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Problem Statement + GWP

We study the Cauchy problem for the generalized
Benjamin-Bona-Mahony equation (GBBM):{

ut − uxxt + ux + upux = 0 ∀ (t, x) ∈ R× R
u|t=0(x) = u0(x) ∀ x ∈ R.

This models long waves propagating in water, or in elastic
blood vessels.

Global well-posedness of this problem in

C 2
x ∩ H1

x

is easy, thanks to energy conservation:

‖u(x , t)‖H1
x

= ‖u0(x)‖H1
x
.
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Intuition for Scattering

Energy conservation ⇒ if u0(x) is small then u(x , t) should
always remain small.

In turn, for p large enough, we should have

upux ≈ 0,

which means the PDE is nearly equal to linearized BBM
(LBBM):

ut − uxxt + ux = 0

So, possibly after waiting some time for dispersion to tame
any problems with the nonlinearity (more on this later), we
can expect solns. to GBBM to act like solns. to LBBM.

We then say that small solutions to GBBM with p � 1
scatter, at least from an intuitive point of view
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Main Theorem

Theorem (Scattering in H1, Dziubański & Karch ‘96)

Suppose s ≥ 7/2 and p > 4. Let u(x , t) denote the solution to
GBBM with initial state u0(x).

Then, we can find 0 < δ � 1 such that

‖u0‖L1x + ‖u0‖Hs
x
< δ

implies there exist functions u±(x , t) ∈ C 1
t (R; Hs

x ) satisfying the
following:

1 u± both provide classical solutions to LBBM and

2 limt→±∞ ‖u±(x , t)− u(x , t)‖H1
x

= 0.
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The Road to the Main Thm.

To say nonlinear solns. resemble linear ones, we should
probably make sure we have a good idea what linear solutions
look like

Use the Fourier transform and asymptotics for oscillatory
integrals (stationary phase method) to get basic information
on LBBM solns.

Need to prove a dispersive estimate

Then, we show small solns. to the nonlinear problem also
satisfy dispersive estimate: this is enough to prove the main
thm.
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Basics of LBBM 1

Focus for now on IVP for LBBM:{
ut − uxxt + ux = 0 ∀ (t, x) ∈ R× R

u|t=0(x) = u0(x) ∀ x ∈ R.

Define an (invertible!) elliptic operator M = 1− ∂2x , then
LBBM can be written as

ut = −M−1∂x (u) .

The symbol of 1
i M−1∂x (physically, the temporal frequency) is

given by the dispersion relation

ω(ξ) =
ξ

〈ξ〉2
(
〈ξ〉 =

√
1 + ξ2

)
Think of this as writing temporal freq. as function of spatial
freq. ξ (AKA “wavenumber”)
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Basics of LBBM 2

ξ

ω(ξ)
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Basics of LBBM 3

Using the Fourier transform, we can write soln. to LBBM as

etM
−1∂x u0

.
=

1√
2π

∫ ∞
−∞

e i(ξx−ω(ξ)t) û0(ξ) dξ.

Think of this as a weighted sum of normal modes (sinusoidal
waves)

When u0 is Schwartz, soln. can also be pictured as an
approximately localized (on a certain time scale) wavepacket.
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LBBM Asymptotics 1

Study u(x , t) on spacetime rays Γc = {x = ct}. Given a fixed
ray slope c , define the LBBM phase by

φ(ξ) = cξ − ω(ξ)

so along Γc write

u(x , t) = (2π)−1/2
∫ ∞
−∞

e iφ(ξ)t û0(ξ) dξ.

Q: How does u(x , t) behave as t →∞?
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LBBM Asymptotics 2

A: Use that the integrand oscillates!

Dominant contribution to u(x , t) along Γc comes at ξ for
which φ′(ξ) = 0: integrand oscillation is slowest here.

Thus we look for ξ0 such that c = ω′(ξ0). Between 0 and 4 ξ0
per c :

ξ

ω′(ξ)
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LBBM Asymptotics 3

So: suppose û0 is localized around ξ0, then etM
−1∂x u0 remains

mostly localized in spacetime along Γω′(ξ0).

Hence we can say the “velocity” of the wavepacket etM
−1∂x u0

is ω′(ξ0) = group velocity.

If û0 is more spread out, all of its component normal modes
have different group vel., meaning wave packet “disperses”
into a bunch of separated normal mode pieces as t →∞.

Dispersion can help counteract nonlinear steepening.
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If û0 is more spread out, all of its component normal modes
have different group vel., meaning wave packet “disperses”
into a bunch of separated normal mode pieces as t →∞.

Dispersion can help counteract nonlinear steepening.

Adam Morgan UT Grad Analysis Seminar



Stationary Phase Method

Need the following approximation method to get more
quantitative info on dispersion...

Theorem (Stationary Phase Estimate)

Suppose φ(ξ) is smooth, ξ0 is the only zero of φ′(ξ), and there
exists a natural number N such that

φ(n)(ξ0) = 0 for n = 1, 2, 3, ...,N − 1.

Next, suppose that f : R→ C is smooth and compactly supported.
Then, for t � 1,∫ ∞

−∞
f (ξ)e iφ(ξ)t dξ ≈ C (ξ0) f (ξ0) e iφ(ξ0)t t−

1
N
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LBBM Asymptotics 4 + Dispersive Est.

Since mass is conserved, wave dispersion implies the
amplitude of a wavepacket decreases over time.

Stationary phase estimate gives∥∥∥etM
−1∂x u0

∥∥∥
L∞

. ‖u0‖L1 t−1/3, t � 1,

Above can be refined rigorously:

Proposition (LBBM Dispersive Estimate, Albert ‘89,
Dziubański-Karch ‘96)

For any s ≥ 7
2 , we have∥∥∥etM

−1∂x u0

∥∥∥
L∞

. (‖u0‖L1 + ‖u0‖Hs ) 〈t〉−1/3, ∀ t > 0.
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Discussion of Dispersive Est.

Why do we need a Sobolev norm in dispersive est.? Recall:
group velocity of a wavepacket tiny for |ξ| � 1

So: if initial state consists of a high-frequency wave spatially
localized around the origin, then even after a long time we will
still see a high-frequency wave spatially localized near the
origin.

Thus any estimate on L∞x -norm of linear soln should depend
on a norm that weighs high frequencies heavily: a Sobolev
norm is built to do just this, and s = 7/2 is the “magic
number”
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Dispersive Est.: Proof Sketch 1

One can determine a critical frequency magnitude n0 ≈ 2
based on stationary points of ω(ξ): above this threshold, a
frequency is considered “high”.

Assume n ≥ n0 then split∥∥∥etM
−1∂x u0

∥∥∥
L∞

=

∥∥∥∥ 1√
2π

∫ ∞
−∞

e i(ξx−ω(ξ)t) û0(ξ) dξ

∥∥∥∥
L∞x

. sup
c∈R

∣∣∣∣∫ n

−n
e it(cξ−ω(ξ)) û0(ξ) dξ

∣∣∣∣+

∫
|ξ|>n

|û0(ξ)| dξ

= Lo-Mid freq + Hi freq

Lo-Mid term can be bounded using Prop. 3.1 in the notes
(itself a corollary of van der Corput, see Souganidis and
Strauss ‘90):

Lo-Mid .
(

t−1/3 + t−1/2n3/2
)
‖u0‖L1x .
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Dispersive Est.: Proof Sketch 2

For Hi term, bound is more pedestrian:∫
|ξ|>n

|û0(ξ)| dξ =

∫
|ξ|>n

(〈ξ〉s |û0(ξ)|) 〈ξ〉−s dξ

≤ ‖〈ξ〉s û0(ξ)‖L2ξ

(∫
|ξ|>n
〈ξ〉−2s dξ

)1/2

.s ‖u0‖Hs
x

n
1
2
−s .

Putting Lo-Mid and Hi together, get

‖u(x , t)‖L∞ .
(

n
1
2
−s + t−1/3 + t−1/2n3/2

)(
‖u0‖L1x + ‖u0‖Hs

x

)
.

Choosing t suff. large and n = t1/9 we see s ≥ 7/2 needed to
get Hi contribution dying faster than t−1/3, DONE.
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Dispersive Est. for Nonlinear Case: Prelude

Nice surprise: small nonlinear solns. also satisfy the same
dispersive est.! This is basically all we need to prove
scattering.

Need the following easy bounds:

Lemma

Pick any s > 0. For any p ∈ N and any u in the appropriate fnc.
space, we have ∥∥M−1∂xu

∥∥
L1

. ‖u‖L1 ,

∥∥M−1∂xu
∥∥
Hs . ‖u‖Hs , and

∥∥up+1
∥∥
Hs . ‖u‖pL∞ ‖u‖Hs .
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Dispersive Est. for Nonlinear Case

Theorem (Nonlinear Solutions with Linear Decay, Albert ‘89,
Dziubański-Karch ‘96)

Let s ≥ 7
2 and suppose u0 ∈ L1 (R) ∩ Hs (R). If p > 4 then there

exists δ > 0 such that

‖u0‖L1 + ‖u0‖Hs < δ

implies the soln. u(x , t) to GBBM satisfies

‖u(x , t)‖L∞ .u0 〈t〉−1/3 ∀ t ∈ R.

Proof uses classical PDE tools: bootstrap estimates &
Duhamel’s formula to treat nonlinear term perturbatively.
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Nonlinear Dispersive Est.: Proof Sketch 1

Start by defining

q(t)
.

= sup
τ∈[0,t]

[
‖u(x , τ)‖L∞x 〈τ〉

1/3 + ‖u(x , τ)‖Hs
x

]
.

To prove claim (+ get extra persistence of Hs
x regularity!) it

suffices to show q(t) is bounded.

I claim q(t) is bounded if u0 small and there is some C > 0
indep. of x , t, u0 s.t.

q(t) ≤ C
(
‖u0‖L1 + ‖u0‖Hs + q(t)p+1

)
.

Why? Assume above holds, then bootstrap boundedness of
q(t) (next two slides)
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Nonlinear Dispersive Est.: Proof Sketch 2

Let A > 1 satisfy

‖ϕ‖L∞ ≤ A ‖ϕ‖Hs ∀ ϕ ∈ Hs .

Pick η � 1 so that
η > C (3Aη)p+1 .

Then, pick δ < η such that

η ≥ C
(
δ + (3Aη)p+1

)
.

Having picked δ, we now suppose

‖u0‖L1 + ‖u0‖Hs < δ

as in the statement of the claim.
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Nonlinear Dispersive Est.: Proof Sketch 3

By Sobolev embedding

q(0) ≤ (1 + A)δ < 2Aη (conclusion holds at time 0).

Additionally, if we assume q(t) ≤ 3Aη for some particular t, then
since

q(t) ≤ C
(
‖u0‖L1 + ‖u0‖Hs + q(t)p+1

)
.

we have

q(t) ≤ C
(
δ + (3Aη)p+1

)
≤ η < 2Aη (assumption implies conclusion)

Since q(t) cts., the bootstrap principle then implies q(t) ≤ 2Aη for
all t ≥ 0!
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Nonlinear Dispersive Est.: Proof Sketch 4

Thus it remains to prove

q(t) ≤ C
(
‖u0‖L1 + ‖u0‖Hs + q(t)p+1

)
.

Start using Duhamel form of GBBM (method of integrating
factors): if f (u) = (p + 1)−1up+1,

u(x , t) = etM
−1∂x u0 −

∫ t

0
e(t−τ)M

−1∂x M−1∂x f (u(x , τ)) dτ.

By the LBBM dispersive estimate and easy bounds from our
lemma,

〈t〉1/3 ‖u(x , t)‖L∞ . ‖u0‖L1 + ‖u0‖Hs

+ 〈t〉
1
3

∫ t

0
〈t − τ〉−

1
3

(
‖u‖p−1L∞ ‖u‖

2
Hs + ‖u‖pL∞ ‖u‖Hs

)
dτ
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Nonlinear Dispersive Est.: Proof Sketch 5

Recognizing integrand as ≈ binomial expansion, can use
1 = 〈τ〉〈τ〉−1 and definition of q(t) to get

〈t〉1/3 ‖u(x , t)‖L∞ . ‖u0‖L1 + ‖u0‖Hs

+ q(t)p+1

(
〈t〉1/3

∫ t

0
〈t − τ〉−1/3〈τ〉(1−p)/3 dτ

)
.

The integral is bounded unif. in t precisely when p > 4!

A similar arg. gives us a similar bound on ‖u‖Hs
x
, hence we find

q(t) ≤ C
(
‖u0‖L1 + ‖u0‖Hs + q(t)p+1

)
.

as required.
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Re-statement of Main Theorem

Corollary (Scattering in H1, Dziubański-Karch ‘96)

Under the same hypotheses as the previous theorem (small initial
data, p > 4), there exist functions u±(x , t) ∈ C 1

t (R; Hs
x ) such

that, if soln. u(x , t) solves GBBM,

1 u± both provide classical solutions to LBBM and

2 we have
‖u±(x , t)− u(x , t)‖H1

x
. 〈t〉1−p/3.

In particular,

lim
t→±∞

‖u±(x , t)− u(x , t)‖H1
x

= 0.

Proof is basically just looking at consequences of nonlinear
soln. satisfying linear dispersive est.
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Proof of Main Thm.

Define

u+(x , t)
.

= etM
−1∂x

(
u0 −

∫ ∞
0

e−τM
−1∂x M−1∂x f (u(x , τ)) dτ

)
,

which is obviously a solution to LBBM (one can show this is always
finite, and in fact in Hs

x ∀ t). u− can be constructed by analogy.

Using Duhamel and product estimates, get

‖u+ − u‖H1
x
.
∫ ∞
t
‖u(x , τ)‖pL∞x ‖u(x , τ)‖H1

x
dτ.

By conservation of energy and the dispersive est., this becomes

‖u+ − u‖H1
x
.u0

∫ ∞
t
〈τ〉−p/3 dτ . 〈t〉1−p/3 ⇒ DONE!
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Discussion + Future Directions 1

We know from Jan. 22 talk that p = 1, 2 are the major cases
of physical interest... so how about scattering or
non-scattering for these cases?

By the same logic used to predict scattering for p � 1, we find
that we can’t expect nonlinearity to be a “small perturbation”
for p ≈ 1. This means very different methods must be used!

One idea: look to tools for generalized Korteweg-de Vries
(GKdV), qualitatively similar to GBBM:

ut + uxxx + upux = 0.

Hayashi & Naumkin ‘98 showed that small solns to GKdV
scatter for p > 2.
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Discussion + Future Directions 2

For p = 1, 2, GKdV is completely integrable (admits “true”
solitons), so even for small Cauchy data we cannot expect
scattering (and indeed we don’t get it!)

Open Problem

Describe the long-time asymptotic behaviour of solutions to
GBBM for p ∈ [1, 4]. In particular, is p = 2 the scattering
threshold for GBBM as it is for GKdV?

Issue: GBBM lacks many of the symmetries of GKdV, so
certain methods (estimating vector fields) for GKdV can’t be
easily adapted to GBBM.

My current work: take p = 3, study the modes that are
“resonant” during the nonlinear self-interaction (see J.Kato &
Pusateri 2011 for application of the method to cubic nonlinear
Schrödinger eqn.).
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Summary/Big Takeaways

Basic intuition says solns. to GBBM with nonlinear term
upux , p � 1, scatter to linear solns. Can prove this rigorously
(with p > 4) via careful analysis of linear solns.

The key tool underlying most of the hard analysis: dispersive
estimate for LBBM. One can nearly guess the correct
dispersive estimate using intuition from the method of
stationary phase.

Proving scattering is easy once one shows that initially small
(in the right norm!) nonlinear solns. obey the same dispersive
estimate as solns. to LBBM.

To get scattering for lower p, one may need more powerful
modern methods (ie. studying resonant interactions between
normal modes in detail). Work in progress
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End

Questions?
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