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Why?

General relativity has been around for quite a bit and optimal transport is mathematical
theory of fast development in the last couple of decades. Very recently a couple of papers
[6] and [8] have been addressing the question of doing optimal transport in spacetime. The
very first question the reader must be thinking is why?.

e Why are we suddenly looking at general relativity through the eyes of optimal trans-
portation theory?

e Why do we expect this technique to have any success?
e What kind of things do we expect to obtain from this approach?

e What would be the goal?

Here’s why

e There have been recent developments [3], [5], [7] on understanding the underlying
geometry of a manifold through optimal transport. Optimal transport has shown
successful to describe geometry from a coordinate-free analytic perspective. Further,
these developments have generalized the concept of Ricci curvature to (non-smooth)
metric measure spaces. Einstein’s equation determines the geometry of spacetime
through the Ricci tensor, so if we can understand the Ricci tensor and more general
versions of it, we can get insights on connections between physical theories that could
have been overlooked by the geometric tools.

e Optimal transport has been successful in generalizing concepts for Riemannian mani-
folds and describing hidden connections, one expects the same to happen in Lorentzian
manifolds.



e There is more than one way to look at a physics law, if we can describe them in
another way, maybe they will hint connections. We expect optimal transport to give
us reinterpretations of physical laws in general relativity that could enlighten new ideas.

e Understand some ideas from general relativity through the eyes of optimal mass trans-
portation. The second law of thermodynamics can be understood in terms of optimal
transportation, what else can be understood in this way?

In [4] they summarize the general idea of casualty between probability measures as follows:

FEach infinitesimal part of the probability distribution should travel along a future-directed
causal curve.

So the idea is to develop a mathematical model of optimal transport in Lorentzian manifolds.

Key Idea

The second law of thermodynamics states that the total entropy of an isolated system never
decreases, this can be interpreted as the gasses having a preferred direction in time (the
direction is the one minimizing entropy as time increases). Optimal transport has shown to
be efficient to encompass that idea. General relativity deals with a preferred direction in
time ( + or — depending the convention), so optimal transport could help to reformulate
the theory.

Structure of this report

Since we want to develop the ideas of optimal transport theory, I will have 2 different types
of objects through this report:

1. Usual Optimal Transport objects (denoted U.O.T. at the end)
2. Their general relativity counterparts.

So I will write:

Theorem U.O.T. To describe a theorem in usual optimal transport

and without the term U.O.T. to describe the new relativistic setting.

In this report, the idea is to understand the main theorems and proofs on [6]
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Introduction to optimal transport

1.1 What is Optimal Transport?

In this section I make a small survey through some topics of optimal transportation, this
is done for the unfamiliar reader to get some sense on the topic before we deal into details.
Details and more specfic formulations will be addressed in subsequent sections. This
is a short review of some relevant ideas.

In 1781, french mathematician Gaspard Monge raised a problem that would intrigue the
world of mathematics:

Given two subsets U,V C R3with the same volume, find a volume preserving map between

them, such that it minimizes some cost fized function c(x,y) .

Little did everyone know this 'apparently easy’ formulation would lead to centuries of

work for many great scientists from a wide variety of backgrounds.
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1.2 Monge’s Problem

The before mentioned problem can be formulated in terms of measure spaces:
For measure spaces, (X, Sy, u) and (Y, Sy, rv) we aim to find:

inf {/ c(:E,Tx)d,u},
Typ=v X

Where Ty = v denotes that 7' is in fact what we will call a transport function: a push
forward from p to v. This means that for any set A in Sy, one has

T:X =Y yuT(A4)=uvA).

By this last equation one can use the change of variable formula for measures to formulate

the problem in the space Y in terms of the inverse transport function 7!, but in general
this makes no difference.
The most interesting part of such problem is that even though it’s simple formulation it
turned out not to be so easy to solve. Almost 200 years passed without significant break-
throughs to Monge problem until V.N. Sudakov was able to find and prove existence con-
ditions for the mapping 7. Why? Mainly because the condition defining 7' is highly
non-linear. Meaning that tools from linear analysis would not provide solutions.

2 Kantorovich’s Problem

The real breakthrough came in the late twentieth century, when Leonid Kantorovich realized
that he could formulate a different problem, easier to analyze but very related to the one of

Monge.
inf c(x,y)dy ¢.
vEL (1,v) { /X><Y (=.9) 7}

Where I'(p,v) = {y € Mi(X xY,95) : m,(y) = p, my(y) = v}
Here, M; denotes the set of all probability measures in the product space X x Y and m,
denotes the projection of the measure in the first coordinate.

How are these problems related? It turns out that Kantorovich’s problem is a relaxation
of Monge’s.

Theorem U.O.T. Kantorovich’s problem is a true relaxation of Monge’s.

Being a true relaxation of a problem means that whenever you have an element in
the first problem, you get an element in the second problem; therefore the infimum on the
second one must be smaller.

Proof. Let T such that T = v for every set A in the product o-algebra define
yr(A) = p({x € X : (x,Tx) € A})
Then ~vr € I'(p, v).



2.1 Convergence of measures and topologies in the space of mea-
sures

The breakthrough by Kantorovich relies on being able to put Monge’s in a more manageable
setting; namely, the space of probability measures on the product space. By this observation
it is now obvious that we need to use the fundamental properties of the space of probability
measures.

Now the problem has changed into analyzing how measures interact. We need to understand
how measures interact with each other.

Theorem U.O.T. The set of probability measures inherits properties like completeness and
compactness from the underlying metric space.

This is a very well known result and by using the variation norm allows us to use Riesz’s
theorem to identify the dual space of the continuous functions of compact support with the
set of positive Radon measures, which is a necessary condition to understand Kantorovich’s
Duality formula (next section).

While the second distance is highly related to iso-perimetric type inequalities which is of
course of great interest to us. So for a metric space (X,d), p € [1,00)and two probability
measures 4, v on X with finite order p we define the Wasserstein distance between p and v:

W —( inf d(z.y)Pdy b )
p(l,[,7l/) (’YG{—‘I%%V){\/XXX (l’,y) 7})

It is evident how this definition arises in the context of optimal transport, but the next
result may appear utterly surprising:

Theorem U.O.T. The Wasserstein distance metrizes weak convergence of probability mea-
sures.

2.2 Kantorovich’s Duality formula

Why is the Kantorovich problem understood to be ’easier’ in some way to the one by Monge?
Mainly because it was nice enough to give conditions for solutions.

Theorem U.O.T. Let X and Y compact spaces.

Let 1 be a probability measure on X and v a probability measure on Y .

Let c: X XY — RU{oc} be non-negative.

Let T'(p, v) be the set of Borel measures on X X Y such that their projections on X and'Y
are |1 and v respectively

Let @, be the set of measurable functions (¢,1) € Ly(u) x Li(v) such that

o(z) +(y) < cz,y)



U-a.e. i x Y V-a.e. iny.

inf {/C(:my)dw} = sup {/¢dﬂ+/¢d’/}
wel(p,v) (ph)eD,

Moreover, Kantorovich’s problem admits a minimizer

Then

2.3 Real case and the quadratic cost function

a2
In the case were the space X = R", and the cost function: ¢(z,y) = || 5 yl| '

Recall the definition of the sub-differential 0¢:
y € (x) & ¥z € RUG(2) > o) + {y, 2 — )

Theorem U.O.T. Optimal plans are supported in subdifferentials Let i and v be probability
measures and m € I'(u,v), then if w is optimal for ¢ it must be supported in the subdifferential
of a proper lower semi-continuous convex function.

Theorem U.O.T. Moreover if i doesn’t give mass to small sets (say a.c. with respect to
Lebesgue measure) then there exists a convex function ¢ on R™ such that

Voypu=v

This result and the fact that Kantorovich’s Duality formula is proved by means of convex
analysis advices us of the real need of understanding forms of convexity to solve transport
problems.

2.4 Time dependent formulation, displacement interpolation and
displacement of convexity

We have defined the transport problem in a time independent setting. To analyze iso-
perimetric type inequalities we will need to reformulate the problem, so now for each x we
obtain a trajectory T;(z) where t varies from 0 to 1 and of course it has associated a cost of
displacement C'(Ty(x)).

We need regularity in the trajectories so it is assumed that ¢ — Ty(z) is continuous and
piecewise C! for p a.e. on x. So naturally the time dependent problem is formulated:

inf {/ C(Ty(x))dp; Ty = Id, Thypo = I/}
X

, where Id(x) = z is just the identity operator. For probability measures p and v on R" that
do not give mass to small sets, the collection of measures given by



[ vl = [tld + (1 = 1) Vlyp

is called the displacement interpolation of u into v, it can be seen as the most natural linear
interpolation (the geodesic).

A subset of the absolutely continuous (w.r.t Lebesgue) measures on R" is said to be dis-
plament convex if whenever p and v are in the set [y, v]; is a.c. and lies in the set for all
t € ]0.1].

Meaning S C P,.(R") is displacement convex iff u,v € S = [u,v]; € S Vt € [0, 1] Similarly
a functional F' defined on a displacement convex set is said to be displacement convex if
whenever p; = [u, V] is a displacement interpolation, the function ¢ — F(p;) is convex.

Theorem U.O.T. Criteria for displacement convexity Let S be a displacement convex subset
of Poe(R™). Let U : S — RU {0} then if

U0)=0and r —r"U(r ")

is convex and non-increasing for positive r then U is displacement convex on S.

2.5 Conclusions and key ideas from optimal transport

We have two measures, p and v and we want to transport g onto v. We want to find a
function 7" such that T’ = v and minimizes the total cost.

e There might not be such T transporting p onto v. (We cannot split mass, so our
probabilities must be nice and not give mass to small sets)

e [f the cost function ¢ does not satisfy nice properties, there is no hope for optimizers.
(We require ¢ to be convex and lower semi-continuous so that it is indeed a cost
function)

e There could be more than one optimizer
e The (infinite) linear problem posed by Kantorovich’s formula is much easier to solve

e The interpolation on time will have a linear structure between transportation maps
but not between measures

e Optimal transference plans are supported in subgradients of convex functions because
such sets preserve ”cyclical-monotoniciy”, a condition necessary for optimality that
states that if we permute the points and use the same measure, we would increase the
total cost of transport.

Analyzing the structure of the space of probabilities space P (M) will lead to conclusions
on M. This is the main idea behind optimal transport.
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3 Framework for optimal transport in general relativ-
ity

We say (M", g) is a spacetime if it is a smooth, connected, Hausdorff, time-oriented Lorentzian
manifold with signature (4, —, —, -+, —).

Here the signature convention has been done opposite to the one we used throughout the
lectures.

So we will call a tangent vector v € T, M timelike if v%gq,v° > 0, spacelike if v%gv° < 0 and
null in the remaining case. We say that a vector is causal if it non-space-like. The time ori-
entation determines if the vector is future or past-directed according to the time-orientation
of the manifold.

In order to work our way to optimal transport, we have to set our minds on what it is that we
want to minimize. So we must determine our cost function. As shown in the introduction, a
very natural cost function in the Euclidean case is the quadratic distance, nevertheless now
we must recognize two fundamental ideas:

e Not all points are accesible from each other.
e Nature follows the principle of least action (minimizing Lagrangians)

Definition 3.1. (Convex Lagrangian and action of a curve)
For 0 < ¢ < 1, we define the ¢-Lagrangian on the tangent bundle of M is given by

a b)q/2
_ (W ga(2)0”) if v is future-directed
L(v,x;q) = q

00 otherwise

For a curve o € C'([0, 1], M) continuous curves mapping [0, 1] to the manifold M, we define
it’s action:

A@®:ALW@J®M%

So as the convex Lagrangian will be involved in a process of minimization, only future-
directed curvves will be relevant. Now we formulate the formal version of a principle of least
action.

Definition 3.2. (¢-distance) We define the ¢-distance between two points on the manifold
x,y as the total minimal action required from going to y from x along a future-directed
curve:

U(z,y;q) = —inf{A(0,q) : 0 € C",0(0) = x,0(1) = y}



And define also ¢(z,y) = {(z,y;1), ¢ is called the time-separation function.
If ¢ < 1 and o achieves the infimum we call the curve an affinely-parametrized proper-time
maximizing geodesic segment.

Observation 3.1. Another way to define ¢(z, ) is to notice that the quantity (¢¢(x,y; q))"?
does not depend on q.

This fact is surprising because at first look ¢(z,y; ¢q) resembles a g-norm, nevertheless when
we take the infimum over all such curves, I still do not have a good argument for it.

Note that the lagrangian L is infinite only if y does not belong to the causal future of x.
So we get a characterization of causality in terms of /.

{(z,y) > 0 if and only if y lies in the causal future of z

And similarly without the equality

l(x,y) > 0 if and only if y lies in the chronological future of

One can take this as definitions and continue from there.
Note that one can easily check that ¢(x,y) > {(z, z) +{(y, z) by just concatenating the curve
joining x and z and the one joining z and y.

Definition 3.3. (Causal future and causal past) The set J(z) = {z : {(z, z) > 0} is called
the causal future of x.
The set J*(y) = {z: £(z,y) > 0} is called the causal past of y.

Definition 3.4. (Global Hyperbolicity) A spacetime (M", g) is said to be globally hyperbolic
if

e There are no closed causal curves
o JT(z)NJ (y) is compact.

Assumption 3.1. (Global hyperbolicity) From now on we will assume (M", g) is globally
hyperbolic, this is to ensure that we can achieve minimizers in the optimal transport problem.

Let P(M) be the set of Borel-probability measures on M.
Let P.(M) = {u € P(M) : supp(p) is compact} where supp(p) = {x € M : u(N,) > 0}
where N, is any open neighborhood of .
In optimal transport, most properties of the underlying metric space (X, d) are inherited by
the probabilities space if we give it the correct norm:

Definition 3.5. (Wasserstein distance) In a metric space (X, d) we define de p-th Wasser-
stein distance between p and v as the minimal cost induced by the Kantorovich problem,
namely:



wyn) = (e [ XXd(x,y>pdw<x7y>)l/p

mnell(p,v)

where again II(p, v) is the set of probability measures on X x X having as projections into
coordinates p and v, i.e. m(A x X) = p(A) and 7(X x B) = v(B). Such probabilities are
also called couplings between p and v

Definition 3.6. (¢-Lorentz (Wasserstein) distance in GR) If (M™", g) is a globally hyperbolic
spacetime as before, the ¢-Lorentz distance between p,v € P(M) is defined as

1/q
)= sup / U, y)tdn (2, y)
el (u,v) J Mx M

where II, is the set of all probability measures on M x M having as projections into coor-
dinates p and v with supp(w) C €710, oc]

Observation 3.2. Note how the added restriction on the support of m enforces that the
only points on which we can have positive measure are the ones on which we can travel. The
condition

supp(m) € €710, 00|

is the only real diference between the definitions, the sup and inf are only different because
of the sign convention.

One interprets this quantity as follows: We look at the events that p represents (those
that are plausible under i) and we travel to the events represented by v. ¢; is the maximum
expected time it would take us.

We want to show that this quantity is in fact like a distance, and hence we will later prove
that it satisfies a reverse triangle inequality in section 4.3:

gl](ﬂ’a V) 2 Eq(:uvly) + gl](’% V)

Note that to avoid indeterminations, we settle the convention: co — oo = —o00

4 The idea of ¢g-geodesics

We want to give P(M) a good structure, we already know the concept of geodesic in M, so
we must have an idea of the concept in P(M), for this goal we extend the idea of straight
lines to P(M).

Definition 4.1. (¢-Geodesics on P(M)) A collection of probability measures {1 }eepoq is
called a ¢-geodesic if whenever ¢ > s,

Eq(us, :ut) = (t - s)gq(ﬁbO,Ml)
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This is interpreted as the probability measures being in the correct path, minimizing up
to every time as in a dynamical programming principle.

We know aim to understand g-geodesics. Do they exist? Are they unique? Do they inherit
properties from endpoints?

One of the most important concepts in Riemannian geometry is the cut locus, the set of
points for which we stop having a unique minimizing geodesic, the set where the exponential
function stops being injective. In some sense, if we want to use either the exponential
function or minimizing geodesiccs we must stay out of the cut locus, let us define a similar
concept.

Definition 4.2. (Singular set of ¢)

In our globally hyperbolic spacetime (M", g) we say (z,y) € sing(f) unless ¢(z,y) > 0 and
x,y lie in the relative interior of some affinely parametrized proper-time maximizing geodesic
segment. (See definition 3.2)

Intuitively, the only way for (z,y) not to be in the singular set is if we can travel from z
to y and also there is a proper-time optimal way to do it.
Recall that a function f is called lower semicontinous if

liminf f(z) > f(xo)

T—T0

and it is called upper semi-continuous if

limsup f(z) < f(xo)

T—T0

It is clear form the definition of the g-Lorentz distance (3.6) that our cost function for
optimal transport is going to be ¢(x,y). Hence, as addressed in the introduction, we must
know continuity /semi-continuity /convexity /regularity properties of ¢ to even hope to have
optimal transportation.

4.1 Properties of /

Proposition 4.1. (Continuity and regularity properties of £) In our globally hyperbolic space-
time (M", g)

e [ is upper-semicontinuous of M x M
e ( is continuous on {[0, 0]
e [ is smooth outside of sing(l)

Sketch of proof. Note that the first two statements follow directly if we know continuity of
d: (z,y) — max{l(x,y),0}. Let us give a sketch, following [2], assume by contradiction
that it is not upper-semicontinuous at (p, ¢), then there exists a sequence (p,, ¢,) such that
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pn — p and g, — ¢ but the distance between p,, and ¢, is always € bigger than the distance
between p and ¢, for some fixed ¢ > 0. By definition of d, there exists a future-directed
curve o, such that L(o},0,,1) > d(p,,q.) + €/2. But {o,} can be shown to have a limiting
future directed curve o which will join p and ¢, computing the value of L(o’,0,1) gives the
contradiction.

The last point of the proposition is more difficult and will be discussed later.

Proposition 4.2. Unique optimal midpoints outside the singular set.
Let (z,y) € M x M \ sing({), then for 0 < s <1 there exists a unique zs € M such that

Uz, 2) = sl(z,y), Uzs,y) = (1 = s)l(z,y)
Further, z; depends smoothly on the triple (z,y,s)

Proof. 1f (x,y) are not in the singular set, there is a proper-time minimizing geodesic segment
o, such that x and y lie in the relative interior of ¢ and y is in the chronological future of
x (l(xz,y) > 0). Let z4(x,y) be the unique proper-time parametrized action-minimizing
geodesic joining x and y, so zs(z,y) = exp,(sv) for some x € T, M. The fact that z, is
a segment of a "geodesic” means it will satisfy the desired equation while the smoothness
follows from the fact that outside the singular set the exponential acts diffeomorphically. [

So far we obtained a function z4(z,y) that is smooth and unique as long as (z,y) &
sing(l), we would like to extend this definition to all the places relevant to us, namely to
the set {¢ > 0}. The problem is that in the singular set we have many options as there
is no uniqueness of proper-time action-minimizing geodesics, meaning that the exponential
function fails to be injective.

Fact 4.1. There is an extension of zs from M x M \ sing(f) to {¢{ > 0} that remains
measurable.

I call this a fact so I can avoid the proof as invoking the Kuratowski-Ryll-Nardzewski
measurable selection theorem seems a little strong to not write and explain how it works. It
is actually not the most difficult subject and a proof can be found in Bogachev’s classical
book on measure theory [1] but it is lengthy and distracting from the point of this report.

Definition 4.3. (Midpoint sets)
For our globally hyperbolic spacetime (M", g), given a set S C M x M and s € [0,1], if
l(z,y) >0 let

Zs(x,y) ={z€ M : l(x,2) = sl(z,y),l(z,y) = (1 —s)l(z,y)}

z(8)= |J %y

(z,y)eS
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z(5)= | 2.(9)

s€[0,1]

That is Zs(z,y) are all the midpoints as in the last propositio between = and y while Z(5)
are all the midpoints of a set, finally Z(.S) are all points in the way from z to y.
In any other case let us define the midpoint sets to be empty.

Fact 4.2. If S is precompact (it’s closure is compact) so is Z(S).
If S is compact so are Z4(S) and Z(S)

Recall also the concept of gluing of measures: If we have py, po, i3 measures in M a
gluing 7 is a measure on M X M x M such that the projection into the coordinates i, j is a
coupling of (p;, ptj). Gluing is the opposite concept to the desintegration theorem.
Disintegration is a more general version of Fubini’s theorem, it can alse be thought of as
Bayes theorem. The idea is to "break” a probability measure into 2, and integrate first with
respect to one variable and after with respect to another.

Theorem U.O.T. (Disintegration Theorem)

Let (Qq, 1) and (a, po) be probability spaces. Assume that Qo is a complete, separable
metric space. Suppose we have a function g : Qo — 4 and suppose that gupn = pe. Let
P := (g,1d)y, then there exists a collection of probability measures P, such that for any
bounded measurable functions h : Q1 - R, f: Qs = R

[ smtaann = [ ( [ 1620 ) e

The idea of the desintegration theorem is that we can break integration with respect to
{2 on integrating first with respect to P, and then du(x). A reader familiar with probability
or statistics recognizes P, as the regular conditional probability given .
We want to look at the probability of an event involving (z,y), we can break it into looking
at x fixed and varying y and then summing over all possible values of x. Now that we have
some knowledge on the midpoints we can prove the triangle inequality mentioned in the
introduction.

Proposition 4.3. ( {, reverse triangle inequality)
If0 < g <1, let py, po, pg € P(M) with Cy(pa, ps) # —o00 # Ly(p1, po) then

Colps ps) = Lg(pan, pr2) + Lg(pra; pis)
Proposition 4.4. (FEquality cases) In the context of the above proposition:

o 11(Xy) =1 = pu3(X3), u2(Z(X1 x X3) # 1, and the right hand-side is finte imply that
the inequality is strict.
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o if U,(u1, pu3) is finite and equality holds, there is a q.optimal gluing m € P(M x M x M
such that every (z,y, z) in supp(m) is an s-midpoint:

U, z) = st(z,y), £(2,y) = (1 = s)l(z,y)
for s = Ly(p, p2) /(s p13)-

Proof. Assume that the terms on the right hand-side are not —oo because if so, the inequality
is trivial. Given ¢ > 0 by definition of ¢, as the supremum of total costs, there exist
T2 € Te(pi1, pto) and w3 € T, (2, p13) that are nearly optimal in the sense that

1/q
(/ f(l’,y)qdﬁm) > min{{y(pu1, pi2) — €,1/€}
MxM

1/q
([ twwransa) = wingey o i) - .1/}
M x M

Note that ¢,(u;, 11;) could potentially be very large, that’s why we restrict to being bigger than
the minimum with1/e. Note that this condition doesn’t make a difference when £,(u;, 1) is
finite because there exists € such that 1/e surpasses that value and we keep the definition of
the supremum as always. By the desintegration theorem, let us write:

dmyo(2,y) = (dmyo(2))dpz(y), dmas(x, y) = (dma () dpa(y)

Meaning that we desintegrate both with respect to ps, and I have written a parenthesis just
evoke the fact that we integrate inside with respect to x and then with respect to y, that’s
why ¥ is a paremeter in ﬁ{z.

We proceed to glue, recall that by duality, it is enough for defining a measure to define is
integration against continuous bounded functions, so let us define 7 € P(M x M x) by

/MXMXM¢(JC,Z/,Z)d7r(x,y,z) ::/]w<A4XM¢($,y,Z)d’]]'?f72(x)d7fg73(z)) dpis(y)

Note that by definition of 7 we obtain that it’s projection onto (1, 3) is a coupling of p, i3
that we call m 3
As 7y 3 is a coupling of p4, us, by definition of ¢, we have:

Co(ps ps) 2 (/Mng(x’Z)QdWL?’(x,Z))l/q _ </Mfo(il7,Z)qd7T(x,y, Z))1/q

Where in the equality we replaced w3 by m because the function does not depend on the
middle variable y and us is a probability measure.
We know apply the reverse triangle inequality for ¢, so we get
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) > ( f, (e + 10 Z>>qdw<x,y,z>>l/q

But because 0 < ¢ < 1 we can use Minkowski’s inequality (reversed)

But because of how we glued, as the first integral does not depend on z and the second one
on x we have:

1/q 1/q
Cy(pn, pa) > (/ f(fﬁjy)qdﬂl,z) + (/ f(ff,y)qdﬂz,:i)
MxM MxM

and finally we get:
Co(pn, pis) = min{l(p, p2) + Loz, pis) — 2€,1/€ — €}
Were the last term is obtained by simple cases:

e If both lower bounds in the hypothesis are obtained in the left side of the minimum,
the bound is trivial:

Colpn, pi2) — €+ Lo(pa, pis) — € = Lo, pia) + Ly (pra, pis) — 2e

e If one of the minimums is atained in the right handside and the other one in the left,
w.l.o.g. for the one on the left let us pu;, po, then the bound is

gf](:ulv:uQ) _6+1/€72 1/6_6
since ,(p1, p12) > 0 as it is not —oo.

e Both lower bounds are attained in the right handside term, our lower bound is: 2/e
which is bigger than 1/e — € as long as € < 1.

Finishing the proof of the first part. The other parts follow from the structure of middle
points sets Zs(S) which are able to mantain compactness and precompactness. But the
idea is that to get equality we must have equality in all steps and that is the definition of

Z(5) 0
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4.2 Existence of g-geodesics

We now address the concept of existence of g-geodesics as defined in definition 4.1.

Theorem 4.1. (Interpolation theorem) Let ji,v € P(M) and suppose that £, is attained by
some 7 € I(p,v) such that £ > 0 a.e. with respect to .

The collection of probabilities given by p, = Z,um defines a q-geodesic where Z, is the mea-
surable extension of zs given by fact 4.1

(Zs X Z¢)pm is Ly-optimal.

Uniqueness of the geodesic follows if m is the unique probability achieving {y(p,v) and p,v
are compactly supported with 7(sing(¢)) = 0.

Proof. If 7 attains £,(u,v), we use Z, to define 4 as in the hypothesis of the theorem, then
by definition of ¢, and definition of the push-forward:

Co(pts, ) = /f(fs(x,y)it(ﬂf,y))qdﬂ(%y) = (t—S)q/ﬁ(fﬂ,y)qdﬂ(%y)

Where the second equality is just by definition of Z, (recall Proposition 4.2). But the last
term is the value of ¢, by optimality of =
Now we use this lower bounds for (s,t) = (0,t1), (t1,%2), (f2, 1) and the fact that 0 < ¢ < 1
and we get

gQ(Mov :ut1> + ef](:utuutz) + gQ(/JJtznu’l) > ECI(:LL(b :LL1>

But the reverse triangle inequality gives the other inequality.
O

Exploring the properties for the Lorentz distance [, one of the main results of [6] is the
what we wrote in the last part of Proposition 4.1:

Definition 4.4. (Semi-convexity) Let g be a Riemannian metric on M, we say that a
function F': U — M, where U C M is open, is semi-convex if there exists a constant C' such
that

L Flespl(v) + Flexpd(—v)) — 2F(2)

v—0 |1)|%

>C

for every z € U.

Recall the definition of convexity in R, we compare the value of a function at a linearly
interpolated point to the linear interpolation of the values. In Riemannian manifolds we
must not use linear interpolations but we use the exponential function. We look at small
displacements on both directions along geodesics and compare those to the value of the
function while dividing by the size of the displacement. It looks like a two-sided Frechet-
derivative along geodesics.
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Theorem 4.2. (Smoothness of {)

The Lorentz-distance ¢ is smooth on the complement of the closed set sing({) and locally
Lipschitz and locally semi-convex on {¢ > 0}.

However, the superdifferential of £(-,y) is empty at x if {L(x,y) =0 if x # y.

If x = y the supergradients lie in {p € T, M|H(p;1) = 0} where H is the Hamiltonian,
defined similarly to the Lagrangian but for past-directed curves instead.

This result is fundamental to be able to talk about optimal transport functions in the
Monge problem and to try to obtain regularity or conditions on the Monge-Ampere equation.
The caveat is that there is no remedy for the singular set, in fact one can show that for
(x,y) € {l > 0} N sing(¢) semiconvexity fails. (Theorem 3.5 in [6]). Making optimal
transport problems in the cut locus completely infeasible.

Idea. The proof is quite technical but the main idea can be summarized as follows: Take
the Lorentzian parallel transport and define a variation of an action minimizinf geodesic as
the exponential of the Lorentzian parallel transport. Meaning that we do parallel transport
and then flow a little in a geodesic fashion, one compares the action of this new curve to the
original using Synge’s second variational formula. For details check [6] O]

As said before, the idea is to lift the structure of ¢ to ¢,, it turns out a lot of properties
can be lifted from ¢ to /.

Corollary 1. (Lifting the structure)

e Smoothness, Lipschitz continuity and semi-convexity are inherited by ¢, from ¢ in the
respective sets.

o (z,y) & sing(¢) implies that
2

—— (1 (x,y 0
oy (z,y) #
The second condition is known as ¢? being twisted, the twisting condition together with
locally bounded derivatives ensures the existence of solutions to the Monge problem. This
corollary means that we will optimally transport mass outside the singular set.

5 Kantorovich Duality

As mentioned in the introduction, the fast development of optimal transport is due to Kan-
torovich’s realization that the highly-non-linear problem posed by Monge could be realized
by an infinite dimensional linear problem. Hence, we aim to establish the same result in
globally hyperbolic spacetimes.

Here, the biggest difference appears, this difference will be discussed in the last section and
involves a new concept:
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Definition 5.1. (g-separation)
For 0 < ¢ < 1, we say pu,v € P.(M) are g-separated by = € II(u,v) and a lower-
semicontinuous function u : supp(p) — RU {oco} and v : supp(v) — R U {oo} if

1.

for all (z,y) € supp(u x v)

supp(p) C {(m,y) € supp(p X v) s u(z) +o(y) = p

{<x,y> € supp(u x v) : u(z) + v(y) =

we call S the set on the left hand-side of the last equation.
As stated in the introduction, in usual O.T. we have

Theorem U.O.T 1. (Kantorovich duality) Let X andY compact spaces.

Let o be a probability measure on X and v a probability measure on Y .

Let ¢ : X x Y — RU{oo} be non-negative.

Let T'(p, v) be the set of Borel measures on X X Y such that their projections on X and'Y
are |t and v respectively

Let ®. be the set of measurable functions (¢,v) € Ly(u) x Li(v) such that

o(x) +Y(y) < c(z,y)

U-a.e. 1N T Y V-a.e. iny.

weirrzﬁ,u) { /c(x,y)dﬂ} = (¢Zu£{)c{/¢du+/wdy}

Hence as we know the Lorentz distance acts like our cost function we expect a formula
like:

Then

by, v)?

Ve
. = (¢¢H€l§>ewq {/ gbd,u+/ wdu} (1)

where of course dividing by ¢ didn’t change the behaviour of the supremum (as it appears
also in @yq /.

Now, the problem here with this formula is that the infimum can easily be —oo because of
the condition of the Lagrangian on curves that are not future-directed, this is the reason
why the paper introduces the concept of g-separation.
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5.1 The Fenchel-Young transform and c-cyclically monotone sets

In this section two of the most important concepts in optimal transport are presented.

e The Fenchel-Young transform/Legendre transform/convex transform/ convex conju-
gate One of the main arguments in optimal transport is to be able to improve a dual
pair (¢, 1) to increase the dual cost (namely the supremum in Kantorovich’s formula)
remaining in the feasible set. The idea is to get the best possible c-concave function.

Definition 5.2. For a given function f : R" — R we define the Legendre transform,
or convex conjugate f* as follows:

fr(@) = sup {z -y — f(y)}

yeR”

It is clear by f* being a supremum that for every y € R*, the so-called Fenchel’s
inequality:
z-y < flz)+ [ (y)

Even though this formula looks trivial, it yields very non-trivial results, like Young’s
inequality. A more general definition defines f* in the topological dual of our original
space and replaces z - y by the dual pairing (y, x).

Definition 5.3. (c-transform) For a given function f : R" — R we define the c-
Legendre transform, or c-conjugate f¢ as follows:

f(x) = sup {c(z, y) — f(y)}
yEeR"™
Definition 5.4. (Restricted c-transform) For a given function f : R" — R we define
the restricted to Y, c-Legendre transform, or c-conjugate f¢ as follows:

fe(x) = sup{c(z,y) — f(y)}

yeY

The idea is to consider a pair of functions (¢, 1) € ®. and note that (¢°,1°) € &, with
improving cost by Fenchel’s inequality. This technique, crucial to finding maximizers in
Kantorovich’s formula is sometimes referred to as the double convexification trick.
For the context of Lorentzian manifolds that we are addressing, let us make a shorter
notation for the ¢?/g-convex conjugate:

— t/a
Vg 1=V
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e The second amazing concept from optimal transport is c-cyclically monotonocity. In-
tuitively, a set is c-cyclically monotone if there is no possible way to reorder points on
that set such that the total cost of those points is decreased.

Definition 5.5. A set S is called c-cyclically monotone if for any finite collection of
points in S, {(x;, y;)}i-, one has

Z c(zi,y;) < Z (i, Yoii))
i—1 i—1

for any permutation o of {1,..., N}.

This concept is fundamental to optimal transport as one can intuitively see that optimal
transference plans, are supported in c-cyclically monotone sets: If they were not, we
would choose a permutation of the points o and define a new plan @ = 7 + €l,47q —
€1,—_r4 this would decrease total cost, contradicting optimality of 7 for sufficiently small
€. What we did was we "changed” the measure only where we can decrease cost by
permuting. This argument is not rigorous, and should be understood as intuitive only.
It turns out, from convex analysis we know that gradients of convex functions are
c-cyclically monotone, this is the connection why optimal transport maps must be
gradients of convex functions (Brenier’s Theorem).

Armed with these two powerfull concepts of optimal transport, let us look into Kan-
torovich’s duality proposed in [6]

Theorem 5.1. (Duality under q-separation)
Again let 0 < ¢ < 1 If p,v € P.(M) are g-separated by the triple (7, u,v) then

1. (u,v) = (v1,u?) on supp(p X v).
2. S (as in definition 5.1) is compact and ¢?-cyclically monotone
3. (u,v) minimize equation 1 while m maximizes (7.

Proof. Let v? be the restricted to supp(v) ¢?/q-convex conjugate of v and similarly the one
for u and p. The supremum on v? is attained because we know that ¢ is upper semi-
continuous and so is —v, because v is lower-semi-contuinous by assumption of g-separation,
and we know that upper semicontinuous functions attain maximums on compact sets (and
supp(v) is compact as we assumed v € P.(M). The definition of g-separation implies that
u > v? by taking the supremum in the first bullet of 5.1. As X is also compact, so is S
as uppersemicontinous image of a compact set (our space is Hausdorff). By compactness
of S, let (z,y) € S, then y maximizes v?(z) meaning that v!(x) = ¢*(z,y)/q — v(y). But
S C {¢ > 0} implies that ¢(z,y) is finite, because y lies in the chronological future of z, but
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being in S means that u(z) = v¥(x). The second one is exactly the same.
Part 2. Let o be a permutation of the first N numbers, then for any {(x;,y;)}i<y we can
compute:

N

=3ty = Y uen) + ola)

=1

ZIZ’Z ‘|‘U ygz ZE fEuZJm

||M2

where the first equality is the definition of S , the second one because for the sum the order
does not matter and the inequality by the first condition of g-separation.
Part 3 is a direct consequence of the definition of S and the fact that m vanishes outside .5,
hence equation 1 is established.

m

The condition of g-separation seems a little strong, but the next proposition gives an
intuitive sufficient condition

Proposition 5.1. (Ezistence of q-separation) Let u,v € P.(M), if supp(uxv) C M\{¢ < 0}
then i and v are q-separated.

Proof. Because ¢ is continuous on {¢ > 0}, and supp(u X v) is compact, a minimizer exists
by usual optimal transport techniques (tightness of I which is too long to write). This
minimizer and the duality formula give the desired triple for ¢-separation.

m

6 Characterizing optimal maps and McCann’s theo-
rem in general relativity

The aim of this section is to understand how different the characterization of solutions for
Monge’s problem is in Lorentzian manifolds, before I state both theorems (Riemannian and
Lorentzian) we must have certain concepts. I won’t do the proofs of this section as they
require to many new concepts, but the ideas will be clear.

Proposition 6.1. (Continuous inverse of the exponential) Fiz 0 < q¢ < 1 and let ug, p; €
P.(M) be q-separated. Let X; be the support of p;. Let s € (0,1). There exists a map
W Zy(S) C M — S such that if ps lies on a q-geodesic, then Wypy attains £4(jio, f11)
Further, Z, o W = Id on Z4(S).

The proof of this proposition requires too many new concepts, but we can understand
that under ¢-separation we can invert the exponential function via the use of midpoints.
The continuous map W maps Z(S) into S € M x M so it has two components, namely we
write

W = (Us(2), Vi(2)
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where s is fixed in (0,1) and z is a midpoint.
For (u,v) as in 5.1, let us define some related functions

q
(ﬂ, U) == (1 — t)q(u O Ut — th% e} (Ut X [d),U)

Essentially, what this functio is doing is pushing g-interpolating between the inverse of the
exponential map and the flow along an optimal proper-time minimizing segment. Let us
first recall McCann’s interpolation theorem in usual optimal transport:

Theorem U.O.T 2. (McCann’s geodesic interpolation for Riemannian manifolds)

Let M be a smooth connected complete Riemannian manifold, with an associated volume. Let
w,v € Po(M), let c(x,y) = d(z,y) the geodesic distance on M. If p is absolutely continuous
with respect to the volume on M, the Kantorovich problem has a unique solution given by

m=(1d,T)gn
where T'(x) = exp,(—V ), where V¢ is the gradient of the convez function ¢.
Further; the collection ps = [sId + (1 — s)T)xp satisfies

W3 (s, i) = (s = )W (p, v)

where Wy is as in definition 3.5.
Theorem 6.1. (McCann’s interpolation under q-separation) Fix 0 < g < 1, if p,v € P*(M)
are q-separated, write X XY for the support of u X v, then the Kantorovich problem has a
unique solution given by

7= (1d,F)up
where F(z) = exp,(DH(Du,x;q), H is the Hamiltonian and D denotes differentiation.

Further, u is the restricted to supp(v) €?/q-convex conjugate of u.

Even though these Theorems look exactly alike, I have lied with notation. w is involved
in the derivative of H and the formula for u is significantly more complicated. Meaning
that just formulating F' is more complicated than T, due to the fact that ¢ involves the
introduction of g-interpolations. As in the last section.

Proof. Suppose that Fup = v, let us sketch why 7 is the maximizer of the Kantorovich
problem, the construction of F' ensures that

ti(x, F(x))

q
If we integrate this expression and use that F' pushes p onto v we obtain

= u(x) +u'(F(z))

%/ﬁq(x,y)dw(:c,y) = /ﬂ(af)d,u(:ﬂ) +/ﬂq(y)dy(y)

from which the reader can easily conclude by the duality condition proved in the last section.
O
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7 The strong energy condition and entropy convexity

In this last section we state one of the main theorems in [6] and relate it to concepts that we
already know in general relativity (finally!). This new characterizations are the reason why
this area is developing and the main goal of the treatment. Even though there is a usual
optimal transport analogue for this theorem (what I believe motivated McCann to develop
this paper) I will not present it here, as I want to give this theorem the importance for it’s
own.

Definition 7.1. (Entropy)
For a twice differentiable function V on M and pu € P*(M) with Radon-Nykodin derivative
p with respect to the volule dm = e’Vdvolg we define the entropy of u:

Bo() = [ pla)log(p(o)e Wdvol (o)

whenever this integral is well-defined. If it is not, define it to be —oo.
If V=0, it is called the Boltzmann-Shannon entropy.
For our described ¢-geodesics s, we write

e(s) == By (i)

Theorem 7.1. (Displacement of relative entropy)

Fiz 0 < ¢ < 1 and let V€ C*(M) on our globally hyperbolic spacetime. Let s € [0,1]
and define F as in Theorem 6.1, and p1s = Fyypo, if €(0) and e(1) are finite, then e(s) is
continuous and semiconvex on [0.1] and continuously differentiable on (0,1) with

/ DV, (o) Fy(x) — TrBs(x)dpo(z)

e(s) = /M TrBZ(x) + (Ricc + D*V) g,y (Fi(z), FL(x)duo(x)

where By(z) = Al (2)A; (z) where A, = DF,(x)

REMARK The derivatives of e are distributional, meaning that they are defined with
respect to integration against test functions, not in the classic sense. Here the term D refers
to the approximate derivative:

Definition 7.2. (Approximate derivative)
A function F': M — N is said to be approximately differentiable a ta point z if there exists
a map F' differentiable at x such that:

o 2015 € B)IF(2) £ Fla))
r—0 vol(B,(z))

In this case we call DF := DF the approximate derivative of F

=0
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Sketch of ideas in the proof of THM 7.1. Suppose that the approximate jacobian of F' exists
and is smooth: JF := |det(DF)|, then the transport condition Fi4puo = ps can be written
in terms of their densities (as they are absolutely continuous) as a simple change of variables
called the Monge-Ampere equation:

p5<Fs(x))JFs(x) = pO(x)

And we can compute the entropy:

c(s) = [ Tog(pu() + V(w)in.

The change of variables y — Fy(z) and using that F pushes pg to ps

e(s) = /M log(pa(Fu(x))) + V(Eu(2))dptol)

We know use Monge-Ampere equation to replace ps(Fs(x)), to get

€(S)=/Mlog(po(l’))—log(|JFs(fC)|)+V(Fs(ﬂf))duo(fv)

]

The next steps are to find a second difference representation of the function inside the
integral, and differentiate.

Finally we get to the last definition, which is one of the motivations of this research area.
In many works, it has been shown that an appropriate inequality involving the dimension of
the manifold and the curvature is enough to ensure nice geometric properties. This field of
study defines the concept of the curvature-dimension condition. Optimal transport has been
incredible to generalize this idea to non-smooth settings, namely abstract measure metric
spaces. The work of [5], [9], [3], [7] are the best references. The condition is perfected in this
setting:

Definition 7.3. (K, N, ¢)-convexity
For K € R and N > 0 a function e is said to be (K, N)-convex if e is upper semi-continuous,
{s:e(s) < oo} us connected and either e ' (—o0) contains the interior of {s : e(s) < oo} or

is empty. If it is empty:
1
¢(5) (€ (3)) > K

In our globally hyperbolic space time, a functional £ : P(M) — R is said to (K, N, ¢)-convex
if for each pair (jg, f11) there is a g-geodesic from g to 1 on which E(u,) is (K4, (pto, pt1)*, N)-
convex.
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Definition 7.4. (Bakry-Emery curvature-dimension tensor) We define the following tensor:
1
Ric'™) = Riccg, + V,V,V — o VaV ViV
-n

is the famous Bakry-Emery curvature tensor.

Corollary 2. (Entropic convexity from timelike lower Ricci curvature bounds) In our glob-
ally hyperbolic spacetime (M", g), let V' be twice differentiable on M and N > n, If

Ricc™Y) (v, v) > K|v|* > 0

for every timelike direction v, then for each 0 < ¢ < 1 the entropy Ey (u) is (K, N, g)-convex.

7.1 Conclusions

Corollary 2 states a connection between two areas of mathematics: general relativity via
the strong-energy condition (and hence lower bound on Einstein’s equation) and optimal
transport and curvature-dimension tensors. This is the first approach, note that once we
defined de Bakry-Emery tensor, we can pose it in non-smooth settings, and so we can pose
Einstein’s equations in more general spaces, maybe obtaining ”sub-solutions” that may hint
to new knowledge. Note that corollary 2 also relates the strong energy condition with
entropy!. This connection is new and could give interesting interpretations on the physical
side. Let me attempt one: The strong energy condition can be understood as a condition
limiting the amount of availability of energy in terms of it’s acceleration. The concept of
entropy can give a lot more interpretations and could possible link general relativity to other
physical theories.
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