
November 13, 2019 MAT186 – Week 9 Justin Ko

1 Numerical Approximations

1.1 Approximating Values of a Function (Linear Approximations)

We can approximate the value of a function f(x) at points near (a, f(a)) using a linear approximation.

Linear Approximation: The linear approximation of a function at x = a is given by

L(x) = f(a) + f ′(a)(x− a).

For x close to a, we have
L(x) ≈ f(x).

Remark. Notice that L(x) is simply the tangent line of f(x) at a.

Example 1. The linear approximation to the function f(x) =
√
x at x = 4 is given by L(x) = 0.25x+1.

Notice that at points near x = 4, the blue and red lines are very close.
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f(x) =
√
x

L(x) = 0.25x + 1

1.2 Approximating Roots of a Function (Newton’s Method)

Let x∗ denote a root of a function f , that is, a number such that f(x∗) = 0. We can approximate
roots of the function f(x) using Newton’s method.

Newton’s Method: Newton’s Method gives a sequence of numbers x1, x2, . . . that get closer and
closer to a root of f(x). The sequence starting at x0 = a is defined recursively for n ≥ 0 by

xn+1 = xn −
f(xn)

f ′(xn)
.

For large n, we have
xn ≈ x∗.

Warning: Newton’s method may not approximate a root to a function if our initialization point
x1 = a is chosen poorly. For example, Newton’s method may fail to approximate a root if a is chosen
near a local maximum or minimum.
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Example 2. Newton’s Method to find the roots of f(x) = x2 is demonstrated in the picture above:

1. Starting from the point x0 = 3, we compute the tangent line to the curve at x = 3. The
x-intercept of the linear approximation is 1.5, which we denote by x1.

2. Starting from the point x1 = 1.5, we compute the tangent line to the curve at x = 1.5. The
x-intercept of the linear approximation is 0.75, which we denote by x2.

3. Starting from the point x2 = 0.75, we compute the tangent line to the curve at x = 0.75. The
x-intercept of the linear approximation is 0.375, which we denote by x3.

4. Repeat...

The sequence of red dots x0, x1, x2, x3 on the x axis get closer and closer to the root x∗ = 0.

1.3 Example Problems

1.3.1 Linear Approximations

Strategy: To approximate the value of a function at x = b, we compute the tangent line at a point a
near b. The point a is chosen so that f(a) and f ′(a) are easy to compute.

Problem 1.1. (?) Find the linear approximation of ln(x) at x = 1. Estimate the value of ln(1.01).

Solution 1.1. We simply plug a = 1 into the formula of the linear approximation,

L(x) = f(a) + f ′(a)(x− a).
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Notice that f(1) = ln(1) = 0 and f ′(1) = 1
x

∣∣
x=1

= 1. Therefore, we have

L(x) = f(1) + f ′(1)(x− 1) = x− 1.

In particular, we have

L(1.01) = 1.01− 1 = 0.1 ≈ ln(1.01) = 0.00995033.

Remark. Notice that L(1.01) is an over approximation of ln(1.01). This is because ln(x) is concave
down at 1, so the tangent line lies above our curve at this point.

1.3.2 Newton’s Method

Strategy: To approximate the roots of a function, we usually use the intermediate value theorem to
find a value “close” to our root. We then start using Newton’s method for a few iterations to estimate
it.

Problem 1.2. (??) Let g(x) = 3x1/3 − x. Estimate the three solutions to the equation g(x) = 1
correct to 2 decimal places.

Solution 1.2. Finding solutions to g(x) = 1 is equivalent to finding roots of f(x) = 3x1/3−x−1 = 0.

Finding Values Near Roots: Since 3x1/3 − x − 1 = 0 is continuous on R, we can use the in-
termediate value theorem to estimate the locations of our roots. We check intervals of the form
[n, n + 1]. After several attempts, we can conclude that

1. [0, 1]: Since f(0) = −1 and f(1) = 1, the intermediate value theorem implies there exists a root
in the interval (0, 1).

2. [3, 4]: Since f(3) = 0.327 and f(4) = −0.238, the intermediate value theorem implies there exists
a root in the interval (3, 4).

3. [−7,−6]: Since f(−7) = 0.261 and f(−6) = −0.451, the intermediate value theorem implies
there exists a root in the interval (−7,−6).

Apply Newton’s Method: Recall that the recursive formula for Newton’s method is given by

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

3x
1/3
n − xn − 1

x
−2/3
n − 1

.

We start by approximating each of our 3 roots in the intervals we discovered above,

1. [0, 1]: We take x0 = 0.1. Notice that

x1 = 0.1− 3 · 0.11/3 − 0.1− 1

0.1−2/3 − 1
≈ 0.0197

x2 = 0.0197− 3 · 0.01971/3 − 0.0197− 1

0.0197−2/3 − 1
≈ 0.0362

x3 = 0.0362− 3 · 0.03621/3 − 0.0362− 1

0.0362−2/3 − 1
≈ 0.0416

x4 = 0.0416− 3 · 0.04161/3 − 0.0416− 1

0.0416−2/3 − 1
≈ 0.0419.

We can conclude that the approximate value of a root in [0, 1] is approximately 0.04.
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2. [3, 4]: We take x0 = 3. Notice that

x1 = 3− 3 · 31/3 − 3− 1

3−2/3 − 1
≈ 3.629

x2 = 3.629− 3 · 3.6291/3 − 3.629− 1

3.629−2/3 − 1
≈ 3.596

x3 = 3.596− 3 · 3.5961/3 − 3.596− 1

3.596−2/3 − 1
≈ 3.596.

We can conclude that the approximate value of a root in [3, 4] is approximately 3.60.

3. [−7,−6]: We take x0 = −6. Notice that

x1 = −6− −3 · 61/3 + 6− 1

−6−2/3 − 1
≈ −6.346

x2 = −6.346− −3 · 6.3461/3 + 6.346− 1

−6.346−2/3 − 1
≈ −6.507

x3 = −6.507− −3 · 6.5071/3 + 6.507− 1

−6.507−2/3 − 1
≈ −6.580

x4 = −6.58− −3 · 6.581/3 + 6.58− 1

−6.58−2/3 − 1
≈ −6.610

x5 = −6.61− −3 · 6.611/3 + 6.61− 1

−6.61−2/3 − 1
≈ −6.626

x6 = −6.626− −3 · 6.6261/3 + 6.626− 1

−6.626−2/3 − 1
≈ −6.632

x7 = −6.632− −3 · 6.6321/3 + 6.632− 1

−6.632−2/3 − 1
≈ −6.635

x8 = −6.635− −3 · 6.6351/3 + 6.635− 1

−6.635−2/3 − 1
≈ −6.636.

We can conclude that the approximate value of a root in [−7,−6] is approximately −6.64.

Remark: If we tried x0 = 0, then our solution would not have converged to the root in [0, 1], so we
had to try a number slightly larger than 0. The rate of convergence of the case x0 = −6 was a lot
slower than the other cases.
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2 L’Hôpital’s Rule

We can use derivatives to compute limits that were previously impossible to solve using algebraic
manipulations.

L’Hôpital’s Rule: For a limit limx→a
f(x)
g(x) of the indeterminate form 0

0 or ∞∞ , then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right side exists or is infinite.

Remark. L’Hôpital’s rule also works for one-sided limits and limits at infinity.

Warnings:

1. L’Hôpital’s rule does not always work. Sometimes limits need to be computed using the methods
we used in week 3. If the limit computed using L’Hôpital’s rule does not exist, it does not
necessarily mean that our original limit does not exist.

2. Make sure the limit is an indeterminate form of the type 0
0 or ∞∞ before attempting to apply

L’Hôpital’s rule.

3. Do not confuse L’Hôpital’s rule with the quotient rule.

2.1 Example Problems

Strategy: We can only apply L’Hôpital’s rule if we have the indeterminate forms 0
0 or ∞∞ .

1. Check if our limit is an indeterminate form of the type 0
0 or ∞∞ .

2. If our limit is of the type 0
0 or ∞∞ , we can use algebra to write our limit in the appropriate form.

3. If our limit is of the type 0
0 or ∞∞ , then we can differentiate the numerator and denominator and

use the fact

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

4. Simplify our expression after differentiating the numerator and denominator, and compute the
limit if possible. If not, then repeat the process until we can easily deduce our limit.

2.1.1 Indeterminate forms of the type 0
0 or ±∞∞

Problem 2.1. (?) Determine the following limit

lim
x→1

x7 − 1

x3 − 1
.

Solution 2.1. We first try to substitute x = 1 into our function

x7 − 1

x3 − 1

∣∣∣
x=1

=
17 − 1

13 − 1
=

0

0
.

This is an indeterminate form of type 0
0 so we can apply L’Hôpital’s rule,

lim
x→1

x7 − 1

x3 − 1
= lim

x→1

7x6

3x2
L’Hôpital’s rule for

0

0

=
7

3
.
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Problem 2.2. (??) Determine the following limit

lim
x→∞

ex + x

x2 + 2x + 9
.

Solution 2.2. We first try to substitute x =∞ into our function

ex + x

x2 + 2x + 9

∣∣∣
x=∞

=
∞
∞

.

This is an indeterminate form of type ∞∞ so we can apply L’Hôpital’s rule,

lim
x→∞

ex + x

x2 + 2x + 9
= lim

x→∞

ex + 1

2x + 2
L’Hôpital’s rule for

∞
∞

= lim
x→∞

ex

2
L’Hôpital’s rule for

∞
∞

=∞.

Remark. In this example, we had to apply L’Hôpital’s rule twice, because one application still left
us with an indeterminate form.

2.1.2 Indeterminate forms of the type ∞−∞

Strategy: If our limit is of the form ∞−∞, then we usually simplify our expression by either ratio-
nalizing, using a common denominator, or using basic properties of functions.

Problem 2.3. (??) Determine the following limit

lim
x→1

( 1

x− 1
− 1

ln(x)

)
.

Solution 2.3. We first try to substitute x = 1+ and x = 1− into our function( 1

x− 1
− 1

ln(x)

)∣∣∣
x=1+

=∞−∞ and
( 1

x− 1
− 1

ln(x)

)∣∣∣
x=1−

= −∞+∞.

This is an indeterminate form, but it is not of the type 0
0 or ±∞∞ . We write the difference with a

common denominator to simplify this expression,

lim
x→1

( 1

x− 1
− 1

ln(x)

)
= lim

x→1

( ln(x)− x + 1

x lnx− lnx

)
.

This is an indeterminate form of type 0
0 so we can apply L’Hôpital’s rule,

lim
x→1

( ln(x)− x + 1

x lnx− x

)
= lim

x→1

( 1
x − 1

lnx + x
x −

1
x

)
L’Hôpital’s rule for

∞
∞

= lim
x→1

( 1
x − 1

lnx + 1− 1
x

)
= lim

x→1

( − 1
x2

1
x + 1

x2

)
L’Hôpital’s rule for

0

0

= −1

2
.
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Problem 2.4. (? ? ?) Determine the following limit

lim
x→∞

(1

2
lnx− ln(x− 1) +

1

2
ln(x− 2)

)
.

Solution 2.4. We first try to substitute x =∞ into our function(1

2
lnx− ln(x− 1) +

1

2
ln(x− 2)

)∣∣∣
x=∞

=∞−∞+∞.

This is an indeterminate form, but it is not of the type 0
0 or ±∞∞ . We use the properties of the

logarithm to simplify this expression,

lim
x→∞

1

2
lnx− ln(x− 1) +

1

2
ln(x− 2) = lim

x→∞
ln

x1/2(x− 2)1/2

x− 1
= ln

(
lim
x→∞

x1/2(x− 2)1/2

x− 1

)
by continuity of ln(x). The limit on the inside is of the form ∞

∞ , so we could try to use L’Hôpital’s
rule to evaluate this limit, but we will quickly see that this approach will not lead anywhere. Instead,
we can factor out the exponent,

ln
(

lim
x→∞

x1/2(x− 2)1/2

x− 1

)
= ln

(
lim
x→∞

(
x(x− 2)

(x− 1)2

) 1
2
)

=
1

2
ln

(
lim
x→∞

x(x− 2)

(x− 1)2

)
by continuity x1/2. The limit on the inside is of the form ∞

∞ , so we could try to use L’Hôpital’s rule
to evaluate this limit,

1

2
ln

(
lim
x→∞

x(x− 2)

(x− 1)2

)
=

1

2
ln

(
lim
x→∞

x2 − 2x

x2 − 2x + 1

)
=

1

2
ln

(
lim
x→∞

2x− 2

2x− 2

)
L’Hôpital’s rule for

∞
∞

=
1

2
ln

(
lim
x→∞

2

2

)
L’Hôpital’s rule for

∞
∞

=
1

2
ln(1)

= 0.

Remark. The easiest way to compute the limit is to actually use the techniques from week 3,

ln
(

lim
x→∞

x1/2(x− 2)1/2

x− 1

)
= ln

(
lim
x→∞

x1/2(x− 2)1/2

x− 1
·

1
x
1
x

)
= ln

(
lim
x→∞

(1− 2√
x

)1/2

1− 1
x

)
= ln(1) = 0.

2.1.3 Indeterminate forms of the type 0 · ∞

Strategy: If our limit is of the form 0 · ∞, then we use the fact that

f(x)g(x) =
g(x)

f(x)−1
=

f(x)

g(x)−1

to simplify our limit. If L’Hôpital’s rule fails when using the simplification f(x)g(x) = g(x)
f(x)−1 , then

usually trying the simplification f(x)g(x) = f(x)
g(x)−1 will work.

Problem 2.5. (?) Determine the following limit

lim
x→0+

x ln(x).
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Solution 2.5. We first try to substitute x = 0+ into our function

x ln(x)
∣∣∣
x=0+

= 0 · −∞.

This is an indeterminate form, but it is not of the type 0
0 or ±∞∞ . We simplify our expression first,

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

x−1

This is an indeterminate form of type ∞∞ so we can apply L’Hôpital’s rule,

lim
x→0+

ln(x)

x−1
= lim

x→0+

1
x

−x−2
L’Hôpital’s rule for

∞
∞

= lim
x→0+

−x

= 0.

Remark. If we tried to compute the limit

lim
x→0

x ln(x) = lim
x→0

x

ln(x)−1
,

then the procedure would not have terminated.

2.1.4 Indeterminate forms of the type 00, ∞0, 1∞

Strategy: If our limit is of the form 00, ∞0, 1∞, then we use the fact that

f(x)g(x) = eln(f(x)
g(x)) = eg(x)·ln f(x)

to simplify our limit.

Problem 2.6. (??) Determine the following limit

lim
x→0

(sec(x))
1
x2 .

Solution 2.6. We first try to substitute x = 0 into our function

(sec(x))
1
x2

∣∣∣
x=0

= 1∞.

This is an indeterminate form, but it is not of the type 0
0 or ±∞∞ . We simplify our expression first,

lim
x→0

(sec(x))
1
x2 = lim

x→0
exp

(
ln
(

(sec(x))
1
x2

))
= exp

(
lim
x→0

(
ln sec(x)

x2

))
by continuity of ex. The limit on the inside is of the form 0

0 , so we could try to use L’Hôpital’s rule to
evaluate this limit,

exp

(
lim
x→0

(
ln sec(x)

x2

))
= exp

(
lim
x→0

( 1
sec(x) sec(x) tan(x)

2x

))
L’Hôpital’s rule for

0

0

= exp

(
lim
x→0

(
sec2(x)

2

))
L’Hôpital’s rule for

0

0

= exp(1/2).
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Problem 2.7. (??) Determine the following limit

lim
x→0+

2x(x2).

Solution 2.7. We first try to substitute x = 0+ into our function

2x(x2)
∣∣∣
x=0+

= 2 · 00.

This is an indeterminate form, but it is not of the type 0
0 or ±∞∞ . We simplify our expression first,

lim
x→0+

2x(x2) = lim
x→0+

2 exp
(

ln
(
x(x2)

))
= 2 exp

(
lim

x→0+

(
x2 lnx

))
by continuity of ex. The limit on the inside is of the form 0·∞, so we have to do one more simplification
before we can use L’Hôpital’s rule to evaluate this limit,

2 exp

(
lim

x→0+

(
x2 lnx

))
= 2 exp

(
lim

x→0+

(
lnx

x−2

))
= 2 exp

(
lim

x→0+

(
x−1

−2x−3

))
L’Hôpital’s rule for

0

0

= 2 exp

(
lim

x→0+

(
x2

−2

))
= 2.

2.1.5 When L’Hôpital’s Rule Fails

Strategy: L’Hôpital’s rule is a powerful tool that allows us to compute many limits we could not solve
before. However, it is still important to remember our methods in week 3, because not all limits can
be solved using L’Hôpital’s rule.

Problem 2.8. (?) Determine the following limit

lim
x→4

x2 + x− 4

x + 4
.

Solution 2.8. We first try to substitute x = 4 into our function

x2 + x− 4

x + 4

∣∣∣
x=4

=
42 + 4− 4

4 + 4
= 2.

This is not an indeterminate form, so we can conclude

lim
x→4

x2 + x− 4

x + 4
= 2.

Remark. We always have to check if our limit is in the appropriate form before applying L’Hôpital’s
rule. For example, if we blindly applied the rule, then we would have incorrectly concluded

lim
x→4

x2 + x− 4

x + 4
= lim

x→4

2x + 1

1
= 9.
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Problem 2.9. (?) Determine the following limit

lim
x→∞

x + sin(x)

x
.

Solution 2.9. We begin by demonstrating what happens when we apply L’Hôpital’s rule. We first
try to substitute x =∞ into our function

x + sin(x)

x

∣∣∣
x=∞

=
∞
∞

.

This is an indeterminate form of type ∞∞ so we can try to apply L’Hôpital’s rule,

lim
x→∞

x + sin(x)

x
= lim

x→∞

1 + cos(x)

1
.

The limit on the right does not exist, so L’Hôpital’s rule actually cannot be applied in this step. We
might be tempted to conclude that this means our limit does not exist as well, but this is wrong.

In fact, using our methods from week 3, the limit actually exists

lim
x→∞

x + sin(x)

x
= lim

x→∞
1 +

sin(x)

x
= 1,

by the squeeze theorem.

Problem 2.10. (?) Determine the following limit

lim
x→∞

√
x2 + 1

x
.

Solution 2.10. We begin by demonstrating what happens when we apply L’Hôpital’s rule. We first
try to substitute x =∞ into our function

√
x2 + 1

x

∣∣∣
x=∞

=
∞
∞

.

This is an indeterminate form of type ∞∞ so we can try to apply L’Hôpital’s rule,

lim
x→∞

√
x2 + 1

x
= lim

x→∞

x√
x2+1

1
L’Hôpital’s rule for

∞
∞

= lim
x→∞

x√
x2 + 1

= lim
x→∞

1
x√

x2+1

L’Hôpital’s rule for
∞
∞

= lim
x→∞

√
x2 + 1

x

which is back to where we started, so L’Hôpital’s rule failed to simplify the limit in this case. We
might be tempted to conclude that this means our limit cannot be evaluated, but this is wrong.

In fact, using our methods from week 3, the limit actually exists,

lim
x→∞

√
x2 + 1

x
= lim

x→∞

√
x2 + 1

x
·

1
x
1
x

= lim
x→∞

√
1 + 1

x2

1
= 1.
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