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Model setup

We study blood flow in a viscoelastic artery that is perfectly
cylindrical in equilibrium

x = axial displacement along artery (artery is very long so
x ∈ R)

t = time

u(x , t) = deviation from equilibrium of artery’s cross-sectional
area

Real parameters: µ, α, ν,≥ 0, γ ∈ [0, 1], and p ∈ N
We suppose u solves the PDE

(
1− µ2∂xx

)
ut + ∂x

(
αu +

γ

p + 1
up+1

)
− νuxx = 0

called the generalized Benjamin-Bona-Mahony-Burgers
equation (gBBMB)
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Why gBBMB?

Benjamin et al. 1972: original Benjamin-Bona-Mahony eqn.
(BBM) analyzed, stressed as a more realistic substitute for
Korteweg-de Vries eqn. (KdV)

BBM is second-order in space (vs. third order KdV) and
features short linear waves w/ bounded group velocity

Erbay et al. 1992: generalized KdV-Burgers eqn. models
blood vessel motion even when the artery walls are nonlinearly
elastic

I have taken Erbay et al.’s model and replaced KdV dispersion
with BBM dispersion in light of the first two points

Nonlinear dispersive models should work best in very long
arteries, particularly the femoral artery
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Flow in a Network of Arteries

Question: How do bifurcations of arteries or changes in artery
elasticity (due to arteriosclerosis or stents) affect pulsatile blood
flow?

To address question, we formulate our model on a network, a
set of finitely many intervals glued together at various
junctions

Coefficients of model PDE are allowed to vary from edge to
edge to reflect changes in artery elasticity

Need to specify compatibility conditions at junctions

e1

e2

e3
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Stents in the Femoral Artery

As recently as 2017, use of stents in upper portion of femoral
artery remains contentious (see for instance TASC II 2007
vascular surgery advisory vs. Goueffic et al. 2017)

Mathematical modelling may be useful to determine best
practices

gBBMB is much too simple to give definitive answers, but
may be a good toy model for basic wave-stent (or
wave-sclerosis) interactions

Predictions made w/ gBBMB should be be benchmarked
against simulations of the primitive equations to discover
when gBBMB is a good enough substitute over long length
scales (not addressed by me)
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Comparison with Related Work

BBM has been studied on networks previously, most notably
by Bona and Cascaval (B & C) in 2008

B & C formulation does not guarantee conservation of total
mass of blood in general, though my formulation takes care of
this

My proof of local well-posedness is a fixed-point argument
identical to B & C, but I provide an explicit proof of global
well-posedness by energy methods as well. I believe the
explicit energy equation is really worth looking at.
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Model Setup 1

Network X consists of N edges ei

One incoming edge e1 = (−∞, 0], from which a signal arrives
at a central junction (the point x = 0) and scatters off into
the other edges, which are all copies of [0,∞)

e1

e2

e3
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Model Setup 2

Solution to gBBMB on network X : an array of N functions
ui (x , t), with ui satisfying gBBMB on the edge ei

Issue: each ui (x , t) needs to be assigned a boundary value at
x = 0 to have a hope of well-posedness... thus since we have
i = 1, ...,N we need to impose N conditions at the junction.

Continuity Condition

For all i , j = 1, ...,N and all t, we have ui (0, t) = uj(0, t).

Continuity only provides N − 1 independent conditions. Need
one more!
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Model Setup 3

Coeffs. of PDE now vary with i , so we write them as
µi , αi , νi ≥ 0, γi ∈ [0, 1]

Denote advective flux on the edge ei by

fi (ui ) = αiui +
γi

p + 1
up+1
i

Define the total flux on the edge ei by

Fi (ui ) = −µ2i ui ,xt + fi (ui )− νiui ,x

gBBMB on ei can now be written in conservative form as

ui ,t + ∂x (Fi (ui )) = 0
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Model Setup 4

Physically, M =
∑

i

∫
ei

ui represents the total “normalized”
volume of blood in the arterial network X ... can also take this
as total mass of blood assuming blood has unit mass density

As anyone who has squished a water balloon knows, dM
dt = 0

(mass must be conserved)!

A quick check with the conservative form of gBBMB shows
that mass is conserved provided we impose the following final
junction condition:

Mass Conservation Condition

Fin(uin)
∣∣
x=0

=
∑

[Fout(uout)]x=0 ,
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Model Setup: Summary

X a network with edges ei (i = 1, ...,N), then we seek functions
ui (x , t) defined for (x , t) ∈ ei × [0,∞) (with suitable regularity)
satisfying the system

0 =
(
1− µ2i ∂2x

)
ui ,t + ∂x

(
αiui +

γi
p + 1

up+1
i

)
− νiui ,xx

+ ui |x=0 = uj |x=0 ∀ i , j (continuity at junction)

+ Fin(uin)
∣∣
x=0

=
∑

[Fout(uout)]x=0 (mass conservation at junction)

+ initial conditions.
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Local Well-Posedness Preamble

Now that we have a physically sensible model, must establish
local-in-time well-posedness (LWP) of this model (existence
and uniqueness of solutions, cts. dependence on initial data).

Start by reviewing how to write gBBMB on a half-line [0,∞)
as a fixed-point problem

Then, use the above together w/ junction conditions to write
gBBMB on a network as a fixed-point problem (requires us to
define function spaces on our network)
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Some Function Spaces

C k
b (U) = real-valued functions on U ⊆ Rn whose derivatives

up to order k are cts. and bounded; this becomes a Banach
space when endowed with sup-norm

Given any Banach space A, Cb(0,T ; A) denotes the Banach
space of all continuous functions u : [0,T ]→ A equipped with
the norm

‖u‖Cb(0,T ;A) = sup
[0,T ]
‖u(t)‖A. (0.1)

Also need less common fnc. spaces:

Half-Line gBBMB Phase Space

Bk,`T
.

=
{

u | ∀ i ∈ [0, k], j ∈ [0, `], ∂kt ∂
`
xu ∈ Cb ([0,∞)× [0,T ])

}
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gBBMB on a Half-Line

Given h(t) ∈ Cb[0,∞), ϕ(x) ∈ Cb[0,∞), find T > 0 and
u(x , t) ∈ B1,2T such that

(1− µ2∂2x )ut + (f (u))x − νuxx = 0 ∀ (x , t) ∈ (0,∞)× (0,T ),

u(0, t) = h(t) ∀ t ∈ [0,T ),

u(x , 0) = ϕ(x) ∀ x ∈ [0,T ).

At least formally,

ut = (1− µ2∂2x )−1 [− (f (u))x + νuxx ] .

Treat the above expression as an ODE for u

Once we find an explicit expression for (1− µ2∂2x )−1, solve the
ODE and determine a nonlinear operator for which u arises as
a fixed point.
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Inverting 1− µ2∂2
x

Lemma (Green’s Function for 1− µ2∂2x )

Let δ(x − y) denote the Dirac distribution centred at y ∈ R. The
function

G (x , y)
.

= − 1

2µ

(
e
−(x+y)

µ − e−
|x−y|

µ

)
: [0,∞)2 → R

satisfies the PDE(
1− µ2∂2x

)
G (x , y) = δ(x − y) ∀ (x , y) ∈ (0,∞)2

in the sense of distributions, with G (0, y) = 0 and
limx→∞ G (x , y) = 0 ∀ y ∈ [0,∞).

Thus we have

(1− µ2∂2x )−1g(x) =

∫ ∞
0

G (x , y) g(y) dy .
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Fixed-Point form of gBBMB on Half-Line

Define some auxiliary objects by

K (x , y)
.

=
1

2µ2

(
e
−(x+y)

µ + sgn(x − y) e−
|x−y|

µ

)
,

Badv[u](x , t)
.

=

∫ t

0

∫ ∞
0

e
− ν

µ2
(t−s)

K (x , y) f (u(y , s)) dy ds,

Bvisc[u](x , t)
.

=
ν

µ2

∫ t

0

∫ ∞
0

e
− ν

µ2
(t−s)

G (x , y) u(y , s) dy ds,

Note that G (x , y),K (x , y) are rapidly decaying! Important
later.
Solve linear ODE, integrate by parts ⇒ fixed-pt. formulation
of gBBMB now becomes

u(x , t) = e
− νt

µ2 ϕ(x) +
(

h(t)− h(0)e
− νt

µ2

)
e−

x
µ

+ Badv[u](x , t) + Bvisc[u](x , t).
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Function Spaces on a Network

Definition

Cb (X )
.

= {(u1, ..., uN) ∈ (Cb[0,∞))N | u1(0) = · · · = uN(0)},

H1 (X )
.

=
(
H1(0,∞)

)N ∩ Cb (X ) .

Cb (X ) becomes a Banach space when equipped with the norm

‖u‖Cb(X )
.

= max
i=1,2,3

‖ui‖Cb[0,∞).

Additionally, H1 (X ) becomes a Hilbert space when equipped with
the sum inner product.
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Cauchy Problem for gBBMB on a Network

For some T > 0 and a given ϕ ∈ Cb (X ), find

u ∈ Cb ([0,T ] ; Cb (X ))

such that if ui
.

= u|ei then(
1− µ2i ∂2x

)
ui ,t + (fi (ui ))x − νiui ,xx = 0, i = 1, ...,N,

ui (0, t) = uj(0, t),

Fin(uin)
∣∣
x=0
−
∑

[Fout(uout)]x=0 = 0,

ui (x , 0) = ϕi (x).

Proposition (LWP for Network Problem)

Given ϕ ∈ Cb (X ) with ϕi ∈ C 2
b [0,∞) for each i , there exists

T > 0 and a unique u satisfying the above (classically). That is,
ui ∈ B1,2T for all i . Additionally, u depends continuously on the
initial data ϕ.
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Proof of LWP

Using the same Green’s function strategy applied to the
half-line problem, we can write gBBMB on a network as a
fixed point problem.

After some calculation leveraging both junction conditions
(see lecture notes),

ui (x , t) = e
− νi t

µ2
i ϕi (x) +

(
Φ[u] + ϕ(0)

(
1− e

− νi t

µ2
i

))
e
− x

µi

+ σiBadv,i [ui ](x , t) + Bvisc,i [ui ](x , t).

where Φ[u] + ϕ(0) = ui (0, t) ∀ i and σi = ±1 (arising from
change of variables x 7→ −x on e1).

Showing that right-hand side of the above defines a
contraction on a ball in Cb ([0,T ] ; Cb (X )) is straightforward
since we use sup-norms and Φ,Badv,i ,Bvisc,i are all integral
ops. w/ rapidly decaying kernels.
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Proof of LWP (cont.)

Contraction Mapping Thm. ⇒ fixed-pt. form of the problem
has a solution in Cb(X ), unique in some ball in
Cb ([0,T ] ; Cb (X )).

To show unconditional uniqueness (without imposing soln.
lives in ball), use a bootstrap argument.

The particular structure of Φ,Badv,i ,Bvisc,i as nested integrals
with nice kernels shows that the fixed point has the claimed
differentiability ie. it gives a classical solution to gBBMB on
each edge

Similarly, we can get continuous (actually Lipschitz)
dependence on the initial data ϕ(x), possibly by shrinking the
existence time T . Proof is now done!
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Energy Estimate

Definition

The energy E of u : X → R is defined to be

1

2
‖u‖2H1(X ) =

1

2

∑
i

∫ ∞
0
|ui |2 + µ2i |ui ,x |2 dx .

(w/ change of vars. for u1 implicit). H1(X ) = functions in Cb (X )
with finite energy.

Proposition (Energy Estimate)

For a solution u(x , t) to gBBMB on X ,

dE

dt
≤ −h2(t)

[∑
i

σi

(
αi

2
+

γi
(p + 1)(p + 2)

hp(t)

)]

where h(t)
.

= u(0, t), σ1 = −1, and σi = 1 ∀ i 6= 1
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Energy Method for GWP

The equation for dE/dt gives us a lot of mileage in proving global
well-posedness:

Corollary (Global Well-Posedness of Network Problem)

If
N∑
i=1

σiαi ≥ 0,
N∑
i=1

σiγi ≥ 0

and p is even, then the solution to gBBMB valid up to time T can
be extended to a unique global-in-time solution
u ∈ Cb

(
[0,∞) ; H1 (X )

)
.

If
∑

i σiγi = 0, the demand of an even p can be relaxed.
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Sketch of GWP Proof

Using the energy estimate, we find that dE
dt ≤ 0 by hypothesis.

So the H1(X )-norm of a solution to gBBMB on X decreases
over time.

By the Sobolev embedding H1 (X ) ↪→ Cb (X ), have that
Cb(X )-norm of a soln. also decreases over time.

Thus LWP result can be iterated: if T is small existence time,
u(x ,T ) can be used as “initial data” to get soln on
[T ,T + T ′],...

Energy argument + junction conditions give uniqueness.
Proof is complete.
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Discussion of GWP

Are these parameter restrictions interesting?

αi > 0 is necessary for long linear waves to go towards +∞,
and γi ≥ 0 by hypothesis

According to Erbay et al. 1992, p = 2 may capture genuinely
nonlinear behaviour in a wider variety of elastic materials
compared to p = 1

Since we expect coeffs. will not change too much from edge
to edge,

∑N
i=1 σiαi ≥ 0,

∑N
i=1 σiγi ≥ 0 seems reasonable

In the N = 2 case, get GWP if only µi , νi vary from edge to
edge, which means only linear (visco)elasticity of arteries
changes. This is fine for a toy model
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Numerics Outline 1

Solitary wave solns. to gBBM (blood pulses) parameterized by
speed c ∈ (α,∞) and initial peak location x0:

u(x , t) =

[
A(p, µ, α, c) cosh

(
x − x0 − ct

W (p, µ, α, c)

)]−2/p
.

Main purpose of simulations here is to investigate how
incoming solitary waves scatter off the junction of a two-edge
network. Linear scattering can be understood analytically

Simulations based on a finite difference scheme of Eilbeck
and McGuire developed for BBM (three-level implicit, second
order) and operator splitting to accommodate dissipative term.
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Numerics Outline 2

In most simulations, we increase linear elasticity µ from edge
to edge. Physically: solitary blood pulse is going from a less
rigid artery segment to a more rigid segment (representing
sclerosis)

Later, also change viscoelastic coefficient ν from edge to edge

To measure performance, look at how well simulation
conserves mass of the solution,

M(t) =
∑
i

∫
ei

u(x , t).

Denote percent relative error in mass by

δM
.

= 100
|M(t)−M(0)|

M(0)
%.
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ν = 0 Solitary Wave Scattering 1: No Reflection

Figure: u(x , t) for a BBM solitary wave, µ2/µ1 = 1.1. Barely any change
when moving across the interface (x = 100). δM ≤ 0.5% here.
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ν = 0 Solitary Wave Scattering 2: Reflection

Figure: u(x , t) for a BBM solitary wave, µ2/µ1 = 1.5. Small, slow
solitary wave reflected at interface (x = 100). Transmitted solitary wave
is slower and wider. δM ≤ 0.5% here.
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ν 6= 0 Solitary Wave Scattering 1: µ1 = µ2

Figure: µ1 = µ2 = 1, ν1 = 1, ν2 = 0.1. Dissipative term creates a long
“tail” in initial solitary wave. Wavemaker is generated at junction.
δM ≤ 0.13% for this test.
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ν 6= 0 Solitary Wave Scattering 2: µ2/µ1 = 1.5

Figure: µ1 = 1, µ2 = 1.5, ν1 = 1, ν2 = 0.1. Only the speed of outgoing
solitary waves changes from previous picture. Viscoelasticity has killed
the reflected solitary wave. δM ≤ 0.2% for this test.
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Main Observations from Numerics (conjectures for
analysis!)

Speed of transmitted solitary wave changes across junction
when µ varies.

Reflection of solitary waves is possible when ν = 0 and µ2/µ1
is sufficiently large (further experiments not shown here
actually imply reflection is also amplitude-dependent!)

Sufficiently large jump in viscoelasticity can lead to
wavemaker generated on outgoing edge.

Strong viscoelasticity kills reflected solitary wave.

More sophisticated numerical method is needed to efficiently
handle multiple network edges and make behaviour at
computational boundaries more physical. Work in progress.
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Summary of Presentation

Formulated gBBMB to guarantee mass conservation in full
generality

Proved local well-posedness, can often be extended to global

Numerical simulations of nonlinear scattering with and
without viscoelasticity lead to interesting questions
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Future Plans 1

While reading up on BBM and gBBMB, I did not find a great
deal of recent work on these eqns. In particular, long-time
asymptotics has not been completely understood

Estimates from the 80’s and 90’s (mainly from Albert,
Souganidis & Strauss, and Dziubanski & Karch) on
asymptotics of gBBM, gBBMB for p large enough

p can be made lower for gBBMB asymptotics, but dissipation
swamps dispersion (see for instance Bona & Luo 2001)

Question: what do modern PDE/harmonic analysis tools have to
tell us about the effects of dispersion on the long-time behaviour of
gBBM? How large does p have to be?
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Future Plans 2

Initial avenues of investigation: look at recent work on generalized
KdV, since BBM is a substitute for KdV

Harrop-Griffiths 2016: asymptotics for small solns of mKdV
(u2ux nonlinear term) without leveraging complete
integrability. Primarily spatial methods (vector fields)

Germain, Pusateri, & Rousset 2016: similar asymptotics, with
applications to proving solitary wave stability. Primarily
Fourier methods.

Hopefully the techniques in both these papers can allow us to take
p ≥ 2 in gBBM. I have not yet seen good results for p this small.
BUT, stationary phase techniques do not appear 100% useful for
gBBM: big trouble! Stay tuned.
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End

Questions?
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