### Scattering of Small Solutions to the Generalized Benjamin-Bona-Mahony Equation

Adam Morgan

University of Toronto

March 19, 2021

Adam Morgan UT Grad Analysis Seminar

# Problem statement, intuition for the main theorem (scattering for GBBM)

Properties of the linear BBM

- Intermediate steps
  Intermediate steps
- Ideas for new approaches to long-time asymptotics?

- Problem statement, intuition for the main theorem (scattering for GBBM)
- Properties of the linear BBM
- Rigorous proof of the main theorem, built up over several intermediate steps
- Ideas for new approaches to long-time asymptotics?

- Problem statement, intuition for the main theorem (scattering for GBBM)
- Properties of the linear BBM
- Rigorous proof of the main theorem, built up over several intermediate steps
- Ideas for new approaches to long-time asymptotics?

- Problem statement, intuition for the main theorem (scattering for GBBM)
- Properties of the linear BBM
- Rigorous proof of the main theorem, built up over several intermediate steps
- Ideas for new approaches to long-time asymptotics?

### Problem Statement + GWP

• We study the Cauchy problem for the **generalized Benjamin-Bona-Mahony equation (GBBM)**:

$$\left\{egin{array}{ll} u_t-u_{ imes imes t}+u_x+u^{
ho}u_x=0 &orall \ (t,x)\in \mathbb{R} imes \mathbb{R}\ u|_{t=0}(x)=u_0(x) &orall x\in \mathbb{R}. \end{array}
ight.$$

- This models long waves propagating in water, or in elastic blood vessels.
- Global well-posedness of this problem in

 $C_x^2 \cap H_x^1$ 

is easy, thanks to energy conservation:

$$||u(x,t)||_{H^1_x} = ||u_0(x)||_{H^1_x}.$$

### Problem Statement + GWP

• We study the Cauchy problem for the **generalized Benjamin-Bona-Mahony equation (GBBM)**:

$$\left\{ egin{array}{ll} u_t - u_{x imes t} + u_x + u^p u_x = 0 & orall \ (t,x) \in \mathbb{R} imes \mathbb{R} \ u|_{t=0}(x) = u_0(x) & orall \ x \in \mathbb{R}. \end{array} 
ight.$$

- This models long waves propagating in water, or in elastic blood vessels.
- Global well-posedness of this problem in

$$C_x^2 \cap H_x^1$$

is easy, thanks to energy conservation:

$$||u(x,t)||_{H^1_x} = ||u_0(x)||_{H^1_x}.$$

### Intuition for Scattering

- Energy conservation  $\Rightarrow$  if  $u_0(x)$  is small then u(x, t) should always remain small.
- In turn, for p large enough, we should have

$$u^{p}u_{x}\approx 0,$$

which means the PDE is nearly equal to **linearized BBM** (LBBM):

$$u_t - u_{xxt} + u_x = 0$$

- So, possibly after waiting some time for dispersion to tame any problems with the nonlinearity (more on this later), we can expect solns. to GBBM to act like solns. to LBBM.
- We then say that small solutions to GBBM with p ≫ 1 scatter, at least from an intuitive point of view

### Intuition for Scattering

- Energy conservation  $\Rightarrow$  if  $u_0(x)$  is small then u(x, t) should always remain small.
- In turn, for p large enough, we should have

$$u^{p}u_{x}\approx 0,$$

which means the PDE is nearly equal to **linearized BBM** (LBBM):

$$u_t - u_{xxt} + u_x = 0$$

- So, possibly after waiting some time for dispersion to tame any problems with the nonlinearity (more on this later), we can expect solns. to GBBM to act like solns. to LBBM.
- We then say that small solutions to GBBM with p ≫ 1 scatter, at least from an intuitive point of view

#### Theorem (Scattering in $H^1$ , Dziubański & Karch '96)

Suppose  $s \ge 7/2$  and p > 4. Let u(x, t) denote the solution to GBBM with initial state  $u_0(x)$ .

Then, we can find 0  $< \delta \ll 1$  such that

 $\|u_0\|_{L^1_x} + \|u_0\|_{H^s_x} < \delta$ 

implies there exist functions  $u_{\pm}(x,t) \in C_t^1(\mathbb{R}; H_x^s)$  satisfying the following:

 $\textbf{0} \ \textbf{\textit{u}}_{\pm} \ \textbf{\textit{both provide classical solutions to LBBM and }$ 

2 
$$\lim_{t\to\pm\infty} \|u_{\pm}(x,t)-u(x,t)\|_{H^1_x}=0.$$

- To say nonlinear solns. resemble linear ones, we should probably make sure we have a good idea what linear solutions look like
- Use the Fourier transform and asymptotics for oscillatory integrals (stationary phase method) to get basic information on LBBM solns.
- Need to prove a **dispersive estimate**
- Then, we show small solns. to the nonlinear problem also satisfy dispersive estimate: this is enough to prove the main thm.

- To say nonlinear solns. resemble linear ones, we should probably make sure we have a good idea what linear solutions look like
- Use the Fourier transform and asymptotics for oscillatory integrals (stationary phase method) to get basic information on LBBM solns.
- Need to prove a dispersive estimate
- Then, we show small solns. to the nonlinear problem also satisfy dispersive estimate: this is enough to prove the main thm.

#### Basics of LBBM 1

• Focus for now on IVP for LBBM:

$$\begin{cases} u_t - u_{xxt} + u_x = 0 \quad \forall \ (t, x) \in \mathbb{R} \times \mathbb{R} \\ u|_{t=0}(x) = u_0(x) \quad \forall \ x \in \mathbb{R}. \end{cases}$$

• Define an (invertible!) elliptic operator  $M = 1 - \partial_x^2$ , then LBBM can be written as

$$u_t = -M^{-1}\partial_x(u).$$

• The symbol of  $\frac{1}{7}M^{-1}\partial_x$  (physically, the temporal frequency) is given by the **dispersion relation** 

$$\omega(\xi) = \frac{\xi}{\langle \xi \rangle^2} \quad \left(\langle \xi \rangle = \sqrt{1 + \xi^2}\right)$$

Think of this as writing temporal freq. as function of spatial freq.  $\xi$  (AKA "wavenumber")

### Basics of LBBM 1

• Focus for now on IVP for LBBM:

$$\left\{ egin{array}{ll} u_t - u_{xxt} + u_x = 0 & orall \left(t,x
ight) \in \mathbb{R} imes \mathbb{R} \ u|_{t=0}(x) = u_0(x) & orall x \in \mathbb{R}. \end{array} 
ight.$$

• Define an (invertible!) elliptic operator  $M = 1 - \partial_x^2$ , then LBBM can be written as

$$u_t = -M^{-1}\partial_x(u).$$

• The symbol of  $\frac{1}{7}M^{-1}\partial_x$  (physically, the temporal frequency) is given by the **dispersion relation** 

$$\omega(\xi) = rac{\xi}{\langle \xi 
angle^2} \quad \left( \langle \xi 
angle = \sqrt{1+\xi^2} 
ight)$$

Think of this as writing temporal freq. as function of spatial freq.  $\xi$  (AKA "wavenumber")

#### Basics of LBBM 2



• Using the Fourier transform, we can write soln. to LBBM as

$$e^{tM^{-1}\partial_x}u_0 \doteq \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{i(\xi x-\omega(\xi)t)} \widehat{u_0}(\xi) d\xi.$$

- Think of this as a weighted sum of normal modes (sinusoidal waves)
- When u<sub>0</sub> is Schwartz, soln. can also be pictured as an approximately localized (on a certain time scale) wavepacket.

Study u(x, t) on spacetime rays Γ<sub>c</sub> = {x = ct}. Given a fixed ray slope c, define the LBBM phase by

$$\phi(\xi) = c\xi - \omega(\xi)$$

so along  $\Gamma_c$  write

$$u(x,t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{i\phi(\xi)t} \, \widehat{u_0}(\xi) \, \mathrm{d}\xi.$$

• **Q**: How does u(x, t) behave as  $t \to \infty$ ?

Study u(x, t) on spacetime rays Γ<sub>c</sub> = {x = ct}. Given a fixed ray slope c, define the LBBM phase by

$$\phi(\xi) = c\xi - \omega(\xi)$$

so along  $\Gamma_c$  write

$$u(x,t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{i\phi(\xi)t} \, \widehat{u_0}(\xi) \, \mathrm{d}\xi.$$

• **Q**: How does u(x, t) behave as  $t \to \infty$ ?

### LBBM Asymptotics 2

- A: Use that the integrand oscillates!
- Dominant contribution to u(x, t) along Γ<sub>c</sub> comes at ξ for which φ'(ξ) = 0: integrand oscillation is slowest here.
- Thus we look for ξ<sub>0</sub> such that c = ω'(ξ<sub>0</sub>). Between 0 and 4 ξ<sub>0</sub> per c:



### LBBM Asymptotics 2

- A: Use that the integrand oscillates!
- Dominant contribution to u(x, t) along Γ<sub>c</sub> comes at ξ for which φ'(ξ) = 0: integrand oscillation is slowest here.
- Thus we look for ξ<sub>0</sub> such that c = ω'(ξ<sub>0</sub>). Between 0 and 4 ξ<sub>0</sub> per c:



- So: suppose  $\hat{u_0}$  is localized around  $\xi_0$ , then  $e^{tM^{-1}\partial_x}u_0$  remains mostly localized in spacetime along  $\Gamma_{\omega'(\xi_0)}$ .
- Hence we can say the "velocity" of the wavepacket  $e^{tM^{-1}\partial_x}u_0$  is  $\omega'(\xi_0) =$  group velocity.
- If *û*<sub>0</sub> is more spread out, all of its component normal modes have different group vel., meaning wave packet "disperses" into a bunch of separated normal mode pieces as t → ∞.
- Dispersion can help counteract nonlinear steepening.

- So: suppose  $\hat{u_0}$  is localized around  $\xi_0$ , then  $e^{tM^{-1}\partial_x}u_0$  remains mostly localized in spacetime along  $\Gamma_{\omega'(\xi_0)}$ .
- Hence we can say the "velocity" of the wavepacket  $e^{tM^{-1}\partial_x}u_0$  is  $\omega'(\xi_0) =$  group velocity.
- If *û*<sub>0</sub> is more spread out, all of its component normal modes have different group vel., meaning wave packet "disperses" into a bunch of separated normal mode pieces as t → ∞.
- Dispersion can help counteract nonlinear steepening.

• Need the following approximation method to get more quantitative info on dispersion...

Theorem (Stationary Phase Estimate)

Suppose  $\phi(\xi)$  is smooth,  $\xi_0$  is the only zero of  $\phi'(\xi)$ , and there exists a natural number N such that

$$\phi^{(n)}(\xi_0)=0$$
 for  $n=1,2,3,...,N-1.$ 

Next, suppose that  $f: \mathbb{R} \to \mathbb{C}$  is smooth and compactly supported. Then, for  $t \gg 1$ ,

$$\int_{-\infty}^{\infty} f(\xi) e^{i\phi(\xi)t} \, \mathrm{d}\xi \approx C(\xi_0) f(\xi_0) e^{i\phi(\xi_0)t} t^{-\frac{1}{N}}$$

#### LBBM Asymptotics 4 + Dispersive Est.

- Since mass is conserved, wave dispersion implies the amplitude of a wavepacket decreases over time.
- Stationary phase estimate gives

$$\left\|e^{tM^{-1}\partial_x}u_0\right\|_{L^{\infty}}\lesssim \|u_0\|_{L^1}\ t^{-1/3},\quad t\gg 1,$$

• Above can be refined rigorously:

Proposition (LBBM Dispersive Estimate, Albert '89, Dziubański-Karch '96)

For any  $s \geq \frac{7}{2}$ , we have

$$\left\| e^{tM^{-1}\partial_x} u_0 \right\|_{L^{\infty}} \lesssim \left( \|u_0\|_{L^1} + \|u_0\|_{H^s} \right) \ \langle t \rangle^{-1/3}, \quad \forall \ t > 0.$$

#### LBBM Asymptotics 4 + Dispersive Est.

- Since mass is conserved, wave dispersion implies the amplitude of a wavepacket decreases over time.
- Stationary phase estimate gives

$$\left\|e^{tM^{-1}\partial_x}u_0\right\|_{L^\infty}\lesssim \|u_0\|_{L^1}\ t^{-1/3},\quad t\gg 1,$$

• Above can be refined rigorously:

Proposition (LBBM Dispersive Estimate, Albert '89, Dziubański-Karch '96)

For any  $s \geq \frac{7}{2}$ , we have

$$\left\|e^{tM^{-1}\partial_{x}}u_{0}\right\|_{L^{\infty}}\lesssim\left(\|u_{0}\|_{L^{1}}+\|u_{0}\|_{H^{s}}\right)\ \langle t
angle^{-1/3},\quad\forall\ t>0.$$

- Why do we need a Sobolev norm in dispersive est.? Recall: group velocity of a wavepacket tiny for  $|\xi|\gg 1$
- So: if initial state consists of a high-frequency wave spatially localized around the origin, then even after a long time we will still see a high-frequency wave spatially localized near the origin.
- Thus any estimate on  $L_x^{\infty}$ -norm of linear soln should depend on a norm that weighs high frequencies heavily: a Sobolev norm is built to do just this, and s = 7/2 is the "magic number"

#### Dispersive Est.: Proof Sketch 1

- One can determine a critical frequency magnitude n<sub>0</sub> ≈ 2 based on stationary points of ω(ξ): above this threshold, a frequency is considered "high".
- Assume  $n \ge n_0$  then split

$$\begin{split} \left\| e^{tM^{-1}\partial_{x}} u_{0} \right\|_{L^{\infty}} &= \left\| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i(\xi x - \omega(\xi)t)} \left| \widehat{u}_{0}(\xi) \right| \mathrm{d}\xi \right\|_{L^{\infty}_{x}} \\ &\lesssim \sup_{c \in \mathbb{R}} \left| \int_{-n}^{n} e^{it(c\xi - \omega(\xi))} \left| \widehat{u}_{0}(\xi) \right| \mathrm{d}\xi \right| + \int_{|\xi| > n} \left| \widehat{u}_{0}(\xi) \right| \left| \mathrm{d}\xi \right| \\ &= \mathsf{Lo-Mid} \ \mathsf{freg} \ + \ \mathsf{Hi} \ \mathsf{freg} \end{split}$$

• Lo-Mid term can be bounded using Prop. 3.1 in the notes (itself a corollary of van der Corput, see Souganidis and Strauss '90):

Lo-Mid 
$$\lesssim \left(t^{-1/3} + t^{-1/2} n^{3/2}\right) \|u_0\|_{L^1_x}$$
.

### Dispersive Est.: Proof Sketch 1

- One can determine a critical frequency magnitude  $n_0 \approx 2$  based on stationary points of  $\omega(\xi)$ : above this threshold, a frequency is considered "high".
- Assume  $n \ge n_0$  then split

$$\begin{split} \left\| e^{tM^{-1}\partial_{x}} u_{0} \right\|_{L^{\infty}} &= \left\| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i(\xi x - \omega(\xi)t)} \left| \widehat{u}_{0}(\xi) \right| \mathrm{d}\xi \right\|_{L^{\infty}_{x}} \\ &\lesssim \sup_{c \in \mathbb{R}} \left| \int_{-n}^{n} e^{it(c\xi - \omega(\xi))} \left| \widehat{u}_{0}(\xi) \right| \mathrm{d}\xi \right| + \int_{|\xi| > n} \left| \widehat{u}_{0}(\xi) \right| \left| \mathrm{d}\xi \right| \\ &= \mathsf{Lo-Mid freq} + \mathsf{Hi freq} \end{split}$$

• Lo-Mid term can be bounded using Prop. 3.1 in the notes (itself a corollary of van der Corput, see Souganidis and Strauss '90):

Lo-Mid 
$$\lesssim \left(t^{-1/3} + t^{-1/2} n^{3/2}\right) \|u_0\|_{L^1_x}$$
.

#### Dispersive Est.: Proof Sketch 2

• For Hi term, bound is more pedestrian:

$$\begin{split} \int_{|\xi|>n} |\widehat{u_0}(\xi)| \ \mathrm{d}\xi &= \int_{|\xi|>n} \left(\langle \xi \rangle^s \ |\widehat{u_0}(\xi)|\right) \ \langle \xi \rangle^{-s} \ \mathrm{d}\xi \\ &\leq \|\langle \xi \rangle^s \widehat{u_0}(\xi)\|_{L^2_{\xi}} \ \left(\int_{|\xi|>n} \langle \xi \rangle^{-2s} \ \mathrm{d}\xi\right)^{1/2} \\ &\lesssim_s \|u_0\|_{H^s_x} n^{\frac{1}{2}-s}. \end{split}$$

• Putting Lo-Mid and Hi together, get

$$\|u(x,t)\|_{L^{\infty}} \lesssim \left(n^{\frac{1}{2}-s} + t^{-1/3} + t^{-1/2}n^{3/2}\right) \left(\|u_0\|_{L^1_x} + \|u_0\|_{H^s_x}\right)$$

• Choosing t suff. large and  $n = t^{1/9}$  we see  $s \ge 7/2$  needed to get Hi contribution dying faster than  $t^{-1/3}$ , DONE.

• For Hi term, bound is more pedestrian:

$$\begin{split} \int_{|\xi|>n} |\widehat{u_0}(\xi)| \ \mathrm{d}\xi &= \int_{|\xi|>n} \left(\langle \xi \rangle^s \ |\widehat{u_0}(\xi)|\right) \ \langle \xi \rangle^{-s} \ \mathrm{d}\xi \\ &\leq \|\langle \xi \rangle^s \widehat{u_0}(\xi)\|_{L^2_{\xi}} \ \left(\int_{|\xi|>n} \langle \xi \rangle^{-2s} \ \mathrm{d}\xi\right)^{1/2} \\ &\lesssim_s \|u_0\|_{H^s_x} n^{\frac{1}{2}-s}. \end{split}$$

• Putting Lo-Mid and Hi together, get

$$\|u(x,t)\|_{L^{\infty}} \lesssim \left(n^{\frac{1}{2}-s} + t^{-1/3} + t^{-1/2}n^{3/2}\right) \left(\|u_0\|_{L^1_x} + \|u_0\|_{H^s_x}\right)$$

• Choosing t suff. large and  $n = t^{1/9}$  we see  $s \ge 7/2$  needed to get Hi contribution dying faster than  $t^{-1/3}$ , DONE.

### Dispersive Est. for Nonlinear Case: Prelude

- Nice surprise: small nonlinear solns. also satisfy the same dispersive est.! This is basically all we need to prove scattering.
- Need the following easy bounds:

#### Lemma

Pick any s > 0. For any  $p \in \mathbb{N}$  and any u in the appropriate fnc. space, we have

 $\left\|M^{-1}\partial_{\mathsf{X}}u\right\|_{L^{1}} \lesssim \|u\|_{L^{1}},$ 

 $\left\|M^{-1}\partial_{x}u
ight\|_{H^{s}}\lesssim\left\|u
ight\|_{H^{s}},\quad$  and

 $||u^{p+1}||_{H^s} \lesssim ||u||_{L^{\infty}}^p ||u||_{H^s}.$ 

### Dispersive Est. for Nonlinear Case: Prelude

- Nice surprise: small nonlinear solns. also satisfy the same dispersive est.! This is basically all we need to prove scattering.
- Need the following easy bounds:

#### Lemma

Pick any s > 0. For any  $p \in \mathbb{N}$  and any u in the appropriate fnc. space, we have

 $\left\|M^{-1}\partial_{x}u\right\|_{L^{1}}\lesssim\left\|u\right\|_{L^{1}},$ 

$$\left\| M^{-1} \partial_x u 
ight\|_{H^s} \lesssim \left\| u 
ight\|_{H^s}, \quad ext{and}$$

$$||u^{p+1}||_{H^s} \lesssim ||u||_{L^{\infty}}^p ||u||_{H^s}.$$

Theorem (Nonlinear Solutions with Linear Decay, Albert '89, Dziubański-Karch '96)

Let  $s \geq \frac{7}{2}$  and suppose  $u_0 \in L^1(\mathbb{R}) \cap H^s(\mathbb{R})$ . If p > 4 then there exists  $\delta > 0$  such that

 $\|u_0\|_{L^1} + \|u_0\|_{H^s} < \delta$ 

implies the soln. u(x, t) to GBBM satisfies

 $\|u(x,t)\|_{L^{\infty}} \lesssim_{u_0} \langle t \rangle^{-1/3} \quad \forall \ t \in \mathbb{R}.$ 

 Proof uses classical PDE tools: bootstrap estimates & Duhamel's formula to treat nonlinear term perturbatively. • Start by defining

$$q(t) \doteq \sup_{\tau \in [0,t]} \left[ \|u(x,\tau)\|_{L^{\infty}_{x}} \langle \tau \rangle^{1/3} + \|u(x,\tau)\|_{H^{s}_{x}} \right].$$

To prove claim (+ get extra persistence of  $H_x^s$  regularity!) it suffices to show q(t) is bounded.

 I claim q(t) is bounded if u<sub>0</sub> small and there is some C > 0 indep. of x, t, u<sub>0</sub> s.t.

$$q(t) \leq C \left( \|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1} \right).$$

Why? Assume above holds, then bootstrap boundedness of q(t) (next two slides)

Let A > 1 satisfy

$$\left\|\varphi\right\|_{L^{\infty}} \leq A \left\|\varphi\right\|_{H^{s}} \quad \forall \ \varphi \in H^{s}.$$

Pick  $\eta \ll 1$  so that

$$\eta > C \, (3A\eta)^{p+1}$$

.

Then, pick  $\delta < \eta$  such that

$$\eta \geq C\left(\delta + (3A\eta)^{p+1}\right).$$

Having picked  $\delta$ , we now suppose

$$\|u_0\|_{L^1} + \|u_0\|_{H^s} < \delta$$

as in the statement of the claim.

By Sobolev embedding

 $q(0) \leq (1+A)\delta < 2A\eta$  (conclusion holds at time 0).

Additionally, if we assume  $q(t) \leq 3A\eta$  for some particular t, then since

$$q(t) \leq C\left(\|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1}\right).$$

we have

 $q(t) \leq C\left(\delta + (3A\eta)^{p+1}
ight) \leq \eta < 2A\eta$  (assumption implies conclusion)

Since q(t) cts., the bootstrap principle then implies  $q(t) \le 2A\eta$  for all  $t \ge 0$ !

#### Nonlinear Dispersive Est.: Proof Sketch 4

Thus it remains to prove

$$q(t) \leq C\left(\|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1}\right).$$

Start using Duhamel form of GBBM (method of integrating factors): if  $f(u) = (p+1)^{-1}u^{p+1}$ ,

$$u(x,t)=e^{tM^{-1}\partial_x}u_0-\int_0^t e^{(t-\tau)M^{-1}\partial_x}M^{-1}\partial_xf(u(x,\tau)) \,\mathrm{d}\tau.$$

By the LBBM dispersive estimate and easy bounds from our lemma,

 $\langle t \rangle^{1/3} \| u(x,t) \|_{L^{\infty}} \lesssim \| u_0 \|_{L^1} + \| u_0 \|_{H^s}$ 

$$+ \langle t \rangle^{\frac{1}{3}} \int_{0}^{t} \langle t - \tau \rangle^{-\frac{1}{3}} \left( \|u\|_{L^{\infty}}^{p-1} \|u\|_{H^{s}}^{2} + \|u\|_{L^{\infty}}^{p} \|u\|_{H^{s}} \right) \, \mathrm{d}\tau$$

#### Nonlinear Dispersive Est.: Proof Sketch 4

Thus it remains to prove

$$q(t) \leq C \left( \|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1} 
ight).$$

Start using Duhamel form of GBBM (method of integrating factors): if  $f(u) = (p+1)^{-1}u^{p+1}$ ,

$$u(x,t)=e^{tM^{-1}\partial_x}u_0-\int_0^t e^{(t-\tau)M^{-1}\partial_x}M^{-1}\partial_xf(u(x,\tau)) \,\mathrm{d}\tau.$$

By the LBBM dispersive estimate and easy bounds from our lemma,

$$\begin{split} \langle t \rangle^{1/3} \, \| u(x,t) \|_{L^{\infty}} &\lesssim \| u_0 \|_{L^1} + \| u_0 \|_{H^s} \\ &+ \langle t \rangle^{\frac{1}{3}} \int_0^t \langle t - \tau \rangle^{-\frac{1}{3}} \left( \| u \|_{L^{\infty}}^{p-1} \| u \|_{H^s}^2 + \| u \|_{L^{\infty}}^p \| u \|_{H^s} \right) \, \mathrm{d}\tau \end{split}$$

Recognizing integrand as  $\approx$  binomial expansion, can use  $1 = \langle \tau \rangle \langle \tau \rangle^{-1}$  and definition of q(t) to get

$$egin{aligned} &\langle t 
angle^{1/3} \, \| u(x,t) \|_{L^{\infty}} \lesssim \| u_0 \|_{L^1} + \| u_0 \|_{H^s} \ &+ q(t)^{p+1} \left( \langle t 
angle^{1/3} \int_0^t \langle t - \tau 
angle^{-1/3} \langle \tau 
angle^{(1-p)/3} \, \mathrm{d} au 
ight). \end{aligned}$$

The integral is bounded unif. in t precisely when p > 4!

A similar arg. gives us a similar bound on  $||u||_{H^s_{\varepsilon}}$ , hence we find

$$q(t) \leq C\left(\|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1}
ight).$$

as required.

Recognizing integrand as  $\approx$  binomial expansion, can use  $1 = \langle \tau \rangle \langle \tau \rangle^{-1}$  and definition of q(t) to get

$$egin{aligned} &\langle t 
angle^{1/3} \, \| u(x,t) \|_{L^{\infty}} \lesssim \| u_0 \|_{L^1} + \| u_0 \|_{H^s} \ &+ q(t)^{p+1} \left( \langle t 
angle^{1/3} \int_0^t \langle t - \tau 
angle^{-1/3} \langle \tau 
angle^{(1-p)/3} \, \mathrm{d} au 
ight). \end{aligned}$$

The integral is bounded unif. in t precisely when p > 4!

A similar arg. gives us a similar bound on  $||u||_{H^{s}_{\tau}}$ , hence we find

$$q(t) \leq C\left( \|u_0\|_{L^1} + \|u_0\|_{H^s} + q(t)^{p+1} 
ight).$$

as required.

#### Corollary (Scattering in H<sup>1</sup>, Dziubański-Karch '96)

Under the same hypotheses as the previous theorem (small initial data, p > 4), there exist functions  $u_{\pm}(x, t) \in C_t^1(\mathbb{R}; H_x^s)$  such that, if soln. u(x, t) solves GBBM,

 $\textbf{0} \ \textbf{\textit{u}}_{\pm} \ \textbf{\textit{both provide classical solutions to LBBM and }$ 

2 we have

$$\|u_{\pm}(x,t)-u(x,t)\|_{H^1_x}\lesssim \langle t
angle^{1-p/3}.$$

In particular,

$$\lim_{t\to\pm\infty} \|u_{\pm}(x,t)-u(x,t)\|_{H^{1}_{x}}=0.$$

 Proof is basically just looking at consequences of nonlinear soln. satisfying linear dispersive est.

#### Corollary (Scattering in H<sup>1</sup>, Dziubański-Karch '96)

Under the same hypotheses as the previous theorem (small initial data, p > 4), there exist functions  $u_{\pm}(x, t) \in C_t^1(\mathbb{R}; H_x^s)$  such that, if soln. u(x, t) solves GBBM,

 $\textbf{0} \ \textbf{\textit{u}}_{\pm} \ \textbf{\textit{both provide classical solutions to LBBM and }$ 

2 we have

$$\|u_{\pm}(x,t)-u(x,t)\|_{H^1_x}\lesssim \langle t
angle^{1-p/3}.$$

In particular,

$$\lim_{t\to\pm\infty}\|u_{\pm}(x,t)-u(x,t)\|_{H^1_x}=0.$$

 Proof is basically just looking at consequences of nonlinear soln. satisfying linear dispersive est.

### Proof of Main Thm.

Define

$$u_+(x,t) \doteq e^{tM^{-1}\partial_x} \left( u_0 - \int_0^\infty e^{-\tau M^{-1}\partial_x} M^{-1} \partial_x f(u(x,\tau)) \, \mathrm{d}\tau \right),$$

which is obviously a solution to LBBM (one can show this is always finite, and in fact in  $H_x^s \forall t$ ).  $u_-$  can be constructed by analogy.

Using Duhamel and product estimates, get

$$\|u_{+} - u\|_{H^{1}_{x}} \lesssim \int_{t}^{\infty} \|u(x,\tau)\|_{L^{\infty}_{x}}^{p} \|u(x,\tau)\|_{H^{1}_{x}} d\tau.$$

By conservation of energy and the dispersive est., this becomes

$$\|u_{+}-u\|_{H^{1}_{x}} \lesssim_{u_{0}} \int_{t}^{\infty} \langle \tau \rangle^{-p/3} \, \mathrm{d}\tau \lesssim \langle t \rangle^{1-p/3} \quad \Rightarrow \quad \mathsf{DONE!}$$

### Proof of Main Thm.

Define

$$u_+(x,t) \doteq e^{tM^{-1}\partial_x} \left( u_0 - \int_0^\infty e^{-\tau M^{-1}\partial_x} M^{-1} \partial_x f(u(x,\tau)) \, \mathrm{d}\tau \right),$$

which is obviously a solution to LBBM (one can show this is always finite, and in fact in  $H_x^s \forall t$ ).  $u_-$  can be constructed by analogy.

Using Duhamel and product estimates, get

$$\|u_{+} - u\|_{H^{1}_{x}} \lesssim \int_{t}^{\infty} \|u(x,\tau)\|_{L^{\infty}_{x}}^{p} \|u(x,\tau)\|_{H^{1}_{x}} d\tau.$$

By conservation of energy and the dispersive est., this becomes

$$\|u_{+} - u\|_{H^{1}_{x}} \lesssim_{u_{0}} \int_{t}^{\infty} \langle \tau \rangle^{-p/3} \, \mathrm{d}\tau \lesssim \langle t \rangle^{1-p/3} \quad \Rightarrow \quad \mathsf{DONE!}$$

- We know from Jan. 22 talk that p = 1, 2 are the major cases of physical interest... so how about scattering or non-scattering for these cases?
- By the same logic used to predict scattering for p ≫ 1, we find that we can't expect nonlinearity to be a "small perturbation" for p ≈ 1. This means very different methods must be used!
- One idea: look to tools for generalized Korteweg-de Vries (GKdV), qualitatively similar to GBBM:

$$u_t + u_{xxx} + u^p u_x = 0.$$

 Hayashi & Naumkin '98 showed that small solns to GKdV scatter for p > 2.

- We know from Jan. 22 talk that p = 1, 2 are the major cases of physical interest... so how about scattering or non-scattering for these cases?
- By the same logic used to predict scattering for p ≫ 1, we find that we can't expect nonlinearity to be a "small perturbation" for p ≈ 1. This means very different methods must be used!
- One idea: look to tools for **generalized Korteweg-de Vries (GKdV)**, qualitatively similar to GBBM:

$$u_t + u_{xxx} + u^p u_x = 0.$$

 Hayashi & Naumkin '98 showed that small solns to GKdV scatter for p > 2.

#### Discussion + Future Directions 2

For p = 1,2, GKdV is completely integrable (admits "true" solitons), so even for small Cauchy data we cannot expect scattering (and indeed we don't get it!)

#### Open Problem

Describe the long-time asymptotic behaviour of solutions to GBBM for  $p \in [1, 4]$ . In particular, is p = 2 the scattering threshold for GBBM as it is for GKdV?

- Issue: GBBM lacks many of the symmetries of GKdV, so certain methods (estimating vector fields) for GKdV can't be easily adapted to GBBM.
- My current work: take p = 3, study the modes that are "resonant" during the nonlinear self-interaction (see J.Kato & Pusateri 2011 for application of the method to cubic nonlinear Schrödinger eqn.).

#### Discussion + Future Directions 2

For p = 1,2, GKdV is completely integrable (admits "true" solitons), so even for small Cauchy data we cannot expect scattering (and indeed we don't get it!)

#### **Open Problem**

Describe the long-time asymptotic behaviour of solutions to GBBM for  $p \in [1, 4]$ . In particular, is p = 2 the scattering threshold for GBBM as it is for GKdV?

- Issue: GBBM lacks many of the symmetries of GKdV, so certain methods (estimating vector fields) for GKdV can't be easily adapted to GBBM.
- My current work: take p = 3, study the modes that are "resonant" during the nonlinear self-interaction (see J.Kato & Pusateri 2011 for application of the method to cubic nonlinear Schrödinger eqn.).

#### Discussion + Future Directions 2

• For *p* = 1,2, GKdV is completely integrable (admits "true" solitons), so even for small Cauchy data we cannot expect scattering (and indeed we don't get it!)

#### **Open Problem**

Describe the long-time asymptotic behaviour of solutions to GBBM for  $p \in [1, 4]$ . In particular, is p = 2 the scattering threshold for GBBM as it is for GKdV?

- Issue: GBBM lacks many of the symmetries of GKdV, so certain methods (estimating vector fields) for GKdV can't be easily adapted to GBBM.
- My current work: take p = 3, study the modes that are "resonant" during the nonlinear self-interaction (see J.Kato & Pusateri 2011 for application of the method to cubic nonlinear Schrödinger eqn.).

### Summary/Big Takeaways

- Basic intuition says solns. to GBBM with nonlinear term u<sup>p</sup>u<sub>x</sub>, p ≫ 1, scatter to linear solns. Can prove this rigorously (with p > 4) via careful analysis of linear solns.
- The key tool underlying most of the hard analysis: dispersive estimate for LBBM. One can nearly guess the correct dispersive estimate using intuition from the method of stationary phase.
- Proving scattering is easy once one shows that initially small (in the right norm!) nonlinear solns. obey the same dispersive estimate as solns. to LBBM.
- To get scattering for lower *p*, one may need more powerful modern methods (ie. studying resonant interactions between normal modes in detail). Work in progress

- Basic intuition says solns. to GBBM with nonlinear term u<sup>p</sup>u<sub>x</sub>, p ≫ 1, scatter to linear solns. Can prove this rigorously (with p > 4) via careful analysis of linear solns.
- The key tool underlying most of the hard analysis: dispersive estimate for LBBM. One can nearly guess the correct dispersive estimate using intuition from the method of stationary phase.
- Proving scattering is easy once one shows that initially small (in the right norm!) nonlinear solns. obey the same dispersive estimate as solns. to LBBM.
- To get scattering for lower *p*, one may need more powerful modern methods (ie. studying resonant interactions between normal modes in detail). Work in progress

- Basic intuition says solns. to GBBM with nonlinear term u<sup>p</sup>u<sub>x</sub>, p ≫ 1, scatter to linear solns. Can prove this rigorously (with p > 4) via careful analysis of linear solns.
- The key tool underlying most of the hard analysis: dispersive estimate for LBBM. One can nearly guess the correct dispersive estimate using intuition from the method of stationary phase.
- Proving scattering is easy once one shows that initially small (in the right norm!) nonlinear solns. obey the same dispersive estimate as solns. to LBBM.
- To get scattering for lower *p*, one may need more powerful modern methods (ie. studying resonant interactions between normal modes in detail). Work in progress

- Basic intuition says solns. to GBBM with nonlinear term u<sup>p</sup>u<sub>x</sub>, p ≫ 1, scatter to linear solns. Can prove this rigorously (with p > 4) via careful analysis of linear solns.
- The key tool underlying most of the hard analysis: dispersive estimate for LBBM. One can nearly guess the correct dispersive estimate using intuition from the method of stationary phase.
- Proving scattering is easy once one shows that initially small (in the right norm!) nonlinear solns. obey the same dispersive estimate as solns. to LBBM.
- To get scattering for lower *p*, one may need more powerful modern methods (ie. studying resonant interactions between normal modes in detail). Work in progress

## **Questions?**