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OPTIMAL TRANSPORTATION WITH CAPACITY

CONSTRAINTS

JONATHAN KORMAN AND ROBERT J. MCCANN

Abstract. The classical problem of optimal transportation can
be formulated as a linear optimization problem on a convex do-
main: among all joint measures with fixed marginals find the op-
timal one, where optimality is measured against a cost function.
Here we consider a natural but largely unexplored variant of this
problem by imposing a pointwise constraint on the joint (abso-
lutely continuous) measures: among all joint densities with fixed
marginals and which are dominated by a given density, find the
optimal one. For this variant, we show local non-degeneracy of the
cost function implies every minimizer is extremal in the convex set
of competitors, hence unique. An appendix develops rudiments
of a duality theory for this problem, which allows us to compute
several suggestive examples.

1. Introduction

The optimal transportation problem of Monge [Mo81] and Kan-
torovich [K42] has attracted much attention in recent years; see the
surveys [AG11] [MG10] [V03] [V09]. However, there is a variant of the
problem which is almost as natural but remains unexplored outside the
discrete setting. This variant, tackled below, involves imposing capac-
ity constraints which limit the amount transported between any given
source and corresponding sink.
Let L1

c(R
n) denote the space of L1(Rn)-functions with compact sup-

port, where L1 is with respect to Lebesgue measure. In this paper
functions typically represent mass densities. Given densities 0 ≤ f, g ∈
L1
c(R

d) with same total mass
∫
f =

∫
g, let Γ(f, g) denote the set

of joint densities 0 ≤ h ∈ L1
c(R

d × R
d) which have f and g as their

marginals: f(x) =
∫
Rd h(x, y)dy and g(y) =

∫
Rd h(x, y)dx. The set

Γ(f, g) is a convex set.
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A cost function c(x, y) represents the cost per unit mass for trans-
porting material from x ∈ R

d to y ∈ R
d. Given densities 0 ≤ f, g ∈

L1
c(R

d) with same total mass, and a cost c(x, y), the problem of optimal
transportation is to minimize the transportation cost

Ic(h) :=

∫

Rd×Rd

c(x, y)h(x, y)dxdy(1)

among joint densities h in Γ(f, g), to obtain the optimal cost

inf
h∈Γ(f,g)

Ic(h).(2)

In the context of transportation, a joint density h ∈ Γ(f, g) can be
thought of as representing a transportation plan.
In this paper we will sometimes refer to the traditional optimal trans-

portation problem as the unconstrained optimal transportation prob-
lem.

Given 0 ≤ h ∈ L∞(Rd × R
d) of compact support, we let Γ(f, g)h

denote the set of all h ∈ Γ(f, g) dominated by h, that is h ≤ h almost

everywhere. The set Γ(f, g)h is a convex set.

The optimization problem we will be concerned with in this paper—
the optimal transportation with capacity constraints—is to minimize the

transportation cost (1) among joint densities h in Γ(f, g)h, to obtain
the optimal cost under the capacity constraint h

inf
h∈Γ(f,g)h

Ic(h).(3)

Interpretation. As an example of an optimal transportation problem
in the discrete case [V09, Chapter 3], consider a large number of bak-
eries producing loaves of bread that should be transported (by donkeys)
to cafés. The problem is to find where each unit of bread should go
so as to minimize the transportation cost. The unconstrained optimal
transportation problem assumes ideal donkeys that can transport any
amount of bread. The constrained version discussed here takes into
account the capacity limitations of the donkeys — assuming of course
that each (cafe, bakery) pair has a donkey at its disposal, and that no
donkey services more than one cafe and one bakery.

Example 1.1. (Constrained optimal solution concentrates on ‘diagonal
tiles in a 2× 2 checker board’ in response to an integer constraint.)
Let I be the closed interval [−1

2
, 1
2
] ⊂ R

1 and let f = g = 1I have
constant density 1 on I (here 1I is the characteristic function of the
set I). Let h = 2 · 1I2 have constant density 2 on I2 (figure 1B). Note
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(a) h (b) h

Figure 1

that 0 ≤ f, g ∈ L1
c(I) have same total mass 1, and that Γ(f, g)h 6= ∅

since it contains 1I2. Let c(x, y) =
1
2
|x− y|2. Then, as explained in the

appendix, Ic(·) attains its minimal value on Γ(f, g)h at (see figure 1A)

h(x, y) :=

{
2 on [−1

2
, 0]× [−1

2
, 0] ∪ [0, 1

2
]× [0, 1

2
]

0 otherwise.
(4)

Other examples can be derived from this one (see Remark 5.3). Lest
such examples seem obvious, we also pose the following open problem:

Example 1.2. (Open problem.)

(a) h (b) h

(c) ∆h

Figure 2

Let I, f, g and c be as in example 1.1. Let h = 4 · 1I2 have constant
density 4 on I2 (figure 2B). After considering example 1.1 it is natural

to guess that Ic(·) attains its minimal value on Γ(f, g)h at (see figure
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2A)

h(x, y) :=

{
4 on S
0 otherwise,

(5)

where S := [−1
2
,−1

4
] × [−1

2
,−1

4
] ∪ [−1

4
, 0]× [−1

4
, 0] ∪ [0, 1

4
]× [0, 1

4
] ∪

[1
4
, 1
2
] × [1

4
, 1
2
]. Surprisingly, this is not the case. The perturbation ∆h

in figure 2C reduces the total cost of h. Here ‘+’ represents adding δ
mass and ‘−’ subtracting δ mass. Since adding/subtracting mass near
the diagonal has negligible cost the net contribution of ∆h is domi-
nated by the four minuses near the four points (−1

4
, 0), (0,−1

4
), (0, 1

4
)

and (1
4
, 0). So ∆h strictly reduces the total cost of h. We don’t know

the true optimizer for this example.

Example 1.3. (Constrained optimal solution with respect to periodic
cost concentrates on ‘diagonal strip’.)

(a) R
′ (b) R

Figure 3

Let R
2/Z2 be the periodic unit square, that is R

2 where (x, y) is
identified with (x′, y′) whenever x− x′, y− y′ ∈ Z, and put the periodic
cost function c(x, y) = inf

n∈Z
|x−y−n|2 on it. Two fundamental domains

are R (see figure 3B), and R′ (see figure 3A).
The coordinate change x′ := y + x, y′ := y − x maps R bijectively

onto R′. The cost becomes c(x′, y′) = inf
n∈Z

|y′ − n|2, which on R′ is just

c(x′, y′) = y′2. Note that in the x′, y′ coordinates, the cost is constant
along lines parallel to x′. Given total mass 1 and constant capacity
bound h ≥ 1 on the periodic square, let

h0(x, y) :=

{
h on S
0 otherwise,

(6)
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where S is a diagonal strip in R′ of width w = 1
h
√
2
and length

√
2

centered about the diagonal x′ (see shaded strip in figure 3A). From the
simple form of the cost in the x′, y′ coordinates it can be easily seen that
h0 is the optimal way to fit mass 1 into R′ while respecting the bound
h: h0 = argmin

h≤h
mass(h)=1

∫
R′
ch. In particular h0 = argmin

h∈Γ(1I ,1I)h

∫
R′
ch, where 1I is

equal to the marginals of h0. As a function on R, h0 is supported on
the shaded region in figure 3B.
Note that the uniqueness result, Theorem 8.1, still applies to this

cost, since it is C2 and non-degenerate outside of two diagonal line
segments on the periodic square.

Motivation. The thing to note from example 1.1 is that at almost
every point of the underlying space, the density h of the optimal solu-
tion, is either equal to 0 or to h, the density of the capacity bound. In
the language developed below h is geometrically extreme.
This example is special since the densities involved are both locally

constant. It is easy to see that when h and h are both constant in
a neighbourhood of a point (x0, y0), h(x0, y0) must either equal 0 or
h(x0, y0): if 0 < h(x0, y0) < h(x0, y0) then a standard perturbation
argument (see proof of Lemma 6.1) shows that h cannot be optimal.
In general h and h are not locally constant. But, one of the main

insights we exploit in this paper is that, at an infinitesimal level they
become constant: if we blow-up h and h at a (Lebesgue) point, the
blow-ups have constant densities (see (2) of Claim 4.2). In effect,
blowing-up allows us to reduce the general case to the special case
of locally constant densities, as is the case in example 1.1.

Main result: Existence and Uniqueness. Proving solutions to the
capacity-constrained problem exist (Theorem 3.1) requires very minor
modifications of the direct argument familiar from the unconstrained
case. The main result of this paper is therefore the uniqueness theorem
(Theorem 8.1). It says that under mild assumptions on the cost and ca-
pacity bound, a solution to the capacity-constrained problem is unique.

Strategy. Recall that a point of a convex set Γ is called an ex-
treme point if it is not an interior point of any line segment lying in

Γ. A density h in Γ(f, g)h will be called geometrically extreme (see
Definition 6.2) if there exists a (measurable) set W ⊂ R

2d such that
h(x, y) = h(x, y)1W (x, y) for almost every (x, y) ∈ R

2d. (Such a density
might be called ‘bang-bang’ in the optimal control context). Observe
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that a density is an extreme point of Γ(f, g)h if and only if it is geo-
metrically extreme (with respect to h).
It is well-known in the theory of linear programming that every con-

tinuous linear functional on a compact convex set attains its minimum
at an extreme point. Our strategy for proving uniqueness in the prob-
lem at hand (Theorem 8.1) will be to show that every optimizer is
geometrically extreme (Theorem 7.2), hence is an extreme point of

Γ(f, g)h. Since any convex combination of optimizers is again optimal
(but fails to be geometrically extreme), it follows that no more than
one optimizer exists.

Remark. Once a solution is known to be geometrically extreme, the
entire problem is reduced to identifying the geometry of its supportW .
Example 1.1 shows the boundary ofW cannot generally be expected to
be smooth. It is natural to wonder how to characterize W , and what
kind of geometric and analytic properties ∂W will generally possess.

Main assumptions. The main two assumptions for the uniqueness
result are that the capacity constraint h is uniformly bounded, and that
the cost c(x, y) is non-degenerate (in the sense that detD2

xyc(x, y) 6= 0
in equation (7)). Sufficiency of a local condition for uniqueness is some-
what of a surprise; c.f. the cylindrical example of [MPW10, p.10], which
suggests that — except in one dimension — no local hypothesis on the
cost function is sufficient to guarantee uniqueness of minimizer in the
unconstrained case.

Remark. Although capacity constraints are quite standard in the
discrete case, they do not seem to have been much considered in the
continuum setting. On the other hand, the work of Brenier [B87][B91]
marks a turning point in our understanding of unconstrained trans-
portation in the continuum setting, and we were surprised to discover
that many of the insights gained in that context do not seem to adapt
easily to the capacity-constrained problem.

Acknowledgements. The first author would like to thank Najma
Ahmad for teaching him the basics of optimal transportation and in-
troducing him to RJM. Example 1.3 arose from a conversation with
Yann Brenier.
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2. Notation, Conventions, and assumptions

For a differentiable map T : R
n → R

m let DT denote the de-
rivative of T , that is the Jacobian matrix of all partial derivatives(

∂Ti

∂xj

)
1≤i≤m,1≤j≤n

.

Let D2c(x, y) denote the Hessian of c at the point (x, y), that is the
2d× 2d matrix of second order partial derivatives of the function c at
(x, y). Let D2

xyc(x, y) denote the d × d matrix of mixed second order

partial derivatives of c at (x, y), that is
(

∂2c
∂xi∂yj

(x, y)
)
1≤i,j≤d

. Note that

D2
xyc(x, y) is a sub matrix of the Hessian matrix:

D2c(x, y) =

(
D2

xxc(x, y) D2
xyc(x, y)

D2
yxc(x, y) D2

yyc(x, y)

)
.(7)

The n-dimensional Lebesgue measure on R
n will be denoted by Ln.

Let πX : Rd × R
d −→ R

d : (x, y) 7→ x and πY : Rd × R
d −→ R

d :
(x, y) 7→ y be the canonical projections. For a density function h ∈
L1(Rd×R

d) denote its marginals by hX and hY : hX(x) :=
∫
Rd h(x, y)dy

and hY (y) :=
∫
Rd h(x, y)dx.

2.1. Assumptions on the cost. Consider the following assumptions
on the cost:

(C1) c(x, y) is bounded,
(C2) there is a Lebesgue negligible closed set Z ⊂ R

d×R
d such that

c(x, y) ∈ C2(Rd × R
d \ Z) and,

(C3) c(x, y) is non-degenerate: detD2
xyc(x, y) 6= 0 for all (x, y) ∈

R
d × R

d \ Z.
2.2. Assumption on the capacity constraint. From section 3 on-
wards, we will always assume that h is non-negative, has compact sup-
port, and is bounded on R

d × R
d = R

2d. We make no claims about
other h.
Given marginal densities 0 ≤ f, g ∈ L1

c(R
d) with same total mass,

to avoid talking about the trivial case, we will always assume that a

feasible solution exists: Γ(f, g)h 6= ∅.
Remark 2.1. To guarantee that the transportation cost Ic(h) is finite
we require h to have compact support: since the cost c is always assumed
continuous and bounded, h having compact support makes sure that
Ic(h) ≤ Ic(h) < ∞ for all h ≤ h. Note that when h has compact

support, so will any density in Γ(f, g)h, as well as f and g.
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3. Existence

For simplicity we prove existence only in the case when h has compact
support.

Theorem 3.1. (Existence) Assume that the cost c is continuous and
bounded. Take 0 ≤ h ∈ L∞(Rd × R

d) of compact support and let

0 ≤ f, g ∈ L1
c(R

d) be marginal densities for which Γ(f, g)h 6= ∅. Then
the corresponding problem of optimal transportation with capacity con-
straints (3) has a solution. That is, Ic(·) attains its minimum value on

Γ(f, g)h.

Proof. Let X, Y ⊂ R
d be compact subsets such that spt(h) ⊂ X × Y .

Note that the support of any h ∈ Γ(f, g)h is also contained in X × Y ,
and that spt(f) ⊂ X , spt(g) ⊂ Y .
Since h is bounded and has compact support, h ∈ Lp(X × Y ) all

1 ≤ p ≤ ∞, in particular h ∈ L2(X × Y ). Consequently Γ(f, g)h ⊂
L2(X × Y ).

We shall now specify a topology on L2(X × Y ) for which Γ(f, g)h is
compact and Ic(·) continuous. Existence then follows from the general
fact that a continuous function attains it minimum on a compact set.
For X and Y compact, it is convenient to use the weak-∗ topology, as
in the unconstrained transportation problem (e.g. [V03]). Since L2 is
reflexive, the weak-∗ topology is the same as the weak topology. For
the sake of completeness, we outline the direct argument despite its
standard nature.
Give L2(X×Y ) the weak topology. By the Banach-Alaoglu Theorem

any closed ball Br(0) of radius r < ∞ in L2(X × Y ) is weak-∗, hence
weak, compact. Note that any h with 0 ≤ h ≤ h satisfies ||h||2 ≤
||h||2 =: R < ∞. Hence Γ(g, h)h is contained in BR(0). So in order to

show that Γ(f, g)h is compact, it is enough to show that it is closed.

Let hn be a sequence in Γ(f, g)h which converges weakly to h∞ ∈
BR(0). We want to show h∞ ∈ Γ(f, g)h, that is that h∞ is dominated
by h almost everywhere and has f and g as marginals.
Weak convergence means that for all g ∈ L2(X × Y ),

(8) lim
n→∞

∫

X×Y

hn(x, y)g(x, y) =

∫

X×Y

h∞(x, y)g(x, y).

Since hn ≤ h,
∫
hng ≤

∫
hg for all non-negative g ∈ L2. Letting

n → ∞,
∫
h∞g ≤

∫
hg for all non-negative g ∈ L2, hence h∞ ≤ h

almost everywhere.
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It is easy to see that (h∞)X = f by using the definition of weak
convergence (8) with g(x, y) := g(x)1Y (y), where g ∈ L2(X). A similar

calculation shows that (h∞)Y = g. It follows that Γ(f, g)h is weakly
closed.
To see Ic(·) : Γ(f, g)h → R is continuous with respect to the weak

topology, use equation (8) with g(x, y) := c(x, y)1X×Y (x, y), which is
in L2(X × Y ) since c is assumed bounded, to conclude that

Ic(h∞) =

∫
h∞c = lim

n→∞

∫
hnc = lim

n→∞
Ic(hn).

Existence in the constrained case follows.
�

4. Blowing up a density near a Lebesgue point

When 0 ≤ h is dominated by h ∈ L∞ it is also bounded. Even when
h is continuous, h ∈ L1 may not be continuous as we have seen in ex-
ample 1.1; however it is necessarily measurable, belonging to L1. The
notion of a Lebesgue point is a substitute for the notion of a point of
continuity in the measure theoretic context. In this section we study
the behaviour of h near its Lebesgue points.

Given a Lebesgue point (x0, y0) ∈ R
d × R

d of 0 ≤ k ∈ L1
c(R

d × R
d),

consider the constant function k∞(x, y) := k(x0, y0) defined on the unit
cube Q := [−1

2
, 1
2
]d × [−1

2
, 1
2
]d. We call k∞ the blow-up of k at (x0, y0).

Let Qn = Qn(x0, y0) := (x0, y0)+[− 1
2n
, 1
2n
]d× [− 1

2n
, 1
2n
]d denote small

cubical neighbourhoods of volume ( 1
n
)2d centered at (x0, y0) ∈ R

d×R
d.

Let ϕn : Q→ Qn ⊂ R
d×R

d be given by ϕn(x, y) = (x0, y0)+
1
n
(x, y).

Let kn : Q→ R be defined by

(9) kn := k ◦ ϕn.

It will follow from claim (4.2) that kn converges to k∞ strongly in
L1(Q).

Definition 4.1. We call kn the blow-up sequence of k at (x0, y0). We
call its limit k∞, the blow-up of k at (x0, y0).

We recall some basic facts about Lebesgue points from [Ru87].
Let f ∈ L1(Rn). Any x ∈ R

n for which it is true that

lim
r→0

1

Ln[Br(x)]

∫

Br(x)

|f(y)− f(x)|dy = 0
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is called a Lebesgue point of f . Here Br(x) denotes the open ball with
center x and radius r > 0. At a Lebesgue point x, an L1-function f
has a well defined value:

f(x) = lim
r→0

1

Ln[Rr(x)]

∫

Rr(x)

f(y)dy.

Here {Rr(x)} is any sequence of sets which ‘shrink nicely’ to x (e.g.
cubes, spheres).
If x is a point of continuity of f then x is a Lebesgue point of f . In

particular, for a continuous function, every point is a Lebesgue point.
Given f ∈ L1(Rn), Lebesgue’s Theorem says that almost every point
in R

n is a Lebesgue point of f .

Claim 4.2. Let (x0, y0) be a Lebesgue point of 0 ≤ k ∈ L1
c(R

d × R
d).

Let kn denote the blow-up sequence of k at (x0, y0) and let k∞ denote
the blow-up of k at (x0, y0). Then:

(1) kn → k∞ strongly in L1(Q), i.e. ||kn − k∞||L1(Q) → 0,
(2) kn(x, y) = k( 1

n
x+ x0,

1
n
y + y0) on Q.

Proof. (1) Letting ϕn denote the dilation from (9) yields
∫

Q

|kn − k∞|dxdy =

∫

Q

|(k − k(x0, y0)) ◦ ϕn|dxdy

=
1

L2d[Qn]

∫

Q

|(k − k(x0, y0)) ◦ ϕn||detDϕn|dxdy

=
1

L2d[Qn]

∫

Qn

|(k(x, y)− k(x0, y0))|dxdy → 0,

as n → ∞. The first equality is the definition of kn, and the second

equality uses |detDϕn(x, y)| =
∣∣∣∣

1
nd 0
0 1

nd

∣∣∣∣ = 1
n2d = L2d[Qn]. The last

equality follows from the change of variable formula and the limit at
the end follows from (x0, y0) being a Lebesque point of k.
(2) follows immediately from the definition of ϕn. �

For later use we record the following immediate consequence of above
claim.

Remark 4.3. Let 0 ≤ h ∈ L∞(Rd×R
d) have compact support. Suppose

that 0 ≤ h ≤ h and that (x0, y0) is a common Lebesgue point of h and
h. Then, letting hn and h̄n denote the blow-up sequences of h and h̄ at
(x0, y0),

(1) h∞(x, y) = h(x0, y0) on Q and ||hn − h∞||L1(Q) → 0, and

(2) h∞(x, y) = h(x0, y0) on Q and ||hn − h∞||L1(Q) → 0.
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The following proposition clarifies the nature of convergence of hn
on Q. It says that (for a subsequence n(i)) Q can be partitioned into

a ‘good’ set, F̃n, and a ‘bad’ set, Ẽn. On the good sets hn converges
‘uniformly’ to h(x0, y0) while on the bad sets it is uniformly bounded;
the good sets are large and the bad are small. Recall that the function
h is assumed to be bounded and that Q1 is compact.

Proposition 4.4. Let 0 ≤ h ∈ L1 ∩ L∞(Rd × R
d). Suppose that

0 ≤ h ≤ h almost everywhere, and let hn denote the blow-up sequence
of h at a Lebesgue point (x0, y0). For some subsequence indexed by
n ∈ N0 = {n1 < n2 < · · · } there exist non-negative real numbers

αn → 0, and Borel subsets Ẽn and F̃n := Q \ Ẽn of Q, such that

(1) 0 ≤ L2d[Ẽn] ≤ αn,
(2) ||hn(x, y)− h(x0, y0)||L∞(F̃n)

≤ αn,

(3) |hn(x, y)| ≤ ‖h‖L∞(Q1) for almost every (x, y) ∈ Q.

Proof of (1)-(2). By Remark 4.3, hk → h∞ = h(x0, y0) strongly in
L1(Q), i.e. ||hk − h∞||L1(Q) → 0. It follows that a subsequence hki con-
verges pointwise to h∞ almost everywhere on Q; for example, choosing
||hki − hki+1

||L1(Q) ≤ 1
2i

is known to assure this [LL01, Theorem 2.7].
By Egoroff’s Theorem, for any natural number m, there exists an open

subset Ẽm ⊂ Q such that 0 ≤ L2d[Ẽm] ≤ 1
m

and ||hki −h∞||L∞(F̃m) → 0

as i→ ∞, where F̃m := Q \ Ẽm. Hence, for i = im large enough,

(10) ||hkim − h∞||L∞(F̃m) <
1

m
.

Note that without loss of generality we can assume that ki1 < ki2 <
ki3 < · · · . Let N0 := {kim |m ∈ N}. Relabeling indices by n ∈ N0:

n := kim , Ẽn := Ẽm, and letting αn := 1
m
, the above equation becomes,

for all n ∈ N0,

(11) ||hn − h∞||
L∞(F̃n)

< αn.

Proof of (3). For almost every (x, y) ∈ Q and all n ∈ N we have by
(2) of Claim 4.2: hn(x, y) = h( 1

n
x+x0,

1
n
y+y0) ≤ h( 1

n
x+x0,

1
n
y+y0) ≤

‖h‖L∞(Q1). �

We also need a similar but more delicate result concerning conver-
gence of the marginals of hn. Recall that Q = [−1

2
, 1
2
]d × [−1

2
, 1
2
]d.

Proposition 4.5. Let hn be the blow-up sequence of 0 ≤ h ∈ L1 ∩
L∞(Rd×R

d) at a Lebesque point (x0, y0) and let fn := (hn)X and gn :=
(hn)Y be the corresponding marginals. Taking N0 (see Proposition 4.4)
smaller if necessary yields a further subsequence indexed by n ∈ N0,
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with Borel subsets X̃bad
n , Ỹ bad

n ⊂ [−1
2
, 1
2
]d and X̃good

n := [−1
2
, 1
2
]d \ X̃bad

n

and Ỹ good
n := [−1

2
, 1
2
]d \ Ỹ bad

n such that,

(1) lim
n→∞

Ld[X̃bad
n ] = 0 and lim

n→∞
Ld[Ỹ bad

n ] = 0;

(2) lim
n→∞

‖fn−h(x0, y0)‖L∞(X̃good
n ) = 0 = lim

n→∞
‖gn−h(x0, y0)‖L∞(Ỹ good

n );

(3) fn ≤ ‖h‖L∞(Q1) and gn ≤ ‖h‖L∞(Q1) on [−1
2
, 1
2
]d.

Proof of (1)-(2). Let us start with the subsequence hn from Proposi-
tion 4.4. Its marginals fn and f∞ are given by fn(x) :=

∫
[− 1

2
, 1
2
]d
hn(x, y)dy

and f∞(x) :=
∫
[− 1

2
, 1
2
]d
h∞(x, y)dy = h(x0, y0). The marginals gn and g∞

are defined similarly.
By (1) of Claim 4.2, ||hk − h∞||L1(Q) → 0. It follows that ||fk −

f∞||L1([− 1
2
, 1
2
]d) → 0 and ||gk − g∞||L1([− 1

2
, 1
2
]d) → 0. Let fki and gki

be subsequences satisfying ||fki − fki+1
||L1([− 1

2
, 1
2
]d) ≤ 1

2i
and ||gki −

gki+1
||L1([− 1

2
, 1
2
]d) ≤ 1

2i
.

As in the proof of Proposition 4.4, Theorem 2.7 of [LL01] and Ego-

roff’s Theorem imply existence of open subsets X̃bad
m , Ỹ bad

m ⊂ [−1
2
, 1
2
]d

(m ∈ N) satisfying 0 ≤ L2d[X̃bad
m ],L2d[Ỹ bad

m ] ≤ 1
m
, such that for i = im

large enough, ||fkim − f∞||
L∞(X̃good

m ), ||gkim − g∞||
L∞(Ỹ good

m ) < 1
m
. By

relabeling indices, as in the proof of Proposition 4.4, we get for all
n in an index set N0: 0 ≤ L2d[X̃bad

n ],L2d[Ỹ bad
n ] ≤ αn and ||fn −

f∞||
L∞(X̃good

n ), ||gn−g∞||
L∞(Ỹ good

n ) < αn. (1) and (2) follow since αn → 0
as n→ ∞.
Proof of (3). Follows immediately from (3) of Proposition 4.4 and

the formula fn(x) =
∫
[− 1

2
, 1
2
]d
hn(x, y)dy. �

5. Optimality is inherited by blow-up sequence

When h is optimal among densities which share its marginals and
which are dominated by h, i.e. h ∈ argmin

k∈Γ(hX ,hY )h
Ic(k), we show that hn is

(almost) optimal among densities which share its marginals and which
are dominated by hn, i.e. hn ∈ argmin

k∈Γ((hn)X ,(hn)Y )hn

Ic̃(k).

We first record what conditions (C2) − (C3) of subsection 2.1 on
the cost imply about the Taylor expansion of c. Suppose the first and
second derivatives of c(x, y) exist at (x0, y0) and consider the 2nd-order
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Taylor expansion of c near (x0, y0):

c(x0 +
x

n
, y0 +

y

n
) = c(x0, y0) +

d∑

i=1

∂c

∂xi
(x0, y0)

xi
n

+

d∑

i=1

∂c

∂yi
(x0, y0)

yi
n

+
1

n2
{1
2
xTD2

xxc(x0, y0)x+
1

2
yTD2

yyc(x0, y0)y(12)

+ xTD2
xyc(x0, y0)y +R2(

x

n
,
y

n
)}.

Here R2 is n
2 times the 2nd-order Lagrange remainder R′

2(
x
n
, y
n
) which

satisfies ‖R′
2(

x
n
, y
n
)‖L∞(Q) = o( 1

n2 ) (e.g. see [Sp80, Theorem 19.1] for the
1-dimensional case). Hence ‖R2(

x
n
, y
n
)‖L∞(Q1) = o(1) as n→ ∞.

When D2
xyc(x0, y0) is non-degenerate, changing the y coordinates by

ynew = D2
xyc(x0, y0)yold gives, without loss of generality, thatD

2
xyc(x0, y0) =

I. Hence without loss of generality we can assume that xTD2
xyc(x0, y0)y,

the mixed 2nd-order term in equation (12), is equal to c̃(x, y) := x · y.
In other words, after an appropriate change of coordinates equation
(12) assumes the form:

c(x0 +
x

n
, y0 +

y

n
) = constant term + terms involving x alone(13)

+ terms involving y alone +
1

n2
{c̃(x, y) + R̃2(

x

n
,
y

n
)}.

For c̃n(x, y) := c̃(x, y)+ R̃2(
x
n
, y
n
) let Ic̃n(k) denote

∫
Q
c̃n(x, y)k(x, y),

and for c̃(x, y) = x · y let Ic̃(k) denote
∫
Q
c̃(x, y)k(x, y). Note that

Ic̃n(k) =
∫
Q
c̃k+

∫
Q
R̃2k and |

∫
Q
R̃2k| ≤

∫
Q
|R̃2||k| ≤ ‖R̃2‖L∞(Q1)‖k‖L1(Q).

Hence given a fixed constant M > 0, we have for all k ∈ L1(Q) whose
total mass ‖k‖L1(Q) ≤M ,

(14) Ic̃n(k) = Ic̃(k) + o(1).

Remark 5.1. Note that when the cost satisfies (C2)− (C3) of subsec-
tion 2.1, for every (x0, y0) ∈ R

d×R
d\Z the first and second derivatives

of c(x, y) exist at (x0, y0) and D
2
xyc(x0, y0) is non-degenerate.

In [V09, Theorem 4.6] it is shown that unconstrained optimality is
inherited by restriction to (measurable) subsets: if the restricted plan
is not optimal, then it can be improved, but any improvement in the
restricted plan carries over to an improvement in the original optimal
plan, which is not possible. In the constrained context, optimality is
not necessarily inherited by an arbitrary restriction. To see this, recall
example 1.1, where the optimal constrained solution is given by h in



14 JONATHAN KORMAN AND ROBERT J. MCCANN

equation (5). Note that the restriction of h to [0, 1
4
]×[1

4
, 1
2
]∪[1

4
, 1
2
]×[0, 1

4
]

is not optimal: restricting h to [0, 1
4
]× [0, 1

4
]∪ [1

4
, 1
2
]× [1

4
, 1
2
] has the same

marginals but lower cost.

The following lemma says that in the constrained case, optimality is
inherited when the restriction is to a rectangular set. This is used in
the proof of Proposition 5.4.

Lemma 5.2. Let 0 ≤ h ∈ L1
c(R

d × R
d) be optimal among densities in

Γ(hX , hY )
h with respect to a cost function c. Consider a rectangular

neighbourhood A × B ⊂ R
d × R

d where A and B are Borel subsets of

R
d, and let h̃ denote h|A×B, the restriction of h to A × B. Then h̃ is

optimal among densities in Γ(h̃X , h̃Y )
h with respect to the same cost c.

Proof. If h̃ is not optimal, then there exists a plan h̃′ ∈ Γ(h̃X , h̃Y )
h

improving h̃. Note that h̃ and h̃′ are both supported on the rectangular

neighbourhood A×B. Now consider the plan h− h̃+ h̃′ which improves

h. Since h̃ and h̃′ have the same marginals, h − h̃ + h̃′ ∈ Γ(hX , hY ).
Note that

h− h̃+ h̃′ =

{
h̃′ on A× B
h otherwise,

and that h− h̃+ h̃′ ≤ h. It follows that the improved plan h− h̃+ h̃′ ∈
Γ(hX , hY )

h, contradicting optimality of h. �

Remark 5.3. By the above lemma, restricting the optimal density of
example 1.1 to rectangular sets gives more examples of optimal densi-
ties.

Proposition 5.4. Let the cost c(x, y) satisfy conditions (C1) − (C3)
of subsection 2.1. Let 0 ≤ h ∈ L∞(Rd × R

d) have compact support

and suppose that Γ(f, g)h 6= ∅. Make a linear change of coordinates

if necessary so that (13) holds. Take h ∈ Γ(f, g)h and let (x0, y0) ∈
R

d×R
d \Z be a Lebesgue point of h. Consider the blow-up sequence hn

of h at (x0, y0). Then h c-optimal implies that hn is c̃n-optimal, where

c̃n(x, y) = c̃(x, y) + R̃2(
x
n
, y
n
):

h ∈ argmin
k∈Γ(hX ,hY )h

Ic(k) =⇒ hn ∈ argmin
k∈Γ((hn)X ,(hn)Y )hn

Ic̃n(k).

Proof. Let Qn = Qn(x0, y0) and consider the blow-up process as being
done in two steps: restriction (h′n := h|Qn

) and dilation (hn := h′n◦ϕn).
In the restriction stage h is restricted to the rectangular neighbourhood
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Qn, hence by Lemma 5.2 h′n is optimal:

h ∈ argmin
k∈Γ(hX ,hY )h

∫

Rd×Rd

c(x, y)k(x, y) =⇒

h′n ∈ argmin
k∈Γ((h′

n)X ,(h′

n)Y )h
′

n

∫

Qn

c(x, y)k(x, y).

In the dilation stage h′n is composed with the linear map ϕn : Q →
Qn : (x, y) 7→ ( 1

n
x + x0,

1
n
y + y0). Note that detDϕn(x, y) =

1
n2d . By

the change of variables formula,

∫

Qn

c(x, y)h′n(x, y) =

∫

Qn

c(x, y)(hn ◦ ϕ−1
n )(x, y)

=

∫

Q

c(ϕn(x, y))hn(x, y)|detDϕn(x, y)|

=
1

n2d

∫

Q

c(x0 +
x

n
, y0 +

y

n
)hn(x, y),

and so,

argmin
k∈Γ((h′

n)X ,(h′

n)Y )h
′

n

∫

Qn

c(x, y)k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

1

n2d

∫

Q

c(x0 +
x

n
, y0 +

y

n
)k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

1

n2(d+1)

∫

Q

{c̃(x, y) + R̃2(
x

n
,
y

n
)}k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

∫

Q

c̃n(x, y)k(x, y).

For the second equality above, note that those terms of the Taylor
expansion (13) which are constant, are functions of x alone, or are
functions of y alone give the same value when integrated against any
density k in Γ((hn)X , (hn)Y ) since the marginals are fixed. Hence for
the variational problem at hand only the mixed 2nd-order terms in the
Taylor series, namely c̃(x, y), and the remainder, R2(

x
n
, y
n
), matter. For

the last equality above, recall that argmin
∫
· = argmin 1

m

∫
· for any

positive constant m.
�
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6. Is Optimality inherited by blow-ups?

It is natural to ask whether the blow-up h∞ of an optimal h is also
optimal (among densities which share its marginals and which are dom-
inated by the blow-up h∞ of h). For our purposes we do not need to
have a complete answer to this question. Instead, we derive a neces-
sary condition for h∞ to be (almost) optimal. In section 7 we show
this condition is satisfied when h is optimal.

Lemma 6.1. Let the cost c(x, y) satisfy conditions (C2) − (C3) of
subsection 2.1. Let 0 ≤ h ∈ L∞(Rd × R

d) have compact support and

suppose that Γ(µ, ν)h 6= ∅. Take h ∈ Γ(f, g)h and let (x0, y0) ∈ R
d ×

R
d \ Z be a common Lebesgue point of h and h. Let h∞, h∞ ∈ L1(Q)

be the blow-ups of h, h at (x0, y0). If 0 < h(x0, y0) < h(x0, y0) then

h∞ ∈ Γ(f∞, g∞)h∞ can be improved: for any δ which satisfies 0 < δ <

min(h(x0, y0), h(x0, y0)−h(x0, y0)) there exists hδ∞ ∈ Γ(f∞, g∞)h∞ such
that Ic̃(h

δ
∞) < Ic̃(h∞). Furthermore, h(x0, y0)− δ ≤ hδ∞ ≤ h(x0, y0) + δ

on Q.

Proof. Suppose that 0 < h(x0, y0) < h(x0, y0) at (x0, y0). By Corol-
lary 4.3, h∞ is equal to the constant function r = h(x0, y0) almost
everywhere on Q. Its marginals f∞ = (h∞)X and g∞ = (h∞)Y are
both equal to r almost everywhere on [−1

2
, 1
2
]d. Also by Corollary 4.3,

h∞ is equal to the constant function R = h(x0, y0) almost everywhere
on Q. By our assumption 0 < r < R.
We next recall a standard perturbation argument (e.g. [GM96, proof

of Theorem 2.3]) to show that r is not optimal among densities k ∈
Γ(r, r) constrained byR, where optimality is measured against c̃(x, y) =
x · y. Pick two points (x1, y1) and (x2, y2) in Q such that c̃(x1, y1) +
c̃(x2, y2) < c̃(x1, y2) + c̃(x2, y1). Since c̃(x, y) is continuous, there exist
(compact) neighbourhoods Uj ⊂ [−1

2
, 1
2
]d of xj and Vj ⊂ [−1

2
, 1
2
]d of yj

such that c̃(u1, v1) + c̃(u2, v2) < c̃(u1, v2) + c̃(u2, v1) whenever uj ∈ Uj

and vj ∈ Vj . It follows that U1 ∩ U2 6= ∅ and V1 ∩ V2 6= ∅. Take
0 < δ < min(r, R− r) and consider the density ∆h which is equal δ on
U1 × V1, U2 × V2, is −δ on U1 × V2, U2 × V1 and is 0 everywhere else.
Note that h∞ = r and hδ∞ := r + ∆h have the same marginals, and

that 0 < r− δ ≤ hδ∞ ≤ r+ δ < R by choice of δ, so hδ∞ ∈ Γ(f∞, g∞)h∞ .
By the choice of the points (x1, y1) and (x2, y2), h

δ
∞ = r+∆h has lower

cost than h∞ = r: Ic̃(h
δ
∞) < Ic̃(h∞). �

Definition 6.2. (Geometrically Extreme.) Let h be bounded. A density

h in Γ(f, g)h will be called geometrically extreme if there exists a (L2d-
measurable) setW ⊂ R

2d such that h(x, y) = h(x, y)1W (x, y) for almost
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every (x, y) ∈ R
2d. Here 1W is the characteristic function of the set

W .

Corollary 6.3. (A necessary condition for optimality of h∞.) Let the
cost c(x, y) satisfy conditions (C1)−(C3) of subsection 2.1. Let 0 ≤ h ∈
L∞(Rd×R

d) have compact support and assume that Γ(f, g)h 6= ∅. Take
h ∈ Γ(f, g)h. If h∞ is c̃-optimal, i.e. h∞ ∈ argmin

k∈Γ(f∞,g∞)h∞ Ic̃(k),

then h is geometrically extreme.

Proof. Let N := {(x, y) ∈ R
d × R

d \ Z | (x, y) is a common Lebesgue
point of h and h}, where Z is the Lebesgue negligible set of subsec-
tion 2.1. Recall that almost every point in R

d × R
d is in N . Being

c̃-optimal, h∞ cannot be improved. Hence by Lemma 6.1, h(x0, y0) is
either equal to 0 or equal to h(x0, y0) at each point (x0, y0) ∈ N . In
other words, h is geometrically extreme. �

7. Optimality implies being geometrically extreme

The following lemma will be used in the proof of Theorem 7.2. Given
two not necessarily positive marginal densities f, g ∈ L1 with the same
total mass

∫
f =

∫
g, we would like to produce a joint density h which

is controlled by f and g. Since f and g are not necessarily positive, it
is possible for their total mass to be zero even when the densities them-
selves are not identically zero. In such a case the product f(x)g(y) does
not necessarily have f and g as its marginals. The following lemma ad-
dresses this issue.

Let φ[Z] :=
∫
Z
φ(z)dz denote the total mass of the function φ on the

set Z.

Lemma 7.1. Let X, Y be Borel subsets of [−1
2
, 1
2
]d whose Ld-measure

is strictly positive but finite. Let f ∈ L1(X), g ∈ L1(Y ) have same
total mass m := f [X ] = g[Y ] ∈ R. Suppose ||f ||L∞(X), ||g||L∞(Y ) < ǫ.
Then there exists a joint density h ∈ L1(X × Y ) with marginals f and
g such that ||h||L∞(X×Y ) < 3ǫ( 1

Ld[X]
+ 1

Ld[Y ]
).

Proof. Let f0 := 1
Ld[X]

∈ L1(X) and g0 := 1
Ld[Y ]

∈ L1(Y ). Note that

f0 and g0 have total mass 1. We first deal with the case m = 0. Note
that (f · g0)X = f , while (f · g0)Y = 0. Similarly, (f0 · g)X = 0, while
(f0 · g)Y = g. Let h := f · g0 + f0 · g. Since the maps (·)X and (·)Y are
linear, we get that hX = f , and hY = g.
More generally, suppose the total mass m = f [X ] = g[Y ] is not

necessarily 0. Let h := f · g0 + f0 · g −mf0 · g0 = (f −mf0) · g0 + f0 ·
(g − mg0) + mf0 · g0. Since the total mass of f − mf0 and g − mg0



18 JONATHAN KORMAN AND ROBERT J. MCCANN

is 0, we conclude by above that hX = (f −mf0) + 0 +mf0 = f , and
hY = 0 + (g − mg0) + mg0 = g. For (x, y) ∈ X × Y the density h
satisfies:

|h(x, y)| ≤ |(f −mf0)(x)||g0(y)|+ |f0(x)||(g −mg0)(y)|
+|m||f0(x)||g0(y)|

≤ (|f(x)|+ |m||f0(x)|)|g0(y)|
+(|g(y)|+ |m||g0(y)|)|f0(x)|
+|m||f0(x)||g0(y)|

≤ 1

Ld[Y ]
(|f(x)|+ |m|

Ld[X ]
)

+
1

Ld[X ]
(|g(y)|+ |m|

Ld[Y ]
) +

|m|
Ld[X ]Ld[Y ]

≤ 2ǫ

Ld[Y ]
+

2ǫ

Ld[X ]
+

ǫ

Ld[X ]

< 3ǫ(
1

Ld[X ]
+

1

Ld[Y ]
).

The penultimate inequality above uses that |m| = |
∫
X
f(x)dx| ≤∫

X
|f(x)|dx ≤ ǫLd[X ], and |m| = |

∫
Y
g(y)dy| ≤

∫
Y
|g(y)|dy ≤ ǫLd[Y ].

�

Theorem 7.2. Let the cost c(x, y) satisfy conditions (C1) − (C3) of
subsection 2.1. Let 0 ≤ h ∈ L∞(Rd × R

d) have compact support and

take 0 ≤ f, g ∈ L1
c(R

d × R
d) such that Γ(f, g)h 6= ∅. If h ∈ Γ(f, g)h is

optimal, i.e. h ∈ argmin
k∈Γ(f,g)hIc(k), then h is geometrically extreme.

Proof. Let N := {(x, y) ∈ R
d × R

d \ Z | (x, y) is a common Lebesgue
point of h and h} where Z be the Lebesgue negligible set of subsec-
tion 2.1. Note that almost every point in R

d × R
d is in N .

Fix (x0, y0) ∈ N and let hn and hn be the blow-up sequences of h and
h at (x0, y0), with h∞ and h∞ their respective limits in L1. Suppose
by contradiction that 0 < h(x0, y0) < h(x0, y0).
LetR := ‖h‖L∞(Q1), R := h(x0, y0), and r := h(x0, y0). By Lemma 6.1,

for 0 < δ < min(r, R − r), there exists hδ∞ ∈ Γ(f∞, g∞)h∞ such that
r − δ ≤ hδ∞ ≤ r + δ and

(15) Ic̃(h
δ
∞) < Ic̃(h∞).

Assume for now (argued below) that there exists a sequence of non-
negative densities hδn ∈ L1(Q) (n ∈ N0, where the index set N0 is
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the set of natural numbers define in Propositions 4.4–4.5), with the
following properties for large enough n:

(P1) hδn ≤ hn on Z̃good
n , where Z̃good

n ⊂ Q is a rectangular set satisfy-

ing L2d[Z̃good
n ] → 1 as n→ ∞,

(P2) hδn|Z̃good
n

and hn|Z̃good
n

have the same marginals,

(P3) hδn is bounded by a constant (R+1)3

r2
independent of n onQ\Z̃good

n ,

(P4) Ic̃n(h
δ
n) −→ Ic̃(h

δ
∞) as n→ ∞.

By Lemma 5.2 constrained optimality is inherited by restriction to
rectangular sets. Hence since, by Proposition 5.4, hn is c̃n-optimal
among all densities which share its marginals and which are dominated
by hn, its restriction, hn|Z̃good

n
, remains c̃n-optimal among all densities

which share its marginals and which are dominated by hn. In particu-
lar, by (P1)–(P2), Ic̃n(h

δ
n|Z̃good

n
) ≥ Ic̃n(hn|Z̃good

n
). Hence,

Ic̃n(h
δ
n) = Ic̃n(h

δ
n|Z̃good

n
) + Ic̃n(h

δ
n|Q\Z̃good

n
)

≥ Ic̃n(hn|Z̃good
n

) + Ic̃n(h
δ
n|Q\Z̃good

n
)

= Ic̃(hn|Z̃good
n

) + Ic̃(h
δ
n|Q\Z̃good

n
) + o(1)(16)

= Ic̃(hn)− Ic̃(hn|Q\Z̃good
n

) + Ic̃(h
δ
n|Q\Z̃good

n
) + o(1),

where we have used equation (14) to go from the second line to the
third.
Note that since |x · y| ≤ d/4 on Q, for any k ∈ L1(Q): |Ic̃(k)| ≤∫

Q
|x · y|k(x, y) ≤ d

4
k[Q]. Hence, rearranging equation (16) we get

Ic̃(hn)− Ic̃n(h
δ
n) + o(1) ≤ Ic̃(hn|Q\Z̃good

n
)− Ic̃(h

δ
n|Q\Z̃good

n
)

≤ |Ic̃(hn|Q\Z̃good
n

)|+ |Ic̃(hδn|Q\Z̃good
n

)|

≤ d

4
(hn[Q \ Z̃good

n ] + hδn[Q \ Z̃good
n ])

≤ d

4
(R +

(R + 1)3

r2
)L2d[Q \ Z̃good

n ],

where the last inequality above follows from (3) of Proposition 4.4 and
property (P3). Letting n → ∞ above, and using properties (P1) and
(P4) as well as the continuity of the linear functional Ic̃(·), we get
that Ic̃(h

δ
∞) ≥ Ic̃(h∞), contradicting equation (15). Hence for every

(x0, y0) ∈ N either 0 = h(x0, y0) or h(x0, y0) = h(x0, y0). In other
words, h is geometrically extreme.

In the rest of this proof we demonstrate the existence of a sequence
hδn with properties (P1)–(P4). We do this in several steps. For ease of
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reference, we record the following chain of inequalities when 0 < δ <
min(r, R− r):

0 <
r − δ

2
< r − δ ≤ hδ∞ ≤ r + δ <

R + r + δ

2
<

3R + r + δ

4
< R.

Recall we are supposing by contradiction that 0 < h(x0, y0) < h(x0, y0).

Step (1): Construction of densities ĥδn. Let fn := (hn)X , gn := (hn)Y ,
f∞ := (h∞)X , and g∞ := (h∞)Y . Note that fn and gn have same total
mass, and that f∞ and g∞ have same total mass. Since fn and f∞ may
not have the same total mass, we will work with normalized copies

f ′
n := h∞[Q]

hn[Q]
fn and g′n := h∞[Q]

hn[Q]
gn. It follows from remark 4.3 that

hn[Q] → h∞[Q] > 0, hence f ′
n and g′n are well-defined, at least for

large enough n which is all we will use. Note that for large enough n,
f ′
n, g

′
n, f∞ and g∞ all have the same total mass. Since h is bounded and

of compact support, so is h, hence so are fn, gn, f
′
n, g

′
n ∈ L1([−1

2
, 1
2
]d),

as well as f∞, g∞ ∈ L1([−1
2
, 1
2
]d).

Let Sn : [−1
2
, 1
2
]d → [−1

2
, 1
2
]d be the unique measure preserving map

between f∞ and f ′
n (see [GM95]) minimizing the cost c̃(x, y) = x · y.

Similarly let Tn : [−1
2
, 1
2
]d → [−1

2
, 1
2
]d be the unique measure preserving

map between g∞ and g′n minimizing c̃(x, y) . Note that Sn and Tn are
essentially bijections (see [GM96]).
Recall (e.g. [GM95]) that a measure preserving map s between two

L1-functions f and g is a Borel map which satisfies the change of vari-
ables formula

(17)

∫

Rd

h(y)g(y)dy =

∫

Rd

h(s(x))f(x)dx,

for all h continuous on R
d. Given f ∈ L1(Rd) and a Borel map s :

R
d → R

d, there is a unique function g ∈ L1(Rd) satisfying equation
(17). Call this g the push forward of f by s, denoted s#f . Note
that s is measure preserving between f and s#f . Whenever s is a
diffeomorphism, equation (17) implies

(18) g(s(x))|detDs(x)| = f(x).

From [M97], if s fails to be a diffeomorphism but is given by the gradient
of a convex function, equation (18) continues to hold f -a.e.
Recall [B91, M95] that for the cost c̃(x, y) = x · y, the optimal maps

Sn(x) and Tn(y) have the form x 7→ ∇ψ(x) and y 7→ ∇φ(y), where ψ
and φ are convex functions. By Alexandrov’s Theorem a convex func-
tion has second order derivatives almost everywhere. Hence it makes
sense to talk about the derivatives DSn and DTn almost everywhere.



OPTIMAL TRANSPORTATION WITH CAPACITY CONSTRAINTS 21

We note that (Sn × Tn)#k ∈ Γ(f ′
n, g

′
n) for any k ∈ Γ(f∞, g∞). It

is straightforward to see this: we check that ((Sn × Tn)#k)X = f ′
n

(checking ((Sn × Tn)#k)Y = g′n is similar). For any h ∈ C([−1
2
, 1
2
]d):

∫
h(x)((Sn × Tn)#k)X(x) =

∫ ∫
h(x)((Sn × Tn)#k)(x, y)

=

∫ ∫
h(Sn(x))k(x, y) =

∫
h(Sn(x))f∞(x) =

∫
h(x)f ′

n(x).

Let ĥδn := hn[Q]
h∞[Q]

(Sn × Tn)#h
δ
∞. By the above, ĥδn ∈ Γ(fn, gn) for all

n, that is ĥδn has the same marginals as hn.

Step (2): We next show that ĥδn, where n ∈ N0, satisfies property
(P1).

Recall the notation of Proposition 4.5. DenotingX
good

n := S−1
n (X̃good

n )

(respectively Y
good

n := T−1
n (Ỹ good

n )), we have that Ld[X
good

n ] → 1 (re-

spectively that Ld[Y
good

n ] → 1).

By (2) of Proposition 4.5, fn → h(x0, y0) = r ‘uniformly’ on X̃good
n .

By (3) of Proposition 4.5, fn ≤ ‖h‖L∞(Q1) = R on [−1
2
, 1
2
]d. Since Sn is

a convex gradient, equation (18) applies to give,

1

|det(DSn)(x)|
=
f ′
n(Sn(x))

f∞(x)
=
h∞[Q]

hn[Q]

fn(Sn(x))

r
−→ 1

‘uniformly’ on X
good

n ; while on [−1
2
, 1
2
]d, 1

|det(DSn)| ≤
R
r

h∞[Q]
hn[Q]

< R+1
r

for

large enough n.
Similarly, by Proposition 4.5 and equation (18),

1

|det(DTn)(y)|
=
g′n(Tn(y))

g∞(y)
=
h∞[Q]

hn[Q]

gn(Tn(y))

r
−→ 1

‘uniformly’ on Y
good

n ; while on [−1
2
, 1
2
]d, 1

|det(DTn)| ≤
R
r

h∞[Q]
hn[Q]

< R+1
r

for

large enough n.
Hence,

1

|det(D(Sn × Tn))(x, y)|
=

1

|det(DSn)(x)||det(DTn)(y)|
−→ 1

‘uniformly’ on Z
good

n := X
good

n × Y
good

n ; while on Q, 1
|det(D(Sn×Tn))| <

(R+1
r
)2 for large enough n.

Note that the optimal map from (f∞, g∞) to (f ′
n, g

′
n) is given by

(x, y) → (Sn(x), Tn(y)) = ∇(ψ(x) + φ(y)), a gradient of a convex
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function. So equation (18) applies to give, ĥδn((Sn × Tn)(x, y))
h∞[Q]
hn[Q]

=
hδ
∞
(x,y)

|det(D(Sn×Tn))(x,y)| . It follows that for large enough n,

(19) 0 <
r − δ

2
< ĥδn((Sn × Tn)(x, y)) <

R + r + δ

2
< R,

for almost every (x, y) ∈ Z
good

n ; while on Q and for large enough n,

(20) ĥδn < (
R + 1

r
)2R ≤ (R + 1)3

r2
.

Recall that by (2) of Corollary 4.3, hn → R uniformly on Q. It fol-

lows, using equation (19), that for large enough n, ĥδn|Z̃good
n

≤ hn|Z̃good
n

.

Step (3): Note that even though ĥδn and hn have the same marginals

on Q, the marginals of ĥδn|Z̃good
n

and hn|Z̃good
n

may not be the same. In

step (4) ĥδn will be perturbed by a density h̃δn so that (ĥδn + h̃δn)|Z̃good
n

and hn|Z̃good
n

have the same marginals. The perturbation will be chosen

to preserve the capacity bound on Z̃good
n : (ĥδn + h̃δn)|Z̃good

n
≤ hn|Z̃good

n
. In

this step we construct h̃δn.

Let f̃ δ
n = ((hn−ĥδn)|Z̃good

n
)X ∈ L1(X̃good

n ) and g̃δn = ((hn−ĥδn)|Z̃good
n

)|Y ∈
L1(Ỹ good

n ) be the marginals of (hn− ĥδn)|Z̃good
n

. Since hn and ĥδn have the

same marginals on Q,
∫
Ỹ

good
n

(hn− ĥδn)(x, y)dy+
∫
Ỹ bad
n

(hn− ĥδn)(x, y)dy =
0.
Hence, by (3) of Proposition 4.4 and equation (20),

|f̃ δ
n(x)| = |

∫

Ỹ
good
n

(hn − ĥδn)(x, y)dy| = |
∫

Ỹ bad
n

(hn − ĥδn)(x, y)dy|

≤
∫

Ỹ bad
n

|hn − ĥδn|(x, y)dy ≤
∫

Ỹ bad
n

(|hn|+ |ĥδn|)(x, y)dy

≤ (R +
(R + 1)3

r2
)Ld[Ỹ bad

n ].

Similarly |g̃δn(y)| ≤ (R + (R+1)3

r2
)Ld[X̃bad

n ]. It follows from Lemma 7.1,

that there exist a joint density h̃δn ∈ M(X̃good
n × Ỹ good

n ) with marginals

f̃ δ
n and g̃δn such that
(21)

|h̃δn(x, y)| < 3(R+
(R + 1)3

r2
)(Ld[X̃bad

n ]+Ld[Ỹ bad
n ])(

1

Ld[X̃good
n ]

+
1

Ld[Ỹ good
n ]

).
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Since the right hand side of equation (21) tends to 0 as n → ∞, by

choosing n large enough, we can make sure the densities h̃δn are as close
to 0 as we like. In particular, for large enough n,

(22) |(h̃δn)(x, y)| < min{R− (r + δ)

4
,
r − δ

4
}.

Step (4): Establishing properties (P1)–(P4) for the densities hδn.

Let hδn := ĥδn + h̃δn. Note that although h̃δn could be negative, hδn
is non-negative: from equations (19) and (22) we have that hδn =

ĥδn + h̃δn > r−δ
2

− r−δ
4

= r−δ
4

> 0. Since the marginals of h̃δn are

f̃ δ
n = ((hn − ĥδn)|Z̃good

n
)|X and g̃δn = ((hn − ĥδn)|Z̃good

n
)|Y , hδn and hn have

the same marginals on Z̃good
n . This establishes property (P2).

By (2) of Remark 4.3, hn → R uniformly on Q. Hence, since
R > 3R+r+δ

4
, for large enough n: hn > 3R+r+δ

4
on Q. On the other

hand by equations (19) and (22), for large enough n, hδn = ĥδn + h̃δn <
R+r+δ

2
+ R−(r+δ)

4
= 3R+r+δ

4
< hn on Z̃good

n . This establishes property
(P1).

Since the perturbation h̃δn is supported on Z̃good
n , hδn = ĥδn onQ\Z̃good

n .

Hence, using equation (20), hδn = ĥδn <
(R+1)3

r2
on Q \ Z̃good

n . This es-
tablished property (P3).

To establish property (P4) we need to show that Ic̃n(h
δ
n) = Ic̃n(ĥ

δ
n +

h̃δn) → Ic̃(h
δ
∞) as n→ ∞. Note that by equation (21) h̃δn → 0 uniformly

on Q. Hence by equation (14) and Lebesgue’s Dominated Convergence

Theorem, Ic̃n(h̃
δ
n) = Ic̃(h̃

δ
n) + o(1) → 0 as n → ∞. So we need only

show Ic̃n(ĥ
δ
n) → Ic̃(h

δ
∞) as n→ ∞.

Stability of the transport map [V09, Corollary 5.23] implies that
Sn, Tn converge in measure to id|[− 1

2
, 1
2
]d, the identity map on [−1

2
, 1
2
]d.

By extracting a subsequence if necessary we can assume [Ro68, Propo-
sition 4.17] that Sn, Tn converge to id|[− 1

2
, 1
2
]d almost everywhere on

[−1
2
, 1
2
]d. Since c̃(·, ·) is continuous, it follows that c̃(Sn(x), Tn(y)) con-

verges to c̃(x, y) almost everywhere on Q = [−1
2
, 1
2
]d × [−1

2
, 1
2
]d.

Note that |c̃(Sn(x), Tn(y))h
δ
∞(x, y)| is bounded above on Q, e.g. by

‖c̃‖L∞(Q)R. Hence, since L2d[Q] < ∞, we can apply the Dominated
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Convergence Theorem to concluded that as n→ ∞:

Ic̃n(ĥ
δ
n) =

∫

Q

c̃(x, y)ĥδn(x, y) + o(1)

=
hn[Q]

h∞[Q]

∫

Q

c̃(Sn(x), Tn(y))h
δ
∞(x, y) + o(1)

→
∫

Q

c̃(x, y)hδ∞(x, y) = Ic̃(h
δ
∞).

This established property (P4) and completes the proof. �

8. Optimal solution to the constrained problem is unique

We now show that, given a capacity constraint h, the correspond-
ing constrained optimization problem has a unique solution. In the
unconstrained optimization setup, a characteristic property of optimal
solutions is c-cyclical monotonicity. This property can be used to prove
a solution is unique [GM96, Theorem 3.7]. The property of optimal so-
lutions in the constrained setup that is used here to prove uniqueness
is that of being geometrically extreme (see Definition 6.2). Note that
in the unconstrained case, c-cyclical monotonicity is in fact necessary
and sufficient for optimality, whereas in the constrained case geometric
extremality is merely necessary.

Theorem 8.1. (Uniqueness) Let the cost c(x, y) satisfy conditions
(C1)−(C3) of subsection 2.1. Let the capacity bound 0 ≤ h ∈ L∞(Rd×
R

d) have compact support. Take 0 ≤ f, g ∈ L1
c(R

d × R
d) such that

Γ(f, g)h 6= ∅. Then an optimal solution to the constrained problem (3)
is unique (as an element of L1(Rd × R

d)).

Proof. Suppose h1, h2 are two optimal plans: h1, h2 ∈ argmin
k∈Γ(f,g)h

Ic(k). We

show h1 = h2 almost everywhere. Since Γ(f, g)h is convex, 1
2
h1+

1
2
h2 ∈

Γ(f, g)h. Since Ic(·) is linear, the plan 1
2
h1 +

1
2
h2 is also optimal.

Hence, by Theorem 7.2, h1, h2,
1
2
h1 +

1
2
h2 are all geometrically ex-

treme. In particular, hi = h1Wi
almost everywhere on R

d × R
d for

i = 1, 2. Let ∆ := (W1 \ W2) ∪ (W2 \ W1) be the symmetric dif-
ference of the sets W1 and W2. Either L2d(∆) = 0, in which case
h1 = h2 almost everywhere, or else for almost every (x, y) ∈ ∆,
0 < (1

2
h1 +

1
2
h2)(x, y) < h(x, y), contradicting Theorem 7.2. �
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9. Appendix: Duality and Examples

In this appendix we sketch how the analog of Kantorovich duality
[K42] would look for the constrained problem, following the minimax
heuristics in [AG11] [MG10]. One of the virtues of such a duality is that
it makes it easy to check whether a conjectured optimizer is actually
optimal. Defering the elaboration of a full duality theory to a future
manuscript [KM12], below we develop just enough theory to confirm
the claims made in example 1.1.
Suppose f and g have total mass 1 on R

d and recall the Duality
Theorem from linear programming (e.g. [V03]). In the unconstrained
context the primal problem is (2) and the dual problem is

(23) sup
(u,v)∈Lipc

−
∫

Rd

u(x)f(x)dx−
∫

Rd

v(y)g(y)dy,

where Lipc := {(u, v) ∈ L1(Rd) × L1(Rd) | c(x, y) + u(x) + v(y) ≥
0 for all (x, y) ∈ R

d × R
d}. We now formulate a dual problem in the

constrained context. For the primal problem (3) we consider the fol-
lowing dual problem
(24)

sup
(u,v,w)∈Lipc

−
∫

Rd

u(x)f(x)dx−
∫

Rd

v(y)g(y)dy+

∫

Rd×Rd

w(x, y)h(x, y)dxdy,

where Lipc := {(u, v, w) ∈ L1(Rd) × L1(Rd) × L1(Rd × R
d) | c(x, y) +

u(x) + v(y)− w(x, y) ≥ 0 and w(x, y) ≤ 0 for all (x, y) ∈ R
d × R

d}. If
follows from the definition of (u, v, w) ∈ Lipc, by integrating c(x, y) ≥
−u(x)− v(y) + w(x, y) against h ∈ Γ(f, g)h, that

∫

Rd×Rd

c(x, y)h(x, y) ≥
∫

Rd×Rd

{−u(x)− v(y) + w(x, y)}h(x, y) ≥

−
∫

Rd

u(x)f(x)−
∫

Rd

v(y)g(y) +

∫

Rd×Rd

w(x, y)h(x, y).

Hence when∫

Rd×Rd

ch = −
∫

Rd

uf −
∫

Rd

vg +

∫

Rd×Rd

wh(25)

we conclude that h ∈ Γ(f, g)h is a minimizer of (3) and (u, v, w) ∈ Lipc
a maximizer of (24).

We now discuss example 1.1 where c(x, y) = 1
2
|x − y|2, f = g =

1|[− 1
2
, 1
2
], and h = 2 · 1|[− 1

2
, 1
2
]2 (figure 1B).
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Let u(x) := −1
2
x2 and v(y) := −1

2
y2. Let S := {(x, y) ∈ R

2 | c(x, y)+
u(x) + v(y) ≤ 0} = {(x, y) ∈ R

2 | xy ≥ 0}. Note that S ∩ [−1
2
, 1
2
]2 =

[−1
2
, 0]× [−1

2
, 0]∪ [0, 1

2
]× [0, 1

2
]. Now let h := h|S∩[− 1

2
, 1
2
]2 ∈ Γ(f, g)h (see

figure 1A) and let

w(x, y) :=

{
c(x, y) + u(x) + v(y) on S

0 on R
2 \ S.

Since w(x, y) ≤ 0 on R
2, c(x, y) + u(x) + v(y)−w(x, y) is = 0 on S,

and is > 0 on R
2 \ S, (u, v, w) ∈ Lipc. Integrating w against h we get:

∫

R×R

c(x, y)h(x, y) +

∫

R

u(x)f(x) +

∫

R

v(y)g(y)

=

∫

R×R

{c(x, y) + u(x) + v(y)}h(x, y) =
∫

S∩[− 1
2
, 1
2
]2
w(x, y)h(x, y)

=

∫

S∩[− 1
2
, 1
2
]2
w(x, y)h(x, y) =

∫

R×R

w(x, y)h(x, y).

That is, the given h, u, v, and w satisfy equation (25). Hence h mini-
mizes the primal problem, and so is optimal, while (u, v, w) maximizes
the dual problem.
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