp = Xζ0 − β2

∫ 1

0
tζ(t)dt.
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Parisi Formula

Theorem (The Parisi formula)
The limit of the free energy in the SK model is given by

lim
N→∞

FN = inf
ζ
P(ζ),

where the infimum is taken over all discrete functional order
parameters ζ ∈ D[0, 1].
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The Ruelle Probability Cascades



The Object

▶ Random measure on separable Hilbert space.

▶ Points and weights indexed Nr.

▶ Points in support defined by sequence of parameters

0 = q0 < q1 < . . . < qr−1 < qr = 1.

▶ Weights defined by sequence of parameters

0 = ζ−1 < ζ0 < ζ1 < . . . < ζr−1 < ζr = 1.

▶ Discrete functional order parameter: ζ({qp}) = ζp − ζp−1.
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Visualization

▶ Identify Nr with tree A = N0 ∪ N ∪ N2 ∪ . . . ∪ Nr.

▶ For α = (n1, . . . ,np) ∈ Np:
• children: αn = (n1, . . . ,np,n) ∈ Np+1.
• path to root: p(α) = {n1, (n1,n2), . . . , (n1, . . . ,np)}.

▶ α ∧ β = |p(α) ∩ p(β)| and |α| = |p(α)|.
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The Support

Definition
If (eα) is an orthonormal sequence in H indexed by α ∈ A \ N0, the
support of RPC(ζ) is the set (hα) defined by

hα =
∑

β∈p(α)

eβ(q|β| − q|β|−1)1/2.

Lemma (RPC overlaps)
For all α, β ∈ Nr we have hα · hβ = qα∧β .
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The Weights

▶ For α ∈ A \ Nr, let Πα be a Poisson process on (0,∞) with mean
measure

µ|α|(dx) = ζ|α|x−1−ζ|α|dx.

• Partition (0,∞) = ∪m≥1Sm for S1 = [1,∞) and Sm = [ 1m ,
1

m−1 ).
• Generate Nm from Poisson distribution with mean µ|α|(Sm).
• On each Sm generate Nm points from

µ|α|(·∩Sm)
µ|α|(Sm) .

▶ Let (uαn)n≥1 be the decreasing enumeration of Πα.

▶ For α ∈ A \ N0 define wα =
∏

β∈p(α) uβ . The weights of RPC(ζ)

are
να =

wα∑
β∈Nr wβ

.

▶ RPC(ζ) is the random measure G on H defined by G(hα) = να.
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RPC and Parisi Formula

▶ (ωp)1≤p≤r i.i.d. uniform random variables on [0, 1].

▶ For Xr = Xr(ω1, . . . , ωr) let Xl = 1
ζl
logEωl+1 exp ζlXl+1.

Theorem (RPC averages)
For ζ ∈ D[0, 1]

X0 = E log〈exp Xr((ωβ)β∈p(α))〉 = E log
∑
α∈Nr

να exp Xr((ωβ)β∈p(α)),

where 〈·〉 denotes the average with respect to RPC(ζ).
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Theorem (RPC averages)
For ζ ∈ D[0, 1]

X0 = E log〈exp Xr((ωβ)β∈p(α))〉 = E log
∑
α∈Nr

να exp Xr((ωβ)β∈p(α)),

where 〈·〉 denotes the average with respect to RPC(ζ).
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RPC and Parisi Formula

▶ Consider Gaussian processes (Z(hα))α∈Nr and (Y(hα))α∈Nr with

EZ(hα1)Z(hα2) = 2hα1 · hα2 = 2qα1∧α2

EY(hα1)Y(hα2) = (hα1 · hα2)2 = q2α1∧α2 .

Theorem (Parisi functional in terms of RPC)
For ζ ∈ D[0, 1]

P(ζ) = E log
∑
α∈Nr

να2 coshβZ(hα)− E log
∑
α∈Nr

να expβY(hα)

= E log〈2 coshβZ(σ)〉 − E log〈expβY(σ)〉,

where 〈·〉 denotes the average with respect to RPC(ζ).
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Parisi Formula Upper Bound



Guerra RSB Interpolation

Theorem (Guerra’s RSB bound)
For any ζ ∈ D[0, 1] and every N ∈ N we have FN ≤ P(ζ).
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Proof
▶ For 1 ≤ i ≤ N let (Zi(hα)) and (Yi(hα)) be independent copies of

(Z(hα)) and (Y(hα)).

▶ For t ∈ [0, 1] consider the Hamiltonian on ΣN × Nr defined by

HN,t(σ, α) =
√
tHN(σ) +

√
1− t

N∑
i=1

Zi(hα)σi +
√
t

N∑
i=1

Yi(hα).

• Gibbs average: 〈·〉t,
• interpolating free energy:

φ(t) = 1
NE log

∑
σ,α

να expβHN,t(σ, α).

▶ Can shown:

φ(1) = 1
NE log

∑
σ∈ΣN

expβHN(σ) + E log
∑
α∈Nr

να expβY1(hα),

φ(0) = E log
∑
α∈Nr

να2 coshβZ1(hα).

▶ Want to prove φ(1) ≤ φ(0) or φ′(t) ≤ 0.
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Proof
▶ Gaussian integration by parts:

φ′(t) = 1
NE

〈∂HN,t(ρ)
∂t

〉
t
=
1
NE〈C(ρ

1, ρ1)− C(ρ1, ρ2)〉t,

where ρ = (σ, α) and

C(ρ1, ρ2) = E
∂HN,t(ρ1)

∂t HN,t(ρ2)

=
1
2

(
EHN(σ1)HN(σ2) + NEY(hα1)Y(hα2)

−
N∑
i=1

σ1i σ
2
i EZi(hα1)Zi(hα2)

)
=
1
2

(
NR21,2 + Nq2α1∧α2 − 2qα1∧α2NR1,2

)
=
N
2 (R1,2 − qα1∧α2)2.

▶ Since C(ρ1, ρ1) = 0 this shows φ′(t) ≤ 0. ■
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The End
Thank you!
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