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0.1 Summary

We showed in class that we could get isoperimetry from functional inequalities (in Rn), this
report shows how to take this techniques further, to (certain) Riemannian manifolds.

0.2 Plan of the document

The idea is to define a language consisting of semigroups (def 1), a measure (def 4), an
infinitesimal generator (def 6) and a second order ”differential” operator (def 7) capable of
encoding the geometry of an n-dimensional Riemannian Manifold in terms of applications
of this objects to (Lipschitz) functions. In this way, one can replicate the ideas of functional
inequalities (section 4), that we have in the Euclidean setting and preserve the techniques
and (to certain extent) some proofs that we used in class to tackle the isoperimetric problem
in a coordinate-free manner.
It is clear that not every manifold can satisfy iso-perimetric inequalities, so we look for
conditions to guarantee it. The condition CD(k, n) (Def 16) bounds the Carre-du-Champ
operator (def 7) from below by k times the norm of the gradient of the function and 1/n the
infinitesimal generator squared. This condition, referred to as the Bakry-Emery curvature-
dimension condition ensures some kind of isoperimetry. That is what we show in this report.

• Sections [1-3] develop the general framework of Markov Triples and the BE curvature-
dimension condition.

• Section [4] describes functional inequalities

• Section [5] presents the proof of Ledoux of linear isoperimetry under the Bakry-Emery
curvature-dimension condition
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Definition 1. (Semigroup of operators)
A family of operators {Pt}t≥0 defined on some set V of real functions on (X,S) is called

a semigroup if it satisfies:

• For every t, Pt is a linear operator, sending bounded measurable functions to bounded
measurable functions.

• P0 = I (Initial condition)

• Pt+s = Pt ◦ Ps (Semigroup property)

Definition 2. (Positivity preserving)
A semigroup as above is said to be positivity preserving if

f ≥ 0 implies Ptf ≥ 0 for all t.

Definition 3. (Conservative)
A semigroup as above is said to be conservative if 1 ∈ V

Pt1 = 1 for all t.

where 1 denotes 1(x) = 1 ∀x

Definition 4. (Invariant measure)
A measure µ, is said to be invariant with respect to a semigroup of linear operators {Pt}t≥0
if ∫

Ptfdµ =

∫
fdµ

for all bounded measurable f .

In the following we denote: Bb = {f : X → R|f is measurable and bounded}

Definition 5. (Markov semigroup)
A positivity-preserving, conservative semigroup on Bb with invariant measure µ is said to be
a Markov semigroup if it is strongly continuous on L2(X,µ)

Definition 6. (Infinitesimal Generator and it’s domain)
For a semigroup {Pt}t≥0 over L2(X,µ), we define the infinitesimal generator as the pair
(L,DL), where

DL =

{
f ∈ L2(X, .µ) : lim

t↓0

Ptf − f
t

exists

}
and L(f) = lim

t↓0

Ptf − f
t

for f ∈ DL
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Let A be an algebra of DL functions.

Definition 7. (Carré du Champ operator)
We define the Carré du Champ operator, Γ : A × A → R, of a Markov semigroup {Pt} as
follows:

Γ(f, g) =
1

2
(L(fg)− fLg − gLf)

It is obvious from the definition that the operator is bilinear and symmetric.
Often we are interested in Γ(f, f) which is usually denoted by Γ(f).

Observation 1. (Domain of Γ)
Note that at this point the definition of Γ depends on the algebra A, we need to specify
the largest domain in which we can define the Carré Du Champ. We will require a lot of
properties from this set so that the operator is useful.

Definition 8. (Extended algebra)
Let A be an algebra, we say that Aext is an extended algebra of A if it satisfies

1. f ∈ Aext, h ∈ A ⇒ hf ∈ A

2. f ∈ Aext, ∀h ∈
∫
fhdµ ≥ 0⇒ f ≥ 0

3. ∀f ∈ Aext ∀ϕ ∈ C2, ϕ(0) = 0, ϕ ◦ f ∈ Aext

4. L (and Γ) can be extended from A to Aext

5. Γ(f) ≥ 0 ∀f ∈ Aext

6. The diffusion property holds for (L,Γ) in Aext

7. If f ∈ Aext and g ∈ A,

∫
Γ(f, g)dµ = −

∫
fLgdµ = −

∫
gLfdµ

8. f ∈ A ⇒ Ptf ∈ Aext

Definition 9. (Associated Dirichlet form)
In the same setting, whenever we have defined Γ (the Carré du Champ) we define it’s asso-
ciated Dirichlet form to be the function E : A → R

E(f) =

∫
Γ(f)dµ

The Dirichlet form can be defined in a set larger than A, this set is named the domain
of the Dirichlet form
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Definition 10. (Domain of a Dirichlet form)

D(E) =

{
f ∈ L2(X,µ) : lim

t↓0

1

t

∫
f(f − Ptf)dµ exists

}
Definition 11. (Markov triple)
Let {Pt} be a Markov semigroup, with invariant measure µ and let Γ be it’s associated Carré
du Champ operator, then (X,µ,Γ) is called a Markov triple.

Definition 12. (Ergodic)
A Markov triple (X,Γ, µ) is said to be ergodic if ∀f ∈ D(L)

Lf = 0⇒ f is constant

Let Γ0(f, g) = fg (the product of the functions), then the Carré du Champ Γ1 is the
operator:

Γ1(f, g) = L(Γ0(f, g))− Γ0(f, Lg)− Γ0(Lf, g)

This rewriting teaches us how to generate more operators in the same space, by repeating
this procedure, if we restrict our domain to be L-stable, meaning that if f ∈ Â then Lf ∈ Â.
For an integer k we write:

Γk+1 = LΓk(f, g)− Γk(f, Lg)− Γk(Lf, g)

1 Markov Triples on compact Riemannian Manifolds

Our setting will be a smooth connected Riemannian manifold M .
For W ∈ C∞(M), with finite integral, assume without loss of generality that∫

M

e−WdV = 1

(change W by a constant if not).
We can use e−W as a Radon-Nikodyn derivative and get a probability measure µ that is
absolutely continuous with respect to the standard volume, i.e.

µ(A) =

∫
M

1Ae
−WdV

If M is a compact Riemannian manifold we write A = C∞(M) but if M is assumed to
be a Riemannian manifold (not nec. compact) we put A = C∞c (M), Aext = C∞(M) and we
can write

Γ(f, g) = 〈∇f,∇g〉
.
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Definition 13. (Density of a Riemannian manifold)
In the setting as above we say that M has a smooth density e−W

Corollary 1. In our setting, of compact Riemannian manifolds,

Γ2(f) = |∇∇f |2 + Riccg(∇f,∇f)

2 Assumptions on a Markov Triple

Definition 14. (Standard Markov Triple)
A Markov triple (X,Γ, µ) is said to be standard if it is

1. A diffusion markov triple.

2. Ergodic

3. Conservative

Until now, the theory developed has been very general. The final framework will be the
full markov triple:

Definition 15. (Full Markov Triple)
A full Markov Triple is a Standard Markov triple in which we additionally require:

• Γ (and also L) are defined on an extended algebra.

• If f ∈ A is such that Γ(f) = 0 then f must be constant.

• L (defined originally in A not in Aext) has a unique self-adjoint extension.

From now on, when we mention Markov Triples we will be referring to Full Markov
Triples.

3 Bakry-Emery curvature dimension condition

Definition 16. (CD(k, n))
We say that the curvature dimension inequality is satisfied for the pair (k, n) (or simpler
CD(k, n)) if

Γ2(f) ≥ kΓ1(f) +
1

n
(Lf)2
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The name curvature dimension inequality comes from obtaining lower bounds for Γ2 using
Bochner-Weitzenböck identity, and relating the first part to a curvature bound relating the
Ricci curvature and the dimension coming from a simple inequality in terms of the HS norm
of the Hessian. For details the reference is again [1] pg 70-72.

Definition 17. CD(k,∞)
As before, we say that CD(k,∞) is satisfied if

Γ2(f) ≥ kΓ1(f)

4 Functional inequalities in the Markov setting

Let us write V arµ for the variance of the measure µ, that is,

V arµ(f) =

∫
f 2dµ−

(∫
fdµ

)2

Definition 18. (Global Poincaré inequality for Markov Triples)
We say that a Markov triple (X,Γ, µ) satisfies the Poincaré inequality with constant k if for
every function f ∈ A

V arµ(f) ≤ kE(f)

Definition 19. (Local Poincaré inequality for Markov Triples)
We say that a Markov triple satisfies the local Poincaré inequality with constant k if for every
function f ∈ A

Ptf
2 − (Ptf)2 ≤ 1− e−2kt

k
Pt(Γf) (1)

Definition 20. (Local reverse Poincaré inequality for Markov Triples)
We say that a Markov triple satisfies the reverse Poincaré inequality with constant k if for
every function f ∈ A

Ptf
2 − (Ptf)2 ≥ e2kt − 1

k
Γ(Ptf)

Definition 21. (Second version of the Poincaré inequality for Markov Triples)
For a Markov triple (X,Γ, µ) we say it satisfies Poincaré and reverse Poincaré inequalities
if

2tΓ(Ptf) ≤ Pt(f
2)− (Ptf)2 ≤ 2tPt(Γ(f))
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Observation 2. Note that directly from the reverse Poincaré inequality, one finds Lipschitz
properties of the Carré du Champ operator, Γ, with respect to the semigroup: If 0 ≤ f ≤ 1
then by the reverse Poincaré inequality (second version)

2tΓ(Pt(f)) ≤ Pt(f
2)− (Ptf)2 ≤ Pt(f

2) ≤ Pt(f) ≤ Pt(1)

And so, as the semigroup is conservative, we have 2tPt(f) ≤ 1which of course can be
rewritten in a way that it evokes Lipschitz properties:

Γ(Ptf) ≤ 1

2t

Definition 22. (Isoperimetric profile) In a measure metric space (X, d, µ) the isoperimetric
profile Iµ : [0,∞)→ R is defined by

Iµ(x) = inf{µ+(A) : µ(A) = x}

where the infimum is taken over all Borel sets A.

Definition 23. (Isoperimetric-type inequality and linear isoperimetry)
We say that an isoperimetric type inequality is satisfied if we can find a function i : [0,∞)→
R that lower bounds Iµ, namely

Iµ(x) ≥ i(x) ∀x ∈ [0,∞)

We say that linear isoperimetry holds if i(x) = cmin{x, 1− x} for some constant c > 0.

Example 1. (Guassian isoperimetry) Let µ be the Gaussian measure in R and let ϕ be it’s
density and Ψ it’s accumulative distribution, that is

ϕ(x) =
1√
2π
e−x

2/2,Ψ(x) =

∫ x

−∞
ϕ(s)ds

Then,

Iµ(x) ≥ ϕ
(
Ψ−1(x)

)
For the Lebesgue measure, the isoperimetric problem has been solved and we can address

it in two ways:

• Via Brunn-Minkowski’s inequality (How we did it in class)

• Using Optimal Transport.
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Let us show that the n-ball is the (Lebesgue measure) isoperimetric minimizer in Rn

using optimal transport:
Let A be any measurable set and let B be the n-dimensional ball, so let us transport A

onto B.
Let µ be the uniform measure on A and ν the uniform measure on B then we know by
Optimal transport:

1

|A|
= det(∇φ)

1

|B|
where φ is a convex function transporting µ onto ν. Then, by integrating over A

|A|1−
1
n ≤ 1

n|B| 1n

∫
∂A

φ · ndx ≤ 1

n|B| 1n
|∂A|

Now set |A| = |B| to find a minimizer among all sets that have this measure, and get

n|A| ≤ |∂A|

which is satisfied with equality by the ball.
In different settings, people avoid using µ+: A set E is said to have finite perimeter if 1E

is of bounded variation. Then the perimeter is defined:

P(E) = ||D1E||

This is a key idea will use approximation of “derivatives of indicator functions”.

Theorem 1. (Linear isoperimetry implies Poincaré)
In the setting of a Markov Triple (X,Γ, µ) if linear isoperimetry holds with constant c then

the Poincaré inequality holds for constant
4

c2

In Rn to prove this kind of results we make use of the famous Co-area formula, in this
setting we need a similar idea:

Lemma 1. (Co-area inequality for the Minkowski boundary measure)
In the setting of a Markov Triple (X,Γ, µ) for every 1-Lipschitz function f we have∫ ∞

−∞
µ+({x ∈ X : f(x) > r})dr ≤

∫ √
Γ(f)dµ

Now further, having functional inequalities translate on having concentration of measure:

Observation 3. Having a Poincaré inequality is equivalent to having exponential decay in
variance. Having a log-sobolev inequality is equivalent to having exponential decay in entropy,
this both statements imply conditions on the concentration of the measure.
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Theorem 2. (Poincaré and exponential integrability)
If the Poincaré inequality is satisfied with constant c, then for every 1-Lipschitz function f

and s <

√
4

c ∫
esfdµ <∞

Observation 4. Using s =
1√
c

together with the Markov exponential inequality one gets:

µ

(
f ≥

∫
fdµ+ r

)
≤ 3e−r/c||f ||Lip

Theorem 3. (Log-sobolev and exponential square integrability)
If the log-sobolev inequality is satisfied with constant c then for every 1-Lipschitz function f

and every σ2 <
1

c
one has ∫

ef
2/2σ2

dµ <∞

Observation 5. In a similar fashion as 4 we get

µ

(∣∣∣∣f − ∫ fdµ

∣∣∣∣ ≥ r

)
≤ 2e−r

2/(2c)||f ||Lip

Observation 6. The standard gaussian satisfies the log-sobolev inequality with constant 1.

Now we know that if we have isoperimetry this implies some functional inequalities. We
also know that this functional inequalities imply concentration inequalities.
Q: Do you expect concentration to imply isoperimetry?
Q: Under what conditions do you think we can deduce isoperimetry from concentration?

5 Semigroup proof for linear Isoperimetry

Definition 24. (Exponential concentration)
We say that (X,Γ, µ) satisfies exponential concentration with constants c, C if for every
integrable 1−Lipschitz function f one has

µ

(
f ≥

∫
fdµ+ r

)
≤ Ce−cr

Theorem 4. (Milman) [1] [Theorem 8.7.1] Under Γ2 ≥ 0, if exponential concentration holds
with constants c and C, then

Iµ(x) ≥ c′min{x, 1− x}, x ∈ [0, 1]
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Theorem 5. (Milman) [2] [Theorem 1] Under Γ2 ≥ 0, if αµ(r)→ 0 as r →∞ then

Iµ(x) ≥ c
′

2 min{x, 1− x}, x ∈ [0, 1]

Observation 7. As we will see in the proof, the constant c′ does not depend on the dimension
of the underlying manifold.

Lemma 2. (Poincaré and log-Sobolev inequalities imply Lipschitz properties)
Let 0 ≤ f ≤ 1 ∈ A then

• If the local Poincaré inequality is satisfied then

Γ(Ptf) ≤ 1

2t

• If the local log-Sobolev inequality is satisfied then

Γ(Ptf) ≤ 1

t
(Ptf)2 log

1

Ptf
≤ 1

t
log

1

Ptf

Observation 8. In this case it is helpful to study a larger class of functions, namely Aconst0 =
A+ R where + denotes the Minkowski sum.

The proof presented here is a (way) more detailed version of the one found in [1].

Proof. Let f ∈ Aconst0 then∫
f log fdµ−

∫
Ptf logPtfdµ = −

∫ t

0

d

ds

(∫
Psf logPsfdµ

)
ds

Now we can use De Bruijn’s identity and get∫
f log fdµ−

∫
Ptf logPtfdµ =

∫ t

0

∫
Γ(Psf)

Psf
dµ (2)

For Theorem 5 we need∫
f 2dµ−

∫
(Ptf)2dµ = 2

∫ t

0

∫
Γ(Psf)dµds (3.1*)

Observation 9. It is clear even from this point that the details for 5 are a little easier.

Now as CD(0,∞) is part of our assumptions, local log-Sobolev inequalities hold. So we
can use local Poincaré and the reverse local Poincaré inequalities. To use them, suppose
further that 0 < ε ≤ f ≤ 1 then by the reverse Poincaré inequality
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Γ(Psf)

Psf
≤ 1

s
[Ps(f log f)− Psf logPsf ]

But 1 ≥ f ≤ ε means that f log f ≥ 0 and by positivity preserving property of Ps we
have Ps(f log f) < 0. We can use this in the last inequality to get a bound:

Γ(Psf)

Psf
≤ 1

s
[−Psf logPsf ] =

1

s

[
Psf log

1

Psf

]
≤ 1

s
[Psf log

(
1

ε

)
]

And by simply taking Psf to the other side we get a bound for our Carré du champ evaluated
in the semigroup:

Γ(Psf) ≤ 1

s
log

(
1

ε

)
(Psf)2

which by considering square roots can be rewritten as follows

√
Γ(Psf) ≤

√
1

s
log

(
1

ε

)
Psf

.
We can now use this bound,∫

Γ(Psf)

Psf
dµ =

∫ √
Γ(Psf)

√
Γ(Psf)

Psf
dµ ≤

√
1

s
log

(
1

ε

)∫ √
Γ(Psf)dµ (3)

But under our assumption CD(0,∞) the strong gradient bounds hold, so we have
√

Γ(Psf) ≤
Ps(
√

Γ(f)), plugging the bound in 3 gives∫
Γ(Psf)

Psf
dµ ≤

√
1

s
log

(
1

ε

)∫ √
Γ(f)dµ

To return to bounding in 2 we need to integrate with respect to s from 0 to t so we have∫
f log fdµ−

∫
Ptf logPtfdµ ≤

∫ t

0

√
1

s
log

(
1

ε

)∫ √
Γ(f)dµds (4)

For 5 we need the easier estimate:∫
f 2dµ−

∫
(Ptf)2dµ ≤ 2

√
2t

∫ √
Γ(f)dµ (3.4*)

As only the first term depends on s on the bound, we can explicitly calculate the integral∫ t
0

√
(1/s)ds = 2t1/2 so we get∫

f log fdµ−
∫
Ptf logPtfdµ ≤ 2

√
t log

(
1

ε

)∫ √
Γ(f)dµ (5)
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Observation 10. In order to use the exponential concentration property, we need to use
Lipschitz functions, therefore we can obtain the following lemma.

Lemma 3. Under Γ2 ≥ 0, −ψ = −
√

log
2

Ptf
is

1

2
√
t

- Lipschitz with respect to Γ.

Proof. Note that we know

Γ

(√
log

1

Ptf

)
=

1

4

1

log 1
Ptf

1

(Ptf)2
Γ(Ptf)

By the Log-sobolev inequality, we can bound

Γ

(√
log

1

Ptf

)
≤ −1

4

1

log 1
Ptf

1

Ptf

2

2t
Ptf logPtf

which by getting the sign inside the logarithm and cancelling the remaining terms is equiv-
alent to

Γ

(√
log

1

Ptf

)
≤ 1

4t

Now that we have a Lipschitz function, we can apply the hypothesis of exponential
concentration, namely:

µ

(
−ψ ≥

∫
−ψdµ+ r

)
= µ

(
ψ ≤

∫
ψdµ− r

)
≤ Ce−2cr

√
t

Now we aim to use properties of ψ, namely the following lemma

Lemma 4. The map u→
√

log
2

u
is convex for u ∈ (0, 1].

Proof. of the lemma: By differentiablility it is enough to show that the second derivative is
non-negative in (0, 1].

d

du

√
log

2

u
=

2 log 2
x
− 1

4x2(log 2
x
)3/2

So the map is convex if 2 log
2

x
− 1 ≥ 0 which happens if x <

2√
e

. As
2√
e
> 1, we get

that u→
√

log
2

u
is convex for u ∈ (0, 1].

By Jensen’s inequality, as we know by the lemma that the function is convex,√
log

2∫
fdµ

=

√
log

2∫
Ptfdµ

≤
∫
ψdµ
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And so we can bound,

µ

(
ψ ≤

√
log

2∫
fdµ

− r

)
≤ µ

(
ψ ≤

∫
ψdµ− r

)
≤ Ce−2cr

√
t

Claim 1. Let 0 ≤ r ≤

√
1

2
log

2∫
fdµ

If it holds that

µ

(
ψ ≤

√
log

2∫
fdµ

− r

)
≤ Ce−2cr

√
t

then

µ

(
Ptf ≥

√
2

∫
fdµer

2

)
≤ Ce−2cr

√
t

Proof of claim. As we do not use specific properties of Ptf and

∫
fdµ, and the prove is only

to work with the inequalities, we can write for easier understanding y := Ptf and x =

∫
fdµ,

so our hypothesis are√
log

2

y
≤
√

log
2

x
− r and also 0 ≤ r ≤

√
1

2
log

2

x
(6)

and our aim is to conclude that
y ≥
√

2xer
2

(7)

Observe that

0 ≤ (r − 1

2

√
log

2

x
)2 = r2 − r log

2

x
+

1

4
log

2

x

which by adding and substracting
1

2
log

2

x
yields

1

2
log

2

x
− r2 ≤

(√
log

2

x
− r

)2

(8)

As our hypothesis ensures the lower bound is positive so we can consider square roots on
both sides and get √

1

2
log

2

x
− r2 ≤

√
log

2

x
− r
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To prove the claim, as we have sets for which the inequalities hold, it is enough to show that
the hypothesis is necessary for the result, meaning that in order for 7 to hold we must have
that 6 holds. So 7 holds if and only if

log
2

y
≤ 1

2
log

2

x
− r2

so by using 8 we have √
log

2

y
≤
√

log
2

x
− r

This means that whenever 7 holds 6 also holds. So by returning to our original problem we
have

µ

(
Ptf ≥

√
2

∫
fdµer

2

)
≤ µ

(
ψ ≤

√
log

2∫
fdµ

− r

)
≤ Ce−2cr

√
t (9)

For 5 we need not to bound with the exponential of course, but with the concentration
function so we have

µ

(
Ptf ≥

√
2

∫
fdµer

2/4t

)
≤ αµ(r) (3.8*)

Returning to our original problem, suppose further that 0 < δ ≤ 1 is such that δ ≥√
2

∫
fdµer

2

then we can use it to bound one of the terms in the Poincaré inequality,

namely, ∫
Ptf log

1

Ptf
dµ ≥ log

1

δ

∫
{Pt≤δ}

Ptfdµ =

(∫
fdµ−

∫
{Ptf>δ}

Ptfdµ

)
log

1

δ

where the first inequality comes from considering the integral over a subset and the
equality by writing {Ptf > δ} = X \ {Ptf ≤ δ} and using invariance.
As ε ≤ f ≤ 1 by conservativeness ε ≤ Ptf ≤ 1, meaning that −Ptf ≥ −1. So we can bound
the last term as follows∫

Ptf log
1

Ptf
dµ ≥

(∫
fdµ−

∫
{Ptf>δ}

1dµ

)
log

1

δ
≥
(∫

fdµ− Ce−2cr
√
t

)
log

1

δ
(10)

where of course the last inequality comes from applying 9

5.0.1 KEY APPROXIMATION

Here we arrive to the core of the proof, until now even though a lot of inequalities and claims
have been proved we haven’t seen how this connects to isoperimetry. This step, fundamental
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to our analysis, shows the true relation between functional inequalities and isoperimetry. As
we will see, if the functional inequality involves derivatives and we are able to approximate
indicator functions, we will be able to understand isoperimetric type inequalities in such
space.

5.0.2 Important assumption

In this section we adopt an additional assumption to the framework of Markov triples
(X,Γ, µ) then for every f ∈ D(E)√

Γ(f) = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

Notice that this is the case of Riemannian manifolds. This assumptions is restrictive but
it is good enough for our purposes because most (if not all) of our examples fulfill it. Note

that
√

Γ(f) is the pointwise Lipschitz constant of f at every x with respect to the absolute
value.
For our theory, it is fundamental to understand the expression Γ(1A) where A is some closed
set. Nevertheless as this function may not be in A or in D(E) we need to approximate it.
Let us attempt such approximation by putting

fε(x) = max

{
1− 1

ε
d(x,A), 0

}
So let us analyze such limits, meaning we aim to compute√

Γ(fε) = lim sup
d(x,y)→0

|fε(x)− fε(y)|
d(x, y)

Just to have everything written explicitly, this is the same as

√
Γ(fε) = lim sup

d(x,y)→0

∣∣∣∣max
{

1− 1
ε
d(x,A), 0

}
−max

{
1− 1

ε
d(y, A), 0

} ∣∣∣∣
d(x, y)

(11)

We solve this by analizing cases of x, meaning that we see the sets to which x belongs and
draw conclusions of the limit superior in each set.

Claim 2. √
Γ(fε) ≤

(
1

ε

)
1Aε\A

Proof of claim. The relevant cases are determined by the right hand side of the claim so we
can reduce our proof to x ∈ Aε \ A and it’s complement.

15



G.I. and Carre-du-Champ University of Toronto 2020

• If x ∈ A, as the limit superior is the infimum of the tail suprema, and the inner most
term has an absolute value, we now that 0 is a lower bound for the suprema. But
if x ∈ A and yn is a sequence such that yn ∈ A and d(yn, x) → 0 then we have
d(x,A) = 0 = d(yn, A) so the numerator on 11 is 0. So the lower bound is attained

and by the infimum property,
√

Γ(fε) = 0.

• If x 6∈ Aε then max

{
1− 1

ε
d(x,A), 0

}
= 0 and so the numerator in 11 is only depending

on y. So (by considering subsequences without loss of generality) we have two options,
yn ∈ Aε or y 6∈ Aε, but the limit superior is the infimum of sequential limits, and as the
latter produce 0 in the numerator, the lower bound 0 is achieved and this Γ(fε) = 0.

• If x ∈ Aε \ A then by using a sequence yn ∈ Aε \ A, equation 11 becomes

lim sup
d(x,y)→0

|1
ε
(d(x,A)− d(y, A))|

d(x, y)

But for every z ∈ A we have the trinagle inequality

d(x, z) ≤ d(x, y) + d(y, z)

so considering the infimum over all z ∈ A this becomes

d(x,A) ≤ d(x, y) + d(y, A)

which by reversing the roles of x and y gives

|d(x,A)− d(y, A)| ≤ d(x, y)

Using this we get √
Γ(fε) ≤ lim sup

d(x,y)→0

1

ε

d(x, y)

d(x, y)
=

1

ε

And the claim is proved.

But 1A may not be in the domain of Γ so we want to approximate what the value of√
Γ(1A) would be, recall that fε → 1A pointwise so let us write 1A = lim inf

ε→0
fε.∫ √

lim inf
ε→0

Γ(fε)dµ =

∫
lim sup
d(x,y)→0

lim inf
ε→0

|fε(x)− fε(y)|
d(x, y)

dµ

But as the superior limit is an infimum and the inferior limit is a supremum we can bound
this by the reversed limit and apply the claim, namely
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∫
lim inf
ε→0

√
Γ(fε)dµ ≤

∫
lim inf
ε→0

lim sup
d(x,y)→0

|fε(x)− fε(y)|
d(x, y)

dµ ≤
∫

lim inf
ε→0

1

ε
1Aε\Adµ

Now naturally in the last term we use Fatou’s lemma and get

∫
lim inf
ε→0

√
Γ(fε)dµ ≤ lim inf

ε→0

1

ε

∫
1Aε\Adµ = lim inf

ε→0

1

ε
(µ(Aε)− µ(A)) = µ+(A)

Observation 11. This bound is fundamental to our analysis. It is the connection between
isoperimetric type inequalities and Markov semigroups.

Now we are almost finished, we need to organize all the results and do a suitable parameter
choice.

Summary 1. We first proved, which says:∫
f log fdµ+

∫
Ptf log

1

Ptf
dµ ≤ 2

√
t log

(
1

ε

)∫ √
Γ(f)dµ

Then we showed that if δ and r satisfy some conditions, we have 10 for f ∈ A(∫
fdµ− Ce−2cr

√
t

)
log

1

δ
≤
∫
Ptf log

1

Ptf
dµ

and we then showed ∫ √
Γ(1A)dµ ≤ µ+(A)

Now notice that ε ≤ f ≤ 1 directly implies that

−ε log
1

ε
≤
∫
f log fdµ

Now we can put all of this bounds together, meaning that both terms in the left of 5 are
bounded from below and the last term on the right is bounded from above so we get

−ε log
1

ε
+
(
µ(A)− Ce−2cr

√
t
)

log
1

δ
≤ 2

√
t log

(
1

ε

)
µ+(A) (12)

Furthermore, as 0 < ε < 1 we know (1− ε)µ(A) ≤ µ(A) so we have

−ε log
1

ε
+
(

(1− ε)µ(A)− Ce−2cr
√
t
)

log
1

δ
≤ 2

√
t log

(
1

ε

)
µ+(A) (13)
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5.0.3 Parameter choice

Now we can choose δ, r, ε as long as they satisfy the conditions in the lemmata.
Let us pick

• ε = µ(A)2

• r2 =
1

4
log

1

µ(A)
=

1

8
log

1

ε

• 0 <
√

2µ(A)1/4 ≤ δ ≤ 2µ(A)1/4.
But to ensure that δ is smaller than 1 we need 2µ(A)1/4 ≤ 1 i.e. µ(A) ≤ 16.

Let us first verify that this choice is valid in the sense that δ, r, ε meet their conditions.
For ε we just need 0 < ε ≤ 1 which holds trivially as µ(X) = 1.

Our condition for r is that 0 ≤ r ≤

√
1

2
log

2∫
fdµ

=

√
1

2
log

2

µ(A)
but

1

4
log

1

µ(A)
≤

1

2
log

2

µ(A)
so this one also holds.

For δ we required δ ≥

√
2

∫
fdµer

2

=
√

2µ(A)e(1/4) log
1

µ(A) =
√

2µ(A)
1

µ(A)1/4
=
√

2µ(A)1/4

And so every condition is satisfied and we can plug in this values in 13 and we get

−2µ(A)2 log
1

µ(A)
+ log

1

δ

[
(1− µ(A)2)µ(A)− Ce−2cr

√
t
]
≤ 4
√

2r
√
tµ(A)+

And δ ≤ 2µ(A)1/4 implies log
1

δ
≥ 1

4
log

1

16µ(A)
so we can further lower bound our term

and get

−2µ(A)2 log
1

µ(A)
+

1

4
log

1

16µ(A)

[
(1− µ(A)2)µ(A)− Ce−2cr

√
t
]
≤ 4
√

2r
√
tµ(A)+

But now as µ(A)2 <
1

2
we have

−2µ(A)2 log
1

µ(A)
+

1

4
log

1

16µ(A)

[
µ(A)

2
− Ce−2cr

√
t

]
≤ 4
√

2r
√
tµ(A)+ (14)

Similarly, for 5 we have

µ(A)−
(

2µ(A) +
r√
2t

)2

− αµ(r) (3.14*)

And finally we choose t such that r
√
t =

1

2c
log

4C

µ(A)
and obtain
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−2µ(A)2 log
1

µ(A)
+

1

16
log

1

16µ(A)
µ(A) ≤ 2

√
2 log

(
4C

µ(A)

)
µ+(A)

From which we obtain that there exists c′ such that if 0 < µ(A) < c′ we have

c′µ(A) ≤ µ+(A)

.
So we have proved that if x = µ(A) we have

c′x ≤ Iµ(x)

Proposition 1. (At most linear growth of the isoperimetric profile)
For the isoperimetric profile Iµ, if Riccψ ≥ 0 we have

Iµ(x)

x
is a non-increasing function of x

Now if
Iµ(x)

x
is non-increasing, suppose that x > 1− x then

c′ ≤ Iµ(x)

x
≤ Iµ(x)

1− x
So finally we arrive to

c′min{x, 1− x} ≤ Iµ(x)

This concludes the proof of theorem 4 as for the case 1− x > x we just reverse the roles.
We remark that almost the same proof works (by changing the exponential for α and picking
suitable t) to prove theorem 5.
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