
ON THE LOCAL CONSTANCY OF CHARACTERS

JONATHAN KORMAN

Abstract. The character of an irreducible admissible representation
of a p-adic reductive group is known to be a constant function in some
neighborhood of any regular semisimple element γ in the group. Un-
der certain mild restrictions on γ, we give an explicit description of a
neighborhood of γ on which the character is constant.

Introduction

Let k be a p-adic field of characteristic zero, and let G be a connected
reductive algebraic group defined over k. We denote by G the group of k-
rational points of G, and by g the Lie algebra of G. Let π be an irreducible
admissible representation of G, and let Θπ be the (distribution) character of
π. In [7] Harish-Chandra showed that Θπ can be represented by a function
(also denoted by Θπ) which is locally integrable on G and locally constant
on the set Greg of regular semisimple elements in G. Thus for any γ ∈ Greg
there exists some neighborhood of γ on which the character is constant.
In [8, Theorem 2, p. 483], R. Howe gave an elementary proof of Harish-
Chandra’s result for general linear groups. In this paper we give a precise
version of local constancy (near compact regular semisimple tame elements)
for all reductive groups. The outline of the approach given here follows the
elementary argument of Howe.

Let gx,r (resp. Gx,|r|) be the Moy-Prasad lattices [10] in g (resp. open
compact subgroups of G), normalized as in [9, §1.2]. Let Gcpt denote the
set of compact elements in G. For a maximal k-torus T , let Tr denote its
filtration subgroups (section 0.3). Let ρ(π) denote the depth of π [10, §5].

Fix a regular semisimple element γ and let T := CG(γ)◦ be the connected
component of its centralizer; T is a maximal k-torus in G. We assume that
it splits over some tamely ramified finite Galois extension E of k. Let T
denote the group of k-rational points of T. When γ ∈ T ∩Gcpt we attach to
it the nonnegative rational number s(γ). Using the filtration subgroups Tr
and the parameter s(γ), we characterize a neighborhood of γ on which the
character Θπ is constant. Whether or not this neighborhood of constancy is
maximal is not addressed here.

The main result of this paper is the following (Theorem 20).
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Theorem. Let r = max{s(γ), ρ(π)} + s(γ). The character Θπ is constant
on the set G(γTr+).

We now give a brief sketch of the proof. Let K be any open compact sub-
group of G. Decompose Θπ into a countable sum of ‘partial trace’ operators
Θd, according to the irreducible representations d of K (see section 3). For
G = GLn, Howe proved [8, p. 499] the following key fact. If X is a com-
pact subset of Greg, then Θd vanishes on X for all d not in a certain finite
set F (which depends only on X). It follows (see proof of Theorem 20),
that Θπ(f) =

∫
X(
∑

d∈F Θd)(x)f(x)dx for all f ∈ C∞
c (X). Hence Θπ is

represented on X by the locally constant function
∑

d∈F Θd.
The main part of this paper is concerned with formulating an analogue

of the above key fact for reductive groups (see Corollary 18).
The rational number s(γ), defined in section 1, is used (Corollary 18) to

make a precise choice of a set X and a subgroup K. Corollary 18 character-
izes a finite set F of representations, such that for all d not in F , Θd vanishes
on X (see Remark 14 for the significance of this fact). Thus the representa-
tions d ∈ F are those which play a role in understanding the character Θπ

near γ. The proof of this corollary relies on a special case (Corollary 13),
in which we only consider 1-dimensional d. Such representations have an
explicit description in terms of cosets in the lie algebra g. In section 2
we develop the technical tools, using Moy-Prasad lattices, to handle these
cosets. Once we have a characterization of the set F , we can make precise
statements about the neighbourhood of constancy of the character near γ
(Theorem 20).

Acknowledgments. I would like to thank Fiona Murnaghan, Jeff Adler,
Stephen DeBacker, Ju-Lee Kim and Joe Repka for helpful conversations and
comments. I would also like to thank the referees for their careful reading
and detailed comments.

Notation and Conventions

Let k be a p-adic field (a finite extension of some Qp) with residue field
Fpn . Let ν be a valuation on k normalized such that ν(k×) = Z.

For any algebraic extension field E of k, ν extends uniquely to a valuation
(also denoted ν) of E.

We denote the ring of integers in E by RE (write R for Rk), and the
prime ideal in RE by ℘E (write ℘ for ℘k).

Let G be a connected reductive group defined over k, and G(E) the group
of E-rational points of G. We denote by G the group of k-rational points
of G. Denote the Lie algebras of G and G(E) by g and g(E), respectively.
Write g for the Lie algebra of k-rational points of g.

Let N be the set of nilpotent elements in g. There are different notions of
nilpotency, but since we assume that char(k) = 0, these notions all coincide.

Let Ad (resp. ad) denote the adjoint representation of G (resp. g) on
its Lie algebra g. For elements g ∈ G and X ∈ g (resp. x ∈ G) we will
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sometimes write gX (resp. gx) instead of Ad(g)X (resp. gxg−1). For a
subset S of g (resp. G) let GS denote the set {gs | g ∈ G and s ∈ S}.

Let n denote the (absolute) rank of G. We say that an element g ∈ G
is regular semisimple if the coefficient of tn in det(t− 1+Ad(g)) is nonzero.
We denote the set of regular semisimple elements in G by Greg. Similarly
we say that an element X ∈ g is regular semisimple if the coefficient of tn in
det(t−ad(X)) is nonzero. We denote the set of regular semisimple elements
in g by greg. Let Gcpt denotes the set of compact elements in G. For a subset
S of G we will sometimes write Scpt for S ∩Gcpt.

For a subset S of g (resp. G) let [S] denote the characteristic function of
S on g (resp. G).

For any compact group K, let K∧ denote the set of equivalence classes of
irreducible, continuous representations of K.

Let π be an irreducible admissible representation of G. We denote by Θπ

the character of π thought of as a locally constant function on the set Greg.
Let ρ(π) denote the depth of π [10, §5].

0. Preliminaries

0.1. Apartments and buildings. For a finite extension E of k, let B(G, E)
denote the extended Bruhat-Tits building of G over E; write B(G) for
B(G, k). It is known (e.g. [13]) that if E is a tamely ramified finite Galois
extension of k then B(G, k) can be embedded into B(G, E) and its image is
equal to the set of Galois fixed points in B(G, E). If T is a maximal k-torus
in G that splits over E, let A(T, E) be the corresponding apartment over
E. Let X∗(T, E) (resp. X∗(T, E)) denote the group of E-rational characters
(resp. cocharacters) of T.

It is known in the tame case [1, §1.9] that there is a Galois equivariant
embedding of B(T, E) into B(G, E), which in turn induces an embedding of
B(T, k) into B(G, k). Such embeddings are only unique modulo translations
by elements of X∗(T, k)⊗R, however their images are all the same and are
equal to the set A(T, E) ∩ B(G, k). From now on we fix a T -equivariant
embedding i : B(T, k) −→ B(G, k), and use it to regard B(T, k) as a subset
of B(G, k); write x for i(x).

Notation. We write A(T, k) for A(T, E)∩B(G, k). This is well defined
independent of the choice of E [15]. Moreover, A(T, k) is the set of Galois
fixed points in A(T, E).

We remark that the image of B(T, E) in B(G, E) is the apartmentA(T, E),
while the image of B(T, k) in B(G, k) is the set A(T, k).

0.2. Moy-Prasad filtrations. Regarding G as a group over E, Moy and
Prasad (see [10] and [11]) define lattices in g(E) and subgroups of G(E).

We can and will normalize (with respect to the normalized valuation
ν) the indexing (x, r) ∈ B(G, E) × R of these lattices and subgroups as
in [9, §1.2]. We will denote the (normalized) lattices by g(E)x,r, and the
(normalized) subgroups by G(E)x,|r|.
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If $E is a uniformizing element of E, and e = e(E/k) is the ramification
index of E over k, then these normalized lattices (resp. subgroups) satisfy$E

g(E)x,r =g(E)x,r+ 1
e
. Write gx,r (resp. Gx,|r| ) for g(k)x,r (resp. G(k)x,|r|).

The above normalization was chosen to have the following property [1,
1.4.1]: when E is a tamely ramified Galois extension of k and x ∈ B(G, k) ⊂
B(G, E), we have

gx,r = g(E)x,r ∩ g, and (for r > 0) Gx,r = G(E)x,r ∩G.(1)

We will also use the following notation. Let r ∈ R and x ∈ B(G).
• gx,r+ = ∪s>rgx,s and Gx,|r|+ = ∪s>|r|Gx,s.
• Gr = ∪x∈B(G)Gx,r and Gr+ = ∪s>rGs for r ≥ 0.

The lattices gx,r+ (resp. groups Gx,|r|+) have analogous properties to those
of gx,r (resp. Gx,|r|). The set G0 is the set of compact elements Gcpt. We
remark that Gcpt ⊂ G(E)cpt ∩G, and in general they need not be equal [3,
§2.2.3].

Lemma 1. Let γ be a compact regular semisimple element, and consider the
maximal k-torus T := CG(γ)◦. Suppose that T splits over a tamely ramified
finite Galois extension E of k. Then γ fixes B(T, k) pointwise.

Proof. Recall that γ acts onA(T, E) by translations [14, §1]. Since γ belongs
to a compact subgroup, it has a fixed point x ∈ B(G, E).

If γ acts on A(T, E) by a nontrivial translation, then for any y ∈ A(T, E)
there is an n ∈ N such that d(x, y) 6= d(x, γn.y). This contradicts the fact
that the action preserves distances. So γ must act trivially on A(T, E). In
particular, γ fixes A(T, k), and hence B(T, k), pointwise. �

0.3. Root decomposition. Let T be a maximal k-torus in G that splits
over a tamely ramified finite Galois extension E of k. Let Φ(T, E) denote
the set of roots of G with respect to E and T, and let Ψ(T, E) denote the
corresponding set of affine roots of G with respect to E, T and ν. When
T is k-split, we also write Φ(T) for Φ(T, k) (resp. Ψ(T) for Ψ(T, k)). If
ψ ∈ Ψ(T, E), let ψ̇ ∈ Φ(T, E) be the gradient of ψ, and let g(E)ψ̇ ⊂ g(E)
be the root space corresponding to ψ̇. We denote the root lattice in g(E)ψ̇
corresponding to ψ by g(E)ψ [10, 3.2].

For x ∈ A(T, E) and r ∈ R, let t(E)r := t(E) ∩ g(E)x,r and t(E)r+ :=
t(E) ∩ g(E)x,r+. Note that t(E)r and t(E)r+ are defined independent of
the choice of x ∈ A(T, E). Similarly one defines the subgroups T(E)r and
T(E)r+ for r ≥ 0; they have analogous properties. Note that using our
conventions we will sometimes denote T(E)0 by T(E)cpt.

An alternative description is [9, §2.1]: for r ∈ R,

t(E)r = {Γ ∈ t(E)| ν(dχ(Γ)) ≥ r for all χ ∈ X∗(T, E)}
and for r > 0,

T(E)r = {t ∈ T(E)| ν(χ(t)− 1) ≥ r for all χ ∈ X∗(T, E)}.
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Since G splits over E, we have

g(E)x,r = t(E)r ⊕
∑

ψ∈Ψ(T,E),ψ(x)≥r

g(E)ψ ,

g(E)x,r+ = t(E)r+ ⊕
∑

ψ∈Ψ(T,E),ψ(x)>r

g(E)ψ .

Let t := Lie(T ), and define t⊥ := (Ad(γ) − 1)g. We have the following
decomposition [7, §18]

g = t⊕ t⊥ .(2)

We write X = Y + Z with respect to this decomposition; when convenient,
we also write Xt for Y .

Fix x ∈ B(T, k) ⊂ B(G, k) and r ∈ R. Write tr for t ∩ gx,r (resp. tr+
for t ∩ gx,r+); as mentioned earlier, these definitions are independent of x.
Define t⊥x,r := t⊥ ∩ gx,r (resp. t⊥x,r+ := t⊥ ∩ gx,r+). We have [1, 1.9.3],

gx,r = tr ⊕ t⊥x,r ,

gx,r+ = tr+ ⊕ t⊥x,r+ .
(3)

0.4. Hypotheses. (HB) There is a nondegenerate G-invariant symmetric
bilinear form B on g such that we can identify g∗x,r with gx,r via the map
Ω : g → g∗ defined by Ω(X)(Y ) = B(X,Y ).

Groups satisfying the above hypothesis are discussed in [4, §4].

Fix r ∈ R>0 and x ∈ B(G, k). For any r ≤ t ≤ 2r the group (Gx,r/Gx,t) is
abelian. By hypothesis (HB), there exists a (Gx,0-equivariant) isomorphism
(see [1, §1.7] or [12, p.16])

(Gx,r/Gx,t)∧ ∼= gx,(−t)+/gx,(−r)+ .(4)

1. Regular depth

From now on let γ ∈ Greg, and assume that the k-torus T := CG(γ)◦

splits over a tamely ramified finite Galois extension E of k. We attach to γ
the following rational number s(γ).

Definition 2. For each α ∈ Φ(T, E) let sα(γ) := ν(α(γ) − 1) and define
s(γ) := max{ sα(γ) |α ∈ Φ(T, E) }.

Remark 3. Note that s(γ) is not the same as the depth of γ (as defined
in [2]). But for good elements [1, §2.2], these two notions agree.
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Remark 4. A priori s(γ) ∈ Q∪ {+∞}, but since γ is regular, α(γ) 6= 1 for
all α ∈ Φ(T, E) and so s(γ) ∈ Q. If γ is compact then s(γ) ≥ 0. Also note
that s(γz) = s(γ) for all z in the center Z(G) of G and that s(gγg−1) = s(γ)
for all g ∈ G.

We will need the following basic properties of s(γ).

Lemma 5. Suppose γ ∈ Tcpt and γ′ ∈ Ts(γ)+.

(1) s(γγ′) = s(γ) and for α ∈ Φ(T, E), we have |α(γγ′)−1| = |α(γ)−1|.
(2) γγ′ ∈ Tcpt.

Proof. (1) Fix r > s(γ) ≥ 0 such that Tr = Ts(γ)+. With this notation
γ′ ∈ Tr. By the alternative description of Tr, for any χ ∈ X∗(T, E),
χ(γ′) = 1 + µ′ where ν(µ′) ≥ r. Thus for any α ∈ Φ(T, E), α(γ′) =
1 + λ′ where ν(λ′) ≥ r.

Note that since each α ∈ Φ(T, E) is continuous, α(T (E)cpt) ⊂ R×E .
Since γ ∈ Tcpt ⊂ T (E)cpt we get that α(γ) is a unit.

Now α(γγ′)−1 = α(γ)α(γ′)−1 = α(γ)(1+λ′)−1 = (α(γ)−1)+
α(γ)λ′. Using ν(α(γ)− 1) =: sα(γ), α(γ) is a unit, and ν(λ′) ≥ r >
s(γ) ≥ sα(γ), we have ν(α(γγ′)− 1) = ν(α(γ)− 1)) (or equivalently
|α(γγ′) − 1| = |α(γ) − 1)|) for all α ∈ Φ(T, E). Thus s(γγ′) :=
max
α
{ν(α(γγ′)− 1)} = max

α
{ν(α(γ)− 1)} =: s(γ).

(2) Since γ and γ′ are in Tcpt, so is their product.
�

Corollary 6. Let γ ∈ T be a compact regular semisimple element. Then
γTs(γ)+ ⊂ Greg.

Proof. For t ∈ T ∩Greg, following [7, §18], define

DG/T (t) := det (Ad(t)− 1)) |g/t =
∏

α∈Φ(T,E)

(α(t)− 1).

Then t ∈ T ∩ Greg ⇔ DG/T (t) 6= 0 ⇔ |DG/T (t)| 6= 0. Using Lemma 5
with γ ∈ T ∩ Gcpt and γ′ ∈ Ts(γ)+, we get |DG/T (γγ′)| =

∏
α
|α(γγ′) − 1| =∏

α
|α(γ)− 1| = |DG/T (γ)| 6= 0. �

2. Some Technical Lemmas

The next lemma will generalize the following example.

Example 7. G = GL2, T a k-split maximal torus. Choose x0 ∈ B(G, k) so

that Gx0,0 = GL2(R). Any X ∈ N ∩(gx0,rrgx0,r+) is of the form k

(
0 x
0 0

)
,
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for some k ∈ Gx0,0 (see [5, 9.2.1]). Thus

X =
(
a b
c d

)(
0 x
0 0

)(
a b
c d

)−1

=
x

ad− bc

(
−ac a2

−c2 ac

)
.

Write X = Y + Z as in (2) and note that the depth of X with respect
to the filtration {gx0,r}r∈R of g is controlled by Z. This is the case since
max{ν(a2), ν(−c2)} ≥ ν(ac) and ad− bc ∈ R×.

Lemma 8. Fix x ∈ B(T, k) and r ∈ R. For X ∈ N ∩ (gx,r r gx,r+), write
X = Y + Z as in (2). Then Z ∈ gx,r r gx,r+.

Proof. We first prove the case when the maximal k-torus T is k-split and
then reduce the general case to this case.

Split case. Assume T is k-split. Note that t⊥ = ⊕α∈Φ(T)gα. Fix a
system of simple roots ∆ in Φ(T) and choose a Chevalley basis for g as in [1,
§1.2]. Such a basis contains elements Hb and Eb in g for each b ∈ Φ(T). If
G is semisimple, then the set {Hb| b ∈ ∆} ∪ {Eb| b ∈ Φ(T)} is a basis for
g. These elements also satisfy the commutation relations listed in [1, 1.2.1].
With respect to this choice of Chevalley basis, the adjoint representation is
determined by the following formulas [1, 1.2.5]:

Ad(eb(λ))Ec =


Eb
Ec + λHb − λ2Eb∑

i≥0Mb,c;i λ
iEib+c

if c = b
if c = −b
if c 6= ±b

Ad(t)Ec = c(t)Ec
Ad(eb(λ))H = H − db(H)λEb

Ad(t)H = H

(5)

for all H ∈ Lie(T ), all t ∈ T and all λ ∈ k. Here eb is the unique map
eb : Add −→ G such that deb(1) = Eb (deb is the derivative of eb); and
Mb,c;i are constants with Mb,c;0 = 1.

Let B be the Borel subgroup associated to ∆ (with Levi decomposition
B = TN and opposite Borel B = TN). We have g = t ⊕ n ⊕ n, where
n := Lie(N) and n := Lie(N). Note that n ⊕ n = ⊕α∈Φ(T)gα = t⊥. Recall
that Gx,0 acts on gx,r (and on gx,r+).

Given X ∈ N ∩ (gx,r r gx,r+), we can use [2, Proposition 3.5.1] (with
T playing the role of M) to conclude that there exists a group element
n ∈ N ∩Gx,0 such that (nX)t ∈ tr+ (where nX denotes Ad(n)X).

Write X = Y +Z as in (2) and assume for a contradiction that Z ∈ gx,r+.
Since X ∈ gx,r r gx,r+, the assumption implies that Y ∈ t∩ (gx,r r gx,r+) =
tr r tr+.

Using the properties (5) of the Chevalley basis, one can easily check that
the set (tr r tr+) ⊕ n is preserved under the action of Ad(eb(λ)) for all
b ∈ Φ+(T), where Φ+(T) are the positive roots with respect to ∆. Since
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{eb(λ) | b ∈ Φ+(T)} generates N , we conclude that nY ∈ (tr r tr+)⊕ n, and
hence that (nY )t ∈ tr r tr+.

On the other hand we have nX = nY + nZ, where nZ ∈ gx,r+. Taking
the t components, we get, (nX)t = (nY )t + (nZ)t, with (nZ)t ∈ tr+. Since
(nX)t ∈ tr+, we conclude that (nY )t ∈ tr+. This contradicts (nY )t ∈ trrtr+.

Hence Z ∈ gx,r r gx,r+ (note that from the decomposition (3) it is clear
that Z ∈ gx,r).

General case. We now assume T is an E-split maximal k-torus. Define
t(E)⊥ := (Ad(γ)− 1)g(E). We have the following analogue of (2)

g(E) = t(E)⊕ t(E)⊥.(6)

Note that t ⊂ t(E) and t⊥ ⊂ t(E)⊥. So the decomposition X = Y + Z (as
in (2)) for X ∈ g is the same whether viewed in g or in g(E).

SinceX ∈ gx,rrgx,r+, equations (1) imply thatX ∈ (g(E)x,rrg(E)x,r+)∩
g. Since X ∈ N ⊂ N (E) (where N (E) is the set of nilpotent elements in
g(E)), we have that X ∈ N (E) ∩ (g(E)x,r r g(E)x,r+). Now since T splits
over E we can regard G over E as a split group and hence apply all the
constructions of the split case above. So by the considerations of the split
case above we conclude that Z ∈ g(E)x,r r g(E)x,r+. Intersecting with g
gives Z ∈ gx,r r gx,r+. �

From now on we assume that γ is also compact. Recall that this implies
that s(γ) ≥ 0 (see Remark 4).

Lemma 9. Let t ∈ R and x ∈ B(T, k). If Z ∈ t⊥ ∩ (gx,−t r gx,(−t)+) then
γZ − Z 6∈ gx,(−t+s(γ))+.

Proof. Using the root decomposition t(E)⊥ = ⊕α∈Φ(T,E)g(E)α, for Z ∈
t⊥ ⊂ t(E)⊥ we write Z =

∑
Zα. Then γZ−Z =

∑
(γZα−Zα) =

∑
(α(γ)−

1)Zα.
By assumption Z 6∈ gx,(−t)+, hence (see equations (1)) Z 6∈ g(E)x,(−t)+.

Thus for some α ∈ Φ(T, E), Zα 6∈ g(E)x,(−t)+, and so by definition of
sα(γ), (α(γ) − 1)Zα 6∈ g(E)x,(−t+sα(γ))+. It follows by definition of s(γ),
that (α(γ) − 1)Zα 6∈ g(E)x,(−t+s(γ))+. Hence γZ − Z =

∑
(α(γ) − 1)Zα 6∈

g(E)x,(−t+s(γ))+. Intersecting with g we get that γZ−Z 6∈ gx,(−t+s(γ))+. �

Proposition 10. Let r ∈ R and x ∈ B(T, k). If X ∈ N ∩ gx,(−2r)+ satisfies
γX −X ∈ gx,(−r)+, then X ∈ gx,(−r−s(γ))+.

Proof. Fix t < 2r such that X ∈ N ∩ (gx,−t r gx,(−t)+).
Write X = Y +Z as in (2). By Lemma 8, Z ∈ t⊥ ∩ (gx,−tr gx,(−t)+), and

so by Lemma 9, γZ − Z 6∈ gx,(−t+s(γ))+.
On the other hand, since γ acts trivially on Y (because Y ∈ t = Cg(γ)),

γZ − Z = γX −X ∈ gx,(−r)+.
Thus −t+ s(γ) > −r, or equivalently −t > −r− s(γ), which implies that

X ∈ gx,−t ⊆ gx,(−r−s(γ))+. �
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Definition 11. A character d ∈ (Gx,r/Gx,2r)∧ is called degenerate if under
the isomorphism (4), the corresponding coset X+gx,(−r)+ contains nilpotent
elements.

Definition 12. Let K be a compact subgroup of G and d ∈ K∧. For g ∈ G,
let gd denote the representation of gKg−1 defined as gd(gkg−1) := d(k). We
say that g intertwines d with itself if upon restriction to gKg−1 ∩K, d and
gd contain a common representation (up to isomorphism) of gKg−1 ∩K.

Corollary 13. Let x ∈ B(T, k), r ∈ R>0, and assume d ∈ (Gx,r/Gx,2r)∧ is
degenerate. If γ intertwines d with itself then d ∈ (Gx,r/Gx,r+s(γ))∧.

Proof. Let X + gx,(−r)+ be the coset in gx,(−2r)+/gx,(−r)+ corresponding to
d under the isomorphism (4). Since this coset is degenerate, we can assume
that X ∈ N .

Since γ fixes x (Lemma 1), γ stabilizes Gx,r. Thus having γ intertwine
d with itself amounts to having d ∼= γd; or furthermore, since d is one-
dimensional, d = γd. Under the isomorphism (4), we get X + gx,(−r)+ =
γ(X + gx,(−r)+), or equivalently that γX −X ∈ gx,(−r)+. Now apply Propo-
sition 10 to conclude that X ∈ gx,(−r−s(γ))+, which under the isomorphism
(4) gives that d ∈ (Gx,r/Gx,r+s(γ))∧. �

3. Partial Traces

Let (π, V ) be an irreducible admissible representation of G. Let K be
an open compact subgroup of G. Let V =

⊕
d∈K∧ Vd be the decomposi-

tion of V into K-isotypic components. Let Ed denote the K-equivariant
projection from V to Vd. For f ∈ C∞

c (G) define the distribution Θd(f) :=
trace (Ed π(f)Ed), the ‘partial trace of π with respect to d’. The distribution
Θd is represented by the locally constant function Θd(x) := trace (Ed π(x)Ed)
on G. Recall that it is known that the distribution Θπ(f) := traceπ(f) is
also represented by a locally constant function, Θπ, on Greg; we will not use
this fact here. It follows from the definitions that as distributions

Θπ(f) =
∑
d∈K∧

Θd(f) for all f ∈ C∞
c (G).

Remark 14. For (some) ω ⊂ Greg compact, Corollary 19 and the proof of
Theorem 20 will imply that, for all f ∈ C∞

c (ω), this sum is finite.

Lemma 15. Θd(kxk−1) = Θd(x) for all x ∈ G and all k ∈ K.

Proof. Since Ed is K-equivariant, it commutes with π(k) for all k ∈ K.

Θd(kxk−1) = trace(Edπ(kxk−1)Ed)
= trace(Edπ(k)π(x)π(k−1)Ed)
= trace(π(k)Edπ(x)Edπ(k−1))
= trace(Edπ(x)Ed) = Θd(x).

�
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Let N be an open compact subgroup of G which is normal in K. Suppose
g ∈ G normalizes K and N . Let d ∈ K∧. Considered as a representation of
N , d decomposes into a finite sum of irreducible representations

d1 ⊕ · · · ⊕ dn .

Proposition 16. Suppose Θd(g) 6= 0. Then d ∼= gd as representations of K
and also for some i ∈ {1, · · · , n}, di ∼= gdi as representations of N .

Proof. We refer to the appendix. Since g permutes the Vd′ ’s (Theorem 22.1),
0 6= Θd(g) = trace(Edπ(g)Ed) implies that g must stabilize Vd. Fix a de-
composition (‡) as in Theorem 22.2, and let EWi denote the K-equivariant
projections onto Wi. Since Ed =

∑
EWi , trace(Edπ(g)Ed) 6= 0 implies that

for some i, g must stabilize Wi, and that trace(EWiπ(g)EWi) 6= 0. By The-
orem 22.3, d ∼= gd, which proves the first part of the theorem.

Now as a representation of N ,

Wi =
N

⊕
j

Wi,dj
,

where Wi,dj
are the dj-isotypic components of Wi. Since g stabilizes N ,

it must permute the Wi,dj
’s (Theorem 22.1). Since EWi =

∑
EWi,dj

, hav-
ing trace(EWiπ(g)EWi) 6= 0 implies that for some j, g must stabilize Wi,dj

,
and that trace(EWi,dj

π(g)EWi,dj
) 6= 0. Fix a decomposition (‡) as in Theo-

rem 22.2 for Wi,dj
:

Wi,dj
∼=
N

⊕
dj .

Since EWi,dj
=
∑
Edj

, trace(EWi,dj
π(g)EWi,dj

) 6= 0 implies that g must
stabilize one of the dj ’s. By Theorem 22.3, dj ∼= gdj , which proves the
second part of the theorem. �

The following theorem and corollaries are used in the proof of Theorem 20
to show that for f with compact support, the sum

∑
d∈K∧ Θd(f) is finite

(see also Remark 14).

Theorem 17. Fix x ∈ B(T, k) and let r > max{s(γ), ρ(π)}. If d ∈ (Gx,r)∧

satisfies Θd(γ) 6= 0, then d ∈ (Gx,r/Gx,r+s(γ))∧.

Proof. If d is trivial we are done, so assume it is not. Let t be the smallest
number such that d|Gx,t+ is trivial (so in particular d|Gx,t is nontrivial).

Case t < 2r: Pick s ≤ 2r such that Gx,s = Gx,t+. Consider d as
an element of (Gx,r/Gx,2r)∧. By Proposition 16, Θd(γ) 6= 0 implies that
d ∼= γd. Also, Θd(γ) 6= 0 implies that d ⊂ π|Gx,r ; since r > ρ(π) this means
that d is degenerate (see [5, §7.6]). Now apply Corollary 13.

Case t ≥ 2r: Note that t
2 ≥ r > s(γ). For ε > 0 such that t

2 >
ε
2 + s(γ),

let s = t + ε. By making ε smaller if necessary, we can make sure that
Gx,s = Gx,t+. Note that t > t

2 + ε
2 + s(γ) = s

2 + s(γ).
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Since s
2 >

t
2 ≥ r it makes sense to restrict d to Gx, s

2
and think of it as an

element of (Gx, s
2
/Gx,s)∧. As a representation of Gx, s

2
/Gx,s, d decomposes

into a finite sum of irreducible (one-dimensional) representations

d1 ⊕ · · · ⊕ dn .

Let Xi + gx,(− s
2
)+ be the coset in gx,(−s)+/gx,(− s

2
)+ corresponding to di

under the isomorphism (4).
By Proposition 16, 0 6= Θd(γ) implies that for some j, dj ∼= γdj .
Now d ⊂ π|Gx,r , implies that dj ⊂ π|Gx, s

2
and since s

2 > r > ρ(π) we
have that dj is degenerate. Apply Corollary 13 to dj to conclude that dj ∈
(Gx, s

2
/Gx, s

2
+s(γ))∧. In particular dj is trivial on Gx, s

2
+s(γ), and hence on

Gx,t.
Since Gx,r normalizes Gx, s

2
, it acts by permutations on the di’s. Since d

is irreducible, this action is transitive. Hence all the di’s are conjugate by
elements of Gx,r. By the conjugation of the di’s and the fact that dj |Gx,t = 1
it follows that di|Gx,t = 1 for all i, and so d itself is trivial on Gx,t. This
contradicts the definition of t. Hence this case is not possible and t < 2r. �

Corollary 18. Fix x ∈ B(T, k) and let r > max{s(γ), ρ(π)}. Let X denote
γTr+s(γ), a compact subset of T ∩ Greg. If d ∈ (Gx,r)∧ satisfies Θd(γ′) 6= 0
for some γ′ ∈ X, then d ∈ (Gx,r/Gx,r+s(γ))∧.

Proof. Lemma 5 implies that γ′ fixes x and that s(γ′)=s(γ). Now apply
Theorem 17 to γ′. �

Corollary 19. Fix x ∈ B(T, k) and let r > max{s(γ), ρ(π)}. Let ω denote
Gx,r(γTr+s(γ)), an open compact subset of Greg. Then Θd vanishes on ω for
all d /∈ (Gx,r/Gx,r+s(γ))∧. Furthermore, Θd(x) = Θd(γ) for all x ∈ ω and
all d ∈ (Gx,r/Gx,r+s(γ))∧.

Proof. Follows immediately from Lemma 15 and Corollary 18. �

4. Proof of the Main Theorem

Let r > max{s(γ), ρ(π)}. Denote the finite set (Gx,r/Gx,r+s(γ))∧ by F .

Theorem 20. The distribution Θπ is represented on the set G(γTr+s(γ)) by
a constant function.

Proof. Using Corollary 19, we have for all f ∈ C∞
c (G) whose support is

contained in ω,

Θπ(f) =
∑

d∈(Gx,r)∧

Θd(f) =
∑
d∈F

∫
ω

Θd(x)f(x)dx =
∑
d∈F

∫
ω

Θd(γ)f(x)dx

=
∫
ω

(∑
d∈F

Θd(γ)

)
f(x)dx.
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Thus Θπ is represented by the constant function
∑

d∈F Θd(γ) on ω, i.e.
Θπ(x) =

∑
d∈F Θd(γ) for all x ∈ ω. Since Θπ is conjugation invariant, we

get Θπ(gxg−1) = Θπ(x) =
∑

d∈F Θd(γ) for all x ∈ ω and all g ∈ G. �

Remark 21. This gives a new proof of the local constancy (near compact
regular semisimple tame elements γ) of the character of an irreducible ad-
missible representation for an arbitrary reductive p-adic group G.

5. Appendix

We prove some variations of Clifford theory [6, §14]. Let K and N be
open compact subgroups of G, such that N is a normal subgroup of K. Let
(π, V ) be an irreducible admissible representation of G and let

V =
K

⊕
d∈K∧

Vd(†)

be the (canonical) decomposition of V into K-isotypic components. Here Vd
denotes the d-isotypic component of V , i.e. the sum of all the K-submodules
of V isomorphic to d = (d,W ). Each isotypic component Vd decomposes
(non-canonically) into a finite sum of isomorphic copies Wi

∼=
K
W of (d,W )

Vd ∼=
K

⊕
i

Wi .(‡)

Theorem 22. Suppose g ∈ G normalizes K and N . Then

(1) The action of g permutes the Vd’s.
(2) Suppose g stabilizes Vd. Then there exists a decomposition (‡) such

that the action of g permutes the Wi.
(3) Suppose W ′ is a K-submodule of V , isomorphic to W , and stable

under the action g. Then gd ∼= d.

Proof. (1) This follows from the fact that for any two K-submodules W ′

and W ′′ of V , if W ′ ∼=
K
W ′′ then gW ′ ∼=

K
gW ′′.

(2) LetW ′ be an irreducibleK-submodule of Vd, isomorphic toW . Since
g normalizes K and stabilizes Vd, gW ′ is a K-submodule of Vd. Since
W ′ is irreducible, so is gW ′. As an irreducible submodule of Vd, gW ′

must be isomorphic toW . By irreducibility eitherW ′∩gW ′ = {0} or
W ′ = gW ′. Thus the orbit of W ′ under g is a collection of subspaces
with trivial pairwise intersection, and so g acts on their sum as a
desired. By complete reducibility of Vd (being a finite-dimensional
representation of the compact group K) we can now use induction
on the dimension of Vd.

(3) This follows from the following commutative diagram (in which all
the arrows are isomorphisms of vector spaces and k ∈ K).
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W −−−−→ W ′ π(g)−−−−→ gW ′ W ′ −−−−→ W

d(k)

y π(k)

y π(gkg−1)

y π(kg)

y d(kg)

ygd(k)

W −−−−→ W ′ π(g)−−−−→ gW ′ W ′ −−−−→ W

�
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