A Mass-Conserving Toy Model of Blood Pulses in Arterial Networks

Adam Morgan

University of Toronto
January 22, 2021

Presentation Overview

(1) Statement of model PDE and physical motivation
(2) Adapting the model PDE to a network
(3) Local well-posedness of network model
(1) Energy method for global well-posedness of network model
(6) Some numerical experiments

Presentation Overview

(1) Statement of model PDE and physical motivation
(2) Adapting the model PDE to a network
(3) Local well-posedness of network model
(1) Energy method for global well-posedness of network model
(6) Some numerical experiments

Presentation Overview

(1) Statement of model PDE and physical motivation
(2) Adapting the model PDE to a network
(3) Local well-posedness of network model
(1) Energy method for global well-posedness of network model
(6) Some numerical experiments

Presentation Overview

(1) Statement of model PDE and physical motivation
(2) Adapting the model PDE to a network
(3) Local well-posedness of network model
(9) Energy method for global well-posedness of network model
(3) Some numerical experiments

Presentation Overview

(1) Statement of model PDE and physical motivation
(2) Adapting the model PDE to a network
(3) Local well-posedness of network model
(9) Energy method for global well-posedness of network model
(5) Some numerical experiments

Model setup

We study blood flow in a viscoelastic artery that is perfectly cylindrical in equilibrium

- $x=$ axial displacement along artery (artery is very long so $x \in \mathbb{R})$
- $t=$ time
- $u(x, t)=$ deviation from equilibrium of artery's cross-sectional area
- Real parameters: $\mu, \alpha, \nu, \geq 0, \gamma \in[0,1]$, and $p \in \mathbb{N}$

called the generalized Benjamin-Bona-Mahony-Burgers equation (gBBMB)

Model setup

We study blood flow in a viscoelastic artery that is perfectly cylindrical in equilibrium

- $x=$ axial displacement along artery (artery is very long so $x \in \mathbb{R}$)
- $t=$ time
- $u(x, t)=$ deviation from equilibrium of artery's cross-sectional area
- Real parameters: $\mu, \alpha, \nu, \geq 0, \gamma \in[0,1]$, and $p \in \mathbb{N}$

We suppose u solves the PDE

$$
\left(1-\mu^{2} \partial_{x x}\right) u_{t}+\partial_{x}\left(\alpha u+\frac{\gamma}{p+1} u^{p+1}\right)-\nu u_{x x}=0
$$

called the generalized Benjamin-Bona-Mahony-Burgers equation (gBBMB)

Why gBBMB?

- Benjamin et al. 1972: original Benjamin-Bona-Mahony eqn. (BBM) analyzed, stressed as a more realistic substitute for Korteweg-de Vries eqn. (KdV)
- BBM is second-order in space (vs. third order KdV) and features short linear waves w/ bounded group velocity
- Erbay et al. 1992: generalized KdV-Burgers eqn. models blood vessel motion even when the artery walls are nonlinearly elastic
- I have taken Erbay et al.'s model and replaced KdV dispersion with BBM dispersion in light of the first two points
- Nonlinear dispersive models should work best in very long arteries, particularly the femoral artery

Why gBBMB?

- Benjamin et al. 1972: original Benjamin-Bona-Mahony eqn. (BBM) analyzed, stressed as a more realistic substitute for Korteweg-de Vries eqn. (KdV)
- BBM is second-order in space (vs. third order KdV) and features short linear waves w/ bounded group velocity
- Erbay et al. 1992: generalized KdV-Burgers eqn. models blood vessel motion even when the artery walls are nonlinearly elastic
- I have taken Erbay et al.'s model and replaced KdV dispersion with BBM dispersion in light of the first two points
- Nonlinear dispersive models should work best in very long arteries, particularly the femoral artery

Question: How do bifurcations of arteries or changes in artery elasticity (due to arteriosclerosis or stents) affect pulsatile blood flow?

- To address question, we formulate our model on a network, a set of finitely many intervals glued together at various junctions
- Coefficients of model PDE are allowed to vary from edge to edge to reflect changes in artery elasticity
- Need to specify compatibility conditions at junctions

Flow in a Network of Arteries

Question: How do bifurcations of arteries or changes in artery elasticity (due to arteriosclerosis or stents) affect pulsatile blood flow?

- To address question, we formulate our model on a network, a set of finitely many intervals glued together at various junctions
- Coefficients of model PDE are allowed to vary from edge to edge to reflect changes in artery elasticity
- Need to specify compatibility conditions at junctions

Stents in the Femoral Artery

- As recently as 2017, use of stents in upper portion of femoral artery remains contentious (see for instance TASC II 2007 vascular surgery advisory vs. Goueffic et al. 2017)
- Mathematical modelling may be useful to determine best practices
- gBBMB is much too simple to give definitive answers, but may be a good toy model for basic wave-stent (or wave-sclerosis) interactions
- Predictions made w/ gBBMB should be be benchmarked against simulations of the primitive equations to discover when gBBMB is a good enough substitute over long length scales (not addressed by me)

Comparison with Related Work

- BBM has been studied on networks previously, most notably by Bona and Cascaval (B \& C) in 2008
- B \& C formulation does not guarantee conservation of total mass of blood in general, though my formulation takes care of this
- My proof of local well-posedness is a fixed-point argument identical to B \& C, but I provide an explicit proof of global well-posedness by energy methods as well. I believe the explicit energy equation is really worth looking at.

Model Setup 1

- Network X consists of N edges e_{i}
- One incoming edge $e_{1}=(-\infty, 0]$, from which a signal arrives at a central junction (the point $x=0$) and scatters off into the other edges, which are all copies of $[0, \infty)$

Model Setup 2

- Solution to gBBMB on network X : an array of N functions $u_{i}(x, t)$, with u_{i} satisfying gBBMB on the edge e_{i}
- Issue: each $u_{i}(x, t)$ needs to be assigned a boundary value at $x=0$ to have a hope of well-posedness... thus since we have $i=1, \ldots, N$ we need to impose N conditions at the junction.
- Continuity only provides $N-1$ independent conditions. Need one more!

Model Setup 2

- Solution to gBBMB on network X : an array of N functions $u_{i}(x, t)$, with u_{i} satisfying gBBMB on the edge e_{i}
- Issue: each $u_{i}(x, t)$ needs to be assigned a boundary value at $x=0$ to have a hope of well-posedness... thus since we have $i=1, \ldots, N$ we need to impose N conditions at the junction.

Continuity Condition

For all $i, j=1, \ldots, N$ and all t, we have $u_{i}(0, t)=u_{j}(0, t)$.

- Continuity only provides $N-1$ independent conditions. Need one more!

Model Setup 3

- Coeffs. of PDE now vary with i, so we write them as $\mu_{i}, \alpha_{i}, \nu_{i} \geq 0, \gamma_{i} \in[0,1]$
- Denote advective flux on the edge e_{i} by

$$
f_{i}\left(u_{i}\right)=\alpha_{i} u_{i}+\frac{\gamma_{i}}{p+1} u_{i}^{p+1}
$$

- Define the total flux on the edge e_{i} by

$$
F_{i}\left(u_{i}\right)=-\mu_{i}^{2} u_{i, x t}+f_{i}\left(u_{i}\right)-\nu_{i} u_{i, x}
$$

- gBBMB on e_{i} can now be written in conservative form as

$$
u_{i, t}+\partial_{x}\left(F_{i}\left(u_{i}\right)\right)=0
$$

Model Setup 4

- Physically, $M=\sum_{i} \int_{e_{i}} u_{i}$ represents the total "normalized" volume of blood in the arterial network $X \ldots$ can also take this as total mass of blood assuming blood has unit mass density
- As anyone who has squished a water balloon knows, $\frac{\mathrm{d} M}{\mathrm{~d} t}=0$ (mass must be conserved)!
- A quick check with the conservative form of gBBMB shows that mass is conserved provided we impose the following final junction condition:

Model Setup 4

- Physically, $M=\sum_{i} \int_{e_{i}} u_{i}$ represents the total "normalized" volume of blood in the arterial network $X \ldots$ can also take this as total mass of blood assuming blood has unit mass density
- As anyone who has squished a water balloon knows, $\frac{\mathrm{d} M}{\mathrm{~d} t}=0$ (mass must be conserved)!
- A quick check with the conservative form of gBBMB shows that mass is conserved provided we impose the following final junction condition:

Mass Conservation Condition

$$
\left.F_{\text {in }}\left(u_{\text {in }}\right)\right|_{x=0}=\sum\left[F_{\text {out }}\left(u_{\text {out }}\right)\right]_{x=0}
$$

Model Setup: Summary

X a network with edges $e_{i}(i=1, \ldots, N)$, then we seek functions $u_{i}(x, t)$ defined for $(x, t) \in e_{i} \times[0, \infty)$ (with suitable regularity) satisfying the system

$$
\begin{aligned}
0 & =\left(1-\mu_{i}^{2} \partial_{x}^{2}\right) u_{i, t}+\partial_{x}\left(\alpha_{i} u_{i}+\frac{\gamma_{i}}{p+1} u_{i}^{p+1}\right)-\nu_{i} u_{i, x x} \\
& +\left.u_{i}\right|_{x=0}=\left.u_{j}\right|_{x=0} \forall i, j \text { (continuity at junction) } \\
& +\left.F_{\text {in }}\left(u_{\text {in }}\right)\right|_{x=0}=\sum\left[F_{\text {out }}\left(u_{\text {out }}\right)\right]_{x=0} \text { (mass conservation at junction) } \\
& + \text { initial conditions. }
\end{aligned}
$$

Local Well-Posedness Preamble

- Now that we have a physically sensible model, must establish local-in-time well-posedness (LWP) of this model (existence and uniqueness of solutions, cts. dependence on initial data).
- Start by reviewing how to write gBBMB on a half-line $[0, \infty)$ as a fixed-point problem
- Then, use the above together w/ junction conditions to write gBBMB on a network as a fixed-point problem (requires us to define function spaces on our network)

Some Function Spaces

- $C_{b}^{k}(U)=$ real-valued functions on $U \subseteq \mathbb{R}^{n}$ whose derivatives up to order k are cts. and bounded; this becomes a Banach space when endowed with sup-norm
- Given any Banach space $A, C_{b}(0, T ; A)$ denotes the Banach space of all continuous functions $u:[0, T] \rightarrow A$ equipped with the norm

$$
\begin{equation*}
\|u\|_{C_{b}(0, T ; A)}=\sup _{[0, T]}\|u(t)\|_{A} . \tag{0.1}
\end{equation*}
$$

- Also need less common fnc. spaces:

Half-Line gBBMB Phase Space

$$
\mathcal{B}_{T}^{k, \ell} \doteq\left\{u \mid \forall i \in[0, k], j \in[0, \ell], \partial_{t}^{k} \partial_{x}^{\ell} u \in C_{b}([0, \infty) \times[0, T])\right\}
$$

- Given $h(t) \in C_{b}[0, \infty), \varphi(x) \in C_{b}[0, \infty)$, find $T>0$ and $u(x, t) \in \mathcal{B}_{T}^{1,2}$ such that

$$
\begin{aligned}
\left(1-\mu^{2} \partial_{x}^{2}\right) u_{t}+(f(u))_{x}-\nu u_{x x} & =0 \quad \forall(x, t) \in(0, \infty) \times(0, T) \\
u(0, t) & =h(t) \quad \forall t \in[0, T) \\
u(x, 0) & =\varphi(x) \quad \forall x \in[0, T)
\end{aligned}
$$

- At least formally,

Treat the above expression as an ODE for u

- Once we find an explicit expression for $\left(1-\mu^{2} \partial_{x}^{2}\right)^{-1}$, solve the ODE and determine a nonlinear operator for which u arises as a fixed point.
- Given $h(t) \in C_{b}[0, \infty), \varphi(x) \in C_{b}[0, \infty)$, find $T>0$ and $u(x, t) \in \mathcal{B}_{T}^{1,2}$ such that

$$
\begin{aligned}
\left(1-\mu^{2} \partial_{x}^{2}\right) u_{t}+(f(u))_{x}-\nu u_{x x} & =0 \quad \forall(x, t) \in(0, \infty) \times(0, T) \\
u(0, t) & =h(t) \quad \forall t \in[0, T) \\
u(x, 0) & =\varphi(x) \quad \forall x \in[0, T)
\end{aligned}
$$

- At least formally,

$$
u_{t}=\left(1-\mu^{2} \partial_{x}^{2}\right)^{-1}\left[-(f(u))_{x}+\nu u_{x x}\right] .
$$

Treat the above expression as an ODE for u

- Once we find an explicit expression for $\left(1-\mu^{2} \partial_{x}^{2}\right)^{-1}$, solve the ODE and determine a nonlinear operator for which u arises as a fixed point.

Inverting $1-\mu^{2} \partial_{x}^{2}$

Lemma (Green's Function for $1-\mu^{2} \partial_{x}^{2}$)
Let $\delta(x-y)$ denote the Dirac distribution centred at $y \in \mathbb{R}$. The function

$$
G(x, y) \doteq-\frac{1}{2 \mu}\left(e^{\frac{-(x+y)}{\mu}}-e^{-\frac{|x-y|}{\mu}}\right):[0, \infty)^{2} \rightarrow \mathbb{R}
$$

satisfies the PDE

$$
\left(1-\mu^{2} \partial_{x}^{2}\right) G(x, y)=\delta(x-y) \quad \forall(x, y) \in(0, \infty)^{2}
$$

in the sense of distributions, with $G(0, y)=0$ and $\lim _{x \rightarrow \infty} G(x, y)=0 \forall y \in[0, \infty)$.

Thus we have

$$
\left(1-\mu^{2} \partial_{x}^{2}\right)^{-1} g(x)=\int_{0}^{\infty} G(x, y) g(y) \mathrm{d} y
$$

Fixed-Point form of gBBMB on Half-Line

- Define some auxiliary objects by

$$
\begin{aligned}
K(x, y) & \doteq \frac{1}{2 \mu^{2}}\left(e^{\frac{-(x+y)}{\mu}}+\operatorname{sgn}(x-y) e^{-\frac{|x-y|}{\mu}}\right) \\
\mathbb{B}_{\mathrm{adv}}[u](x, t) & \doteq \int_{0}^{t} \int_{0}^{\infty} e^{-\frac{\nu}{\mu^{2}}(t-s)} K(x, y) f(u(y, s)) \mathrm{d} y \mathrm{~d} s \\
\mathbb{B}_{\mathrm{visc}}[u](x, t) & \doteq \frac{\nu}{\mu^{2}} \int_{0}^{t} \int_{0}^{\infty} e^{-\frac{\nu}{\mu^{2}}(t-s)} G(x, y) u(y, s) \mathrm{d} y \mathrm{~d} s
\end{aligned}
$$

Note that $G(x, y), K(x, y)$ are rapidly decaying! Important later.

- Solve linear ODE, integrate by parts \Rightarrow fixed-pt. formulation of gBBMB now becomes

Fixed-Point form of gBBMB on Half-Line

- Define some auxiliary objects by

$$
\begin{aligned}
K(x, y) & \doteq \frac{1}{2 \mu^{2}}\left(e^{\frac{-(x+y)}{\mu}}+\operatorname{sgn}(x-y) e^{-\frac{|x-y|}{\mu}}\right) \\
\mathbb{B}_{\mathrm{adv}}[u](x, t) & \doteq \int_{0}^{t} \int_{0}^{\infty} e^{-\frac{\nu}{\mu^{2}}(t-s)} K(x, y) f(u(y, s)) \mathrm{d} y \mathrm{~d} s \\
\mathbb{B}_{\mathrm{visc}}[u](x, t) & \doteq \frac{\nu}{\mu^{2}} \int_{0}^{t} \int_{0}^{\infty} e^{-\frac{\nu}{\mu^{2}}(t-s)} G(x, y) u(y, s) \mathrm{d} y \mathrm{~d} s
\end{aligned}
$$

Note that $G(x, y), K(x, y)$ are rapidly decaying! Important later.

- Solve linear ODE, integrate by parts \Rightarrow fixed-pt. formulation of gBBMB now becomes

$$
\begin{aligned}
u(x, t)= & e^{-\frac{\nu t}{\mu^{2}}} \varphi(x)+\left(h(t)-h(0) e^{-\frac{\nu t}{\mu^{2}}}\right) e^{-\frac{x}{\mu}} \\
& +\mathbb{B}_{\text {adv }}[u](x, t)+\mathbb{B}_{\text {visc }}[u](x, t) .
\end{aligned}
$$

Function Spaces on a Network

Definition

$$
\begin{aligned}
& C_{b}(X) \doteq\left\{\left(u_{1}, \ldots, u_{N}\right) \in\left(C_{b}[0, \infty)\right)^{N} \mid u_{1}(0)=\cdots=u_{N}(0)\right\} \\
& H^{1}(X) \doteq\left(H^{1}(0, \infty)\right)^{N} \cap C_{b}(X)
\end{aligned}
$$

$C_{b}(X)$ becomes a Banach space when equipped with the norm

$$
\|u\|_{C_{b}(X)} \doteq \max _{i=1,2,3}\left\|u_{i}\right\|_{C_{b}[0, \infty)}
$$

Additionally, $H^{1}(X)$ becomes a Hilbert space when equipped with the sum inner product.

Cauchy Problem for gBBMB on a Network

- For some $T>0$ and a given $\varphi \in C_{b}(X)$, find

$$
u \in C_{b}\left([0, T] ; C_{b}(X)\right)
$$

such that if $\left.u_{i} \doteq u\right|_{e_{i}}$ then

$$
\begin{aligned}
\left(1-\mu_{i}^{2} \partial_{x}^{2}\right) u_{i, t}+\left(f_{i}\left(u_{i}\right)\right)_{x}-\nu_{i} u_{i, x x} & =0, i=1, \ldots, N \\
u_{i}(0, t) & =u_{j}(0, t) \\
\left.F_{\text {in }}\left(u_{\text {in }}\right)\right|_{x=0}-\sum\left[F_{\text {out }}\left(u_{\text {out }}\right)\right]_{x=0} & =0 \\
u_{i}(x, 0) & =\varphi_{i}(x)
\end{aligned}
$$

Cauchy Problem for gBBMB on a Network

- For some $T>0$ and a given $\varphi \in C_{b}(X)$, find

$$
u \in C_{b}\left([0, T] ; C_{b}(X)\right)
$$

such that if $\left.u_{i} \doteq u\right|_{e_{i}}$ then

$$
\begin{aligned}
\left(1-\mu_{i}^{2} \partial_{x}^{2}\right) u_{i, t}+\left(f_{i}\left(u_{i}\right)\right)_{x}-\nu_{i} u_{i, x x} & =0, i=1, \ldots, N \\
u_{i}(0, t) & =u_{j}(0, t) \\
\left.F_{\text {in }}\left(u_{\text {in }}\right)\right|_{x=0}-\sum\left[F_{\text {out }}\left(u_{\text {out }}\right)\right]_{x=0} & =0 \\
u_{i}(x, 0) & =\varphi_{i}(x)
\end{aligned}
$$

Proposition (LWP for Network Problem)

Given $\varphi \in C_{b}(X)$ with $\varphi_{i} \in C_{b}^{2}[0, \infty)$ for each i, there exists $T>0$ and a unique u satisfying the above (classically). That is, $u_{i} \in \mathcal{B}_{T}^{1,2}$ for all i. Additionally, u depends continuously on the initial data φ.

Proof of LWP

- Using the same Green's function strategy applied to the half-line problem, we can write gBBMB on a network as a fixed point problem.
- After some calculation leveraging both junction conditions (see lecture notes),

$$
\begin{aligned}
u_{i}(x, t) & =e^{-\frac{\nu_{i} t}{\mu_{i}^{2}}} \varphi_{i}(x)+\left(\Phi[u]+\varphi(0)\left(1-e^{-\frac{\nu_{i} t}{\mu_{i}^{2}}}\right)\right) e^{-\frac{x}{\mu_{i}}} \\
& +\sigma_{i} \mathbb{B}_{\mathrm{adv}, i}\left[u_{i}\right](x, t)+\mathbb{B}_{\mathrm{visc}, i}\left[u_{i}\right](x, t) .
\end{aligned}
$$

where $\Phi[u]+\varphi(0)=u_{i}(0, t) \quad \forall i$ and $\sigma_{i}= \pm 1$ (arising from change of variables $x \mapsto-x$ on $\left.e_{1}\right)$.

- Showing that right-hand side of the above defines a
contraction on a ball in $C_{b}\left([0, T] ; C_{b}(X)\right)$ is straightforward since we use sup-norms and $\Phi, \mathbb{B}_{\text {adv }, i}, \mathbb{B}_{\text {visc }, i}$ are all integral ops. w/ rapidly decaying kernels.

Proof of LWP

- Using the same Green's function strategy applied to the half-line problem, we can write gBBMB on a network as a fixed point problem.
- After some calculation leveraging both junction conditions (see lecture notes),

$$
\begin{aligned}
u_{i}(x, t) & =e^{-\frac{\nu_{i} t}{\mu_{i}^{2}}} \varphi_{i}(x)+\left(\Phi[u]+\varphi(0)\left(1-e^{-\frac{\nu_{i} t}{\mu_{i}^{2}}}\right)\right) e^{-\frac{x}{\mu_{i}}} \\
& +\sigma_{i} \mathbb{B}_{\mathrm{adv}, i}\left[u_{i}\right](x, t)+\mathbb{B}_{\mathrm{visc}, i}\left[u_{i}\right](x, t) .
\end{aligned}
$$

where $\Phi[u]+\varphi(0)=u_{i}(0, t) \quad \forall i$ and $\sigma_{i}= \pm 1$ (arising from change of variables $x \mapsto-x$ on $\left.e_{1}\right)$.

- Showing that right-hand side of the above defines a contraction on a ball in $C_{b}\left([0, T] ; C_{b}(X)\right)$ is straightforward since we use sup-norms and $\Phi, \mathbb{B}_{\text {adv }, i}, \mathbb{B}_{\text {visc }, i}$ are all integral ops. w/ rapidly decaying kernels.

Proof of LWP (cont.)

- Contraction Mapping Thm. \Rightarrow fixed-pt. form of the problem has a solution in $C_{b}(X)$, unique in some ball in $C_{b}\left([0, T] ; C_{b}(X)\right)$.
- To show unconditional uniqueness (without imposing soln. lives in ball), use a bootstrap argument.

Proof of LWP (cont.)

- Contraction Mapping Thm. \Rightarrow fixed-pt. form of the problem has a solution in $C_{b}(X)$, unique in some ball in $C_{b}\left([0, T] ; C_{b}(X)\right)$.
- To show unconditional uniqueness (without imposing soln. lives in ball), use a bootstrap argument.
- The particular structure of $\Phi, \mathbb{B}_{\text {adv }, i}, \mathbb{B}_{\text {visc }, i}$ as nested integrals with nice kernels shows that the fixed point has the claimed differentiability ie. it gives a classical solution to gBBMB on each edge
- Similarly, we can get continuous (actually Lipschitz) dependence on the initial data $\varphi(x)$, possibly by shrinking the existence time T. Proof is now done!

Energy Estimate

Definition

The energy E of $u: X \rightarrow \mathbb{R}$ is defined to be

$$
\frac{1}{2}\|u\|_{H^{1}(X)}^{2}=\frac{1}{2} \sum_{i} \int_{0}^{\infty}\left|u_{i}\right|^{2}+\mu_{i}^{2}\left|u_{i, x}\right|^{2} \mathrm{~d} x
$$

(w / change of vars. for u_{1} implicit). $H^{1}(X)=$ functions in $C_{b}(X)$ with finite energy.

Proposition (Energy Estimate)
For a solution $u(x, t)$ to $g B B M B$ on X,

where $h(t) \doteq u(0, t), \sigma_{1}=-1$, and $\sigma_{i}=1 \forall i \neq 1$

Energy Estimate

Definition

The energy E of $u: X \rightarrow \mathbb{R}$ is defined to be

$$
\frac{1}{2}\|u\|_{H^{1}(X)}^{2}=\frac{1}{2} \sum_{i} \int_{0}^{\infty}\left|u_{i}\right|^{2}+\mu_{i}^{2}\left|u_{i, x}\right|^{2} \mathrm{~d} x
$$

(w / change of vars. for u_{1} implicit). $H^{1}(X)=$ functions in $C_{b}(X)$ with finite energy.

Proposition (Energy Estimate)

For a solution $u(x, t)$ to $g B B M B$ on X,

$$
\frac{\mathrm{d} E}{\mathrm{~d} t} \leq-h^{2}(t)\left[\sum_{i} \sigma_{i}\left(\frac{\alpha_{i}}{2}+\frac{\gamma_{i}}{(p+1)(p+2)} h^{p}(t)\right)\right]
$$

where $h(t) \doteq u(0, t), \sigma_{1}=-1$, and $\sigma_{i}=1 \forall i \neq 1$

Energy Method for GWP

The equation for $\mathrm{d} E / \mathrm{d} t$ gives us a lot of mileage in proving global well-posedness:

Corollary (Global Well-Posedness of Network Problem)
If

$$
\sum_{i=1}^{N} \sigma_{i} \alpha_{i} \geq 0, \sum_{i=1}^{N} \sigma_{i} \gamma_{i} \geq 0
$$

and p is even, then the solution to $g B B M B$ valid up to time T can be extended to a unique global-in-time solution $u \in C_{b}\left([0, \infty) ; H^{1}(X)\right)$.

If $\sum_{i} \sigma_{i} \gamma_{i}=0$, the demand of an even p can be relaxed.

Sketch of GWP Proof

- Using the energy estimate, we find that $\frac{\mathrm{d} E}{\mathrm{~d} t} \leq 0$ by hypothesis. So the $H^{1}(X)$-norm of a solution to gBBMB on X decreases over time.
- By the Sobolev embedding $H^{1}(X) \hookrightarrow C_{b}(X)$, have that $C_{b}(X)$-norm of a soln. also decreases over time.
- Thus LWP result can be iterated: if T is small existence time, $u(x, T)$ can be used as "initial data" to get soln on $\left[T, T+T^{\prime}\right], \ldots$
- Energy argument + junction conditions give uniqueness. Proof is complete.

Discussion of GWP

Are these parameter restrictions interesting?

- $\alpha_{i}>0$ is necessary for long linear waves to go towards $+\infty$, and $\gamma_{i} \geq 0$ by hypothesis
- According to Erbay et al. 1992, $p=2$ may capture genuinely nonlinear behaviour in a wider variety of elastic materials compared to $p=1$
- Since we expect coeffs. will not change too much from edge to edge, $\sum_{i=1}^{N} \sigma_{i} \alpha_{i} \geq 0, \sum_{i=1}^{N} \sigma_{i} \gamma_{i} \geq 0$ seems reasonable
- In the $N=2$ case, get GWP if only μ_{i}, ν_{i} vary from edge to edge, which means only linear (visco)elasticity of arteries changes. This is fine for a toy model

Discussion of GWP

Are these parameter restrictions interesting?

- $\alpha_{i}>0$ is necessary for long linear waves to go towards $+\infty$, and $\gamma_{i} \geq 0$ by hypothesis
- According to Erbay et al. 1992, $p=2$ may capture genuinely nonlinear behaviour in a wider variety of elastic materials compared to $p=1$
- Since we expect coeffs. will not change too much from edge to edge, $\sum_{i=1}^{N} \sigma_{i} \alpha_{i} \geq 0, \sum_{i=1}^{N} \sigma_{i} \gamma_{i} \geq 0$ seems reasonable
- In the $N=2$ case, get GWP if only μ_{i}, ν_{i} vary from edge to edge, which means only linear (visco)elasticity of arteries changes. This is fine for a toy model

Numerics Outline 1

- Solitary wave solns. to gBBM (blood pulses) parameterized by speed $c \in(\alpha, \infty)$ and initial peak location x_{0} :

$$
u(x, t)=\left[A(p, \mu, \alpha, c) \cosh \left(\frac{x-x_{0}-c t}{W(p, \mu, \alpha, c)}\right)\right]^{-2 / p}
$$

- Main purpose of simulations here is to investigate how incoming solitary waves scatter off the junction of a two-edge network. Linear scattering can be understood analytically
- Simulations based on a finite difference scheme of Eilbeck and McGuire developed for BBM (three-level implicit, second order) and operator splitting to accommodate dissipative term.

Numerics Outline 2

- In most simulations, we increase linear elasticity μ from edge to edge. Physically: solitary blood pulse is going from a less rigid artery segment to a more rigid segment (representing sclerosis)
- Later, also change viscoelastic coefficient ν from edge to edge
- To measure performance, look at how well simulation conserves mass of the solution,

Denote percent relative error in mass by

Numerics Outline 2

- In most simulations, we increase linear elasticity μ from edge to edge. Physically: solitary blood pulse is going from a less rigid artery segment to a more rigid segment (representing sclerosis)
- Later, also change viscoelastic coefficient ν from edge to edge
- To measure performance, look at how well simulation conserves mass of the solution,

$$
M(t)=\sum_{i} \int_{e_{i}} u(x, t)
$$

Denote percent relative error in mass by

$$
\delta M \doteq 100 \frac{|M(t)-M(0)|}{M(0)} \%
$$

Figure: $u(x, t)$ for a BBM solitary wave, $\mu_{2} / \mu_{1}=1.1$. Barely any change when moving across the interface $(x=100)$. $\delta M \leq 0.5 \%$ here.

$\nu=0$ Solitary Wave Scattering 2: Reflection

Figure: $u(x, t)$ for a BBM solitary wave, $\mu_{2} / \mu_{1}=1.5$. Small, slow solitary wave reflected at interface $(x=100)$. Transmitted solitary wave is slower and wider. $\delta M \leq 0.5 \%$ here.

$\nu \neq 0$ Solitary Wave Scattering 1: $\mu_{1}=\mu_{2}$

Figure: $\mu_{1}=\mu_{2}=1, \nu_{1}=1, \nu_{2}=0.1$. Dissipative term creates a long "tail" in initial solitary wave. Wavemaker is generated at junction.
$\delta M \leq 0.13 \%$ for this test.

$\nu \neq 0$ Solitary Wave Scattering 2: $\mu_{2} / \mu_{1}=1.5$

Figure: $\mu_{1}=1, \mu_{2}=1.5, \nu_{1}=1, \nu_{2}=0.1$. Only the speed of outgoing solitary waves changes from previous picture. Viscoelasticity has killed the reflected solitary wave. $\delta M \leq 0.2 \%$ for this test.

Main Observations from Numerics (conjectures for analysis!)

- Speed of transmitted solitary wave changes across junction when μ varies.
- Reflection of solitary waves is possible when $\nu=0$ and μ_{2} / μ_{1} is sufficiently large (further experiments not shown here actually imply reflection is also amplitude-dependent!)
- Sufficiently large jump in viscoelasticity can lead to wavemaker generated on outgoing edge.
- Strong viscoelasticity kills reflected solitary wave.
- More sophisticated numerical method is needed to efficiently handle multiple network edges and make behaviour at computational boundaries more physical. Work in progress.

Main Observations from Numerics (conjectures for analysis!)

- Speed of transmitted solitary wave changes across junction when μ varies.
- Reflection of solitary waves is possible when $\nu=0$ and μ_{2} / μ_{1} is sufficiently large (further experiments not shown here actually imply reflection is also amplitude-dependent!)
- Sufficiently large jump in viscoelasticity can lead to
wavemaker generated on outgoing edge.
- Strong viscoelasticity kills reflected solitary wave.
- More sophisticated numerical method is needed to efficiently
handle multiple network edges and make behaviour at computational boundaries more physical. Work in progress.

Main Observations from Numerics (conjectures for analysis!)

- Speed of transmitted solitary wave changes across junction when μ varies.
- Reflection of solitary waves is possible when $\nu=0$ and μ_{2} / μ_{1} is sufficiently large (further experiments not shown here actually imply reflection is also amplitude-dependent!)
- Sufficiently large jump in viscoelasticity can lead to wavemaker generated on outgoing edge.
- Strong viscoelasticity kills reflected solitary wave.
- More sophisticated numerical method is needed to efficiently handle multiple network edges and make behaviour at computational boundaries more physical. Work in progress.

Main Observations from Numerics (conjectures for analysis!)

- Speed of transmitted solitary wave changes across junction when μ varies.
- Reflection of solitary waves is possible when $\nu=0$ and μ_{2} / μ_{1} is sufficiently large (further experiments not shown here actually imply reflection is also amplitude-dependent!)
- Sufficiently large jump in viscoelasticity can lead to wavemaker generated on outgoing edge.
- Strong viscoelasticity kills reflected solitary wave.
- More sophisticated numerical method is needed to efficiently
handle multiple network edges and make behaviour at computational boundaries more physical. Work in progress.

Main Observations from Numerics (conjectures for analysis!)

- Speed of transmitted solitary wave changes across junction when μ varies.
- Reflection of solitary waves is possible when $\nu=0$ and μ_{2} / μ_{1} is sufficiently large (further experiments not shown here actually imply reflection is also amplitude-dependent!)
- Sufficiently large jump in viscoelasticity can lead to wavemaker generated on outgoing edge.
- Strong viscoelasticity kills reflected solitary wave.
- More sophisticated numerical method is needed to efficiently handle multiple network edges and make behaviour at computational boundaries more physical. Work in progress.

Summary of Presentation

- Formulated gBBMB to guarantee mass conservation in full generality
- Proved local well-posedness, can often be extended to global
- Numerical simulations of nonlinear scattering with and without viscoelasticity lead to interesting questions

Future Plans 1

- While reading up on BBM and gBBMB, I did not find a great deal of recent work on these eqns. In particular, long-time asymptotics has not been completely understood
- Estimates from the 80's and 90's (mainly from Albert, Souganidis \& Strauss, and Dziubanski \& Karch) on asymptotics of $\mathrm{gBBM}, \mathrm{gBBMB}$ for p large enough
- p can be made lower for gBBMB asymptotics, but dissipation swamps dispersion (see for instance Bona \& Luo 2001)

Question: what do modern PDE/harmonic analysis tools have to tell us about the effects of dispersion on the long-time behaviour of gBBM? How large does p have to be?

Future Plans 1

- While reading up on BBM and gBBMB, I did not find a great deal of recent work on these eqns. In particular, long-time asymptotics has not been completely understood
- Estimates from the 80's and 90's (mainly from Albert, Souganidis \& Strauss, and Dziubanski \& Karch) on asymptotics of gBBM, gBBMB for p large enough
- p can be made lower for gBBMB asymptotics, but dissipation swamps dispersion (see for instance Bona \& Luo 2001)

Question: what do modern PDE/harmonic analysis tools have to tell us about the effects of dispersion on the long-time behaviour of gBBM? How large does p have to be?

Future Plans 2

Initial avenues of investigation: look at recent work on generalized KdV , since BBM is a substitute for KdV

- Harrop-Griffiths 2016: asymptotics for small solns of mKdV ($u^{2} u_{x}$ nonlinear term) without leveraging complete integrability. Primarily spatial methods (vector fields)
- Germain, Pusateri, \& Rousset 2016: similar asymptotics, with applications to proving solitary wave stability. Primarily Fourier methods.

Hopefully the techniques in both these papers can allow us to take $p \geq 2$ in gBBM. I have not yet seen good results for p this small.

Future Plans 2

Initial avenues of investigation: look at recent work on generalized KdV , since BBM is a substitute for KdV

- Harrop-Griffiths 2016: asymptotics for small solns of mKdV ($u^{2} u_{x}$ nonlinear term) without leveraging complete integrability. Primarily spatial methods (vector fields)
- Germain, Pusateri, \& Rousset 2016: similar asymptotics, with applications to proving solitary wave stability. Primarily Fourier methods.

Hopefully the techniques in both these papers can allow us to take $p \geq 2$ in gBBM. I have not yet seen good results for p this small. BUT, stationary phase techniques do not appear 100% useful for gBBM: big trouble! Stay tuned.

Questions?

