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1 Continuity

Definition 1. A function is continuous at a if

lim
x→a

f(x) = f(a).

Similarly, a function is continuous from the right at a, if

lim
x→a+

f(x) = f(a),

and continuous from the left at a, if
lim

x→a−
f(x) = f(a).

In the definitions above, we implicitly assumed that the all the quantities are well defined, that is, the
appropriate limits limx→a f(x) or limx→a+ f(x) or limx→a− f(x) exists, and f(a) exists.

Definition 2. A function is continuous at on an interval if is continuous at every point in the interval
(with the appropriate one-sided notion of continuity at an endpoint). For example, a function f is
continuous on (a, b) if f is continuous at all x ∈ (a, b). A function f is continuous on (a, b] if f is
continuous at all x ∈ (a, b) and f is continuous from the left at the endpoint b.

All the basic functions introduced in Week 1 are continuous at all points where the function is
defined. Furthermore, all basic function operations f + g, f · g, f ◦ g, etc, preserve continuity:

1. Addition: If f and g are continuous at a, then f + g is continuous at a.

2. Multiplication: If f and g are continuous at a, then f · g is continuous at a.

3. Composition: If g is continuous at a and f is continuous at g(a), then f ◦ g is continuous at a.

This means that basic combinations of functions in Week 1 are also continuous where defined.

Definition 3. There are 3 main types of discontinuities

1. Removable Discontinuity: A removable discontinuity occurs at a when limx→a f(x) exists, but
limx→a f(x) 6= f(a) or f(a) is not defined.

2. Jump Discontinuity: A jump discontinuity occurs at a when both limx→a+ f(x) and limx→a− f(x)
different and finite. Note that we do not need f(a) to exist.

3. Infinite Discontinuity: An infinite discontinuity occurs at a when one or both of the limits
limx→a+ f(x) and limx→a− f(x) are infinite. Note that we do not need f(a) to exist.
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Example 1. This graph has a removable discontinuity at x = 0, a jump discontinuity at x = 1, and
an infinite discontinuity at x = 2.
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1.1 Three Theorems about Continuous Functions

We state several important theorems related to continuous functions.

1.1.1 Intermediate Value Theorem:

Theorem 1 (Intermediate Value Theorem). If f is continuous on the interval [a, b] and N is an
intermediate value between f(a) and f(b), that is

min(f(a), f(b)) < N < max(f(a), f(b)),

then there exists a c ∈ (a, b) such that f(c) = N .

The Intermediate Value Theorem provides a nice way to solve inequalities with continuous functions.

Corollary 1. If f is continuous on (a, b) and f(x) 6= 0 for all x ∈ (a, b), then f(x) > 0 for all
x ∈ (a, b) or f(x) < 0 for all x ∈ (a, b).

1.1.2 Differentiable implies Continuous:

Definition 4. Recall that the derivative of y = f(x) is given by

f ′(x) =
dy

dx
= lim

h→0

f(x + h)− f(x)

h
.

We say a function is differentiable at a if f ′(a) exists, and differentiable on an interval (a, b) if f ′(x)
exists for all x ∈ (a, b).

Every differentiable function is continuous:

Theorem 2. If f is differentiable at a, then f is continuous at a.

However, not every continuous function is differentiable, so the converse the statement is false.

Example 2. Since limx→0 |x| = 0 = |0|, |x| is continuous at 0. However, the function is not differen-
tiable at 0 because the left and right derivatives give different values,

lim
h→0+

|0 + h| − |0|
h

=
h

h
= 1 and lim

h→0−

|0 + h| − |0|
h

=
−h
h

= −1.

Therefore the limh→0
|x+h|−|x|

h does not exist when x = 0, so the function is not differentiable at 0.

1.1.3 Continuous implies integrable

Definition 5. Recall that the definite integral of f(x) is given by∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ∆x,

where ∆x = b−a
n and x∗i ∈ [a + (i − 1)∆x, a + i∆x]. A function is integrable if the limit on the right

exists for all ways of choosing x∗i .

Every continuous function is integrable:

Theorem 3. If f is continuous on [a, b], then
∫ b

a
f(x) dx exists.

However, not every integrable function is continuous, so the converse of the statement is false.

Example 3. The function f(x) = 0 for x ∈ [0, 1] and f(x) = 1 for x ∈ [1, 2] is not continuous, but it

integrable on [0, 2]. It is easy to check from the definition that
∫ 2

0
f(x) dx = 1. For any x∗i , we have

1− 1

n
≤

n∑
i=1

f(x∗i ) ∆x ≤ 1 +
1

n
=⇒ lim

n→∞

n∑
i=1

f(x∗i ) ∆x = 1.

by the squeeze theorem.
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1.2 Example Problems

1.2.1 Checking Continuity

Problem 1.1. (?) Given that

f(x) =


ln(x− 1) + b x > 2

x2 x = 2

ex+a x < 2

find the values of a and b such that f is continuous on R.

Solution 1.1. We know that the continuity is preserved under basic function operations, so f(x) is
continuous where it is defined. In particular, this means that f(x) is continuous on (2,∞) and (−∞, 2).
We only have to check the about the potential discontinuity at x = 2. Notice that

lim
x→2−

f(x) = lim
x→2−

(ln(x− 1) + b) = ln(1) + b = b

and by continuity,
lim

x→2+
f(x) = lim

x→2+
ex+a = elimx→2+ x+a = e2+a.

Since f(2) = 22 = 4, we need b = e2+a = 4 for our function to be continuous. In particular, we need

b = 4 and e2+a = 4 =⇒ a = ln(4)− 2 and b = 4.

Problem 1.2. (??) Let

f(x) =
x2 − 4

x− a
.

1. Find the value(s) of a such that f(x) has a removable discontinuity.

2. Find the value(s) of a such that f(x) has a infinite discontinuity.

3. Find the value(s) of a such that f(x) has a jump discontinuity.

Solution 1.2. Notice that

f(x) =
x2 − 4

x− a
=

(x− 2)(x + 2)

x− a
.

We have that f(x) is not defined at x = a, and our function is continuous everywhere else. If a = 2,
notice that

lim
x→2

f(x) = lim
x→2

(x− 2)(x + 2)

x− 2
= lim

x→2
(x + 2) = 4,

so limx→2 f(x) exists. Therefore, there is a removable discontinuity at x = 2. Similarly, if a = −2,
notice that

lim
x→−2

f(x) = lim
x→−2

(x− 2)(x + 2)

x + 2
= lim

x→−2
(x− 2) = −4,

so limx→−2 f(x) exists. Therefore, there is a removable discontinuity at x = −2. For a 6= ±2, we have

lim
x→a+

(x− 2)(x + 2)

x− a
=

(a− 2)(a + 2)

0+
=

{
∞ |a| > 2

−∞ |a| < 2

since the numerator is not 0. Therefore, we have an infinite discontinuity at x = a.

To summarize, the function f(x) has a removable discontinuity if a = ±2 and an infinite disconti-
nuity if a 6= ±2.
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1.2.2 Application of the Intermediate Value Theorem

Problem 1.3. (??) Show that the function

f(x) = x2 − 3− ln(x)

has at least 2 roots in the interval (0, 2).

Solution 1.3. Notice that f(x) is continuous on (0, 2). To show a continuous function has a root in
(0, 2), it suffices to find two points a and b in (0, 2) such that f(a) > 0 and f(b) < 0. To show that
a function has at least 2 roots, we essentially have to do this procedure twice, and double check that
our points lie in disjoint intervals.

One can check that f(0.01) = 0.012 − 3 − ln(0.01) ≈ 1.6025 > 0, and f(1) = −2 < 0, f(1.99) =
1.992 − 3 − ln(1.99) ≈ 0.2720 > 0. Therefore, since our function is continuous on [0.01, 1] and
f(1) < 0 < f(0.01), there exists a root c1 ∈ (0.01, 1) such that f(c1) = 0. Similarly, since our
function is continuous on [1, 1.99] and f(1) < 0 < f(1.99), there exists a root c2 ∈ (1, 1.99) such that
f(c2) = 0. Since the intervals (0.01, 1) and (1, 1.99) are disjoint, we have c1 6= c2, so f(x) has at least
2 roots in the interval (0, 2).

Problem 1.4. (??) Find all x such that

f(x) = e2x − 6ex + 8 > 0.

Solution 1.4. Notice that f(x) is continuous for all x ∈ R. We can apply the Corrolary 1 to find the
regions where f(x) > 0. We first find the roots f(x) = 0,

e2x − 6ex + 8 = (ex − 4)(ex − 2) = 0⇔ ex − 2 = 0 or ex − 4 = 0⇔ x = ln(2) or x = ln(4).

Therefore, f(x) is non-zero on the intervals (−∞, ln(2)), (ln(2), ln(4)), (ln(4),∞). By Corrolary 1, it
suffices to check one point in each of the intervals to determine the sign of f for all x in the interval.

1. (−∞, ln(2)): Take 0 ∈ (−∞, ln(2)), f(0) = e0 − 6e0 + 8 > 0 , so f(x) > 0 for all x ∈ (−∞, ln(2))

2. (ln(2), ln(4)): Take ln(3) ∈ (ln(2), ln(4)), f(ln(3)) = eln(3
2) − 6eln(3) + 8 = 9 − 18 + 8 < 0 , so

f(x) < 0 for all x ∈ (ln(2), ln(4))

3. (ln(4),∞): Take ln(10) ∈ (ln(4),∞), f(ln(10)) = eln(10
2) − 6eln(10) + 8 = 100 − 60 + 8 > 0 , so

f(x) > 0 for all x ∈ (ln(4),∞)

Therefore, f(x) > 0 for x ∈ (−∞, ln(2)) ∪ (ln(4),∞).

1.2.3 Proofs of Continuity Theorems

Problem 1.5. (? ? ?) Prove Corollary 1: If f is continuous on (a, b) and f(x) 6= 0 for all x ∈ (a, b),
then f(x) > 0 for all x ∈ (a, b) or f(x) < 0 for all x ∈ (a, b).

Solution 1.5. We do a proof by contradiction. Suppose that f is continuous on (a, b) and f(x) 6= 0
for all x ∈ (a, b) and there exists two points c and d in (a, b) such that f(c) < 0 and f(d) > 0. The
intermediate value theorem then implies that there exists a point y between c and d such that f(y) = 0
contradicting the fact f(x) is non-zero on (a, b).
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Problem 1.6. (? ? ?) Prove Theorem 2: If f is differentiable at a, then f is continuous at a.

Solution 1.6. Suppose f is differentiable at a. We need to show that limx→a f(x) = f(a). Since f is
differentiable, we know

f ′(a) = lim
h→0

f(a + h)− f(a)

h

exists. If we define h = x− a, then we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
,

which is the alternate definition of a derivative. Using the alternate definition, we have

lim
x→a

f(x) = lim
x→a

(f(x)− f(a) + f(a))

= lim
x→a

(f(x)− f(a)

x− a
(x− a) + f(a))

)
=
(

lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a) + lim
x→a

f(a))
)

Limit Laws

= f ′(a) · lim
x→a

(x− a) + f(a) Alternate Definition

= f(a),

so f is continuous.

1.2.4 Limits of the composition of discontinuous functions

If f is discontinuous at b and limx→a g(x) = b, then limx→a f(g(x)) may not behave nicely. These
examples are to illustrate the potential dangers when taking limits with a discontinuous function on
the outside. In these cases, evaluating the function at a may not give the right answer even if we do
not get an indeterminate form.

Problem 1.7. (??) Consider the discontinuous function

f(x) =

{
1 x = 0

0 x 6= 0

and let g(x) = x2. Compute limx→0 f(g(x)).

Solution 1.7. We first compute the composition of the functions,

f(g(x)) = f(x2) =

{
1 x = 0

0 x 6= 0.

since x2 = 0 if and only if x = 0. Therefore, we have

lim
x→0

f(g(x)) = 0,

since f(g(x)) is equal to 0 for all x 6= 0.

Remark. We cannot take the limit inside function f in this problem. In this case, if we incorrectly
used the property limx→0 f(g(x)) = f(limx→0 g(x)) then we will incorrectly conclude

lim
x→0

f(g(x)) = lim
x→0

f(x2) = f( lim
x→0

x2) = f(0) = 1.

The reason why we can’t take the limit inside is that f(x) is not continuous at 0, so the property does
not hold. This is a reason why existence of the limits is not enough for the composition of functions.
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Problem 1.8. (??) Consider the discontinuous function

f(x) =

{
1 x > 0

0 x ≤ 0

and let g(x) = x2. Compute limx→0 f(g(x)).

Solution 1.8. We first compute the composition of the functions,

f(g(x)) = f(x2) =

{
0 x = 0

1 x 6= 0.

since x2 > 0 whenever x 6= 0 and x2 = 0 when x = 0. Therefore, we have

lim
x→0

f(g(x)) = 1,

since f(g(x)) is equal to 1 for all x 6= 0.

Remark. In this example, even though the the limit limx→0 f(x) does not exist (check that the left
and right limits give different values), the limit of f(g(x)) still exists. If we tried to take the limit
inside, limx→0 f(g(x)) = f(limx→0 g(x)) then we would have gotten the incorrect answer, for the same
reasoning as the previous problem.

Problem 1.9. (??) Consider the discontinuous function

f(x) =

{
1 x = 0

0 x 6= 0.

Compute limx→0 f(f(x)).

Solution 1.9. We first compute the composition of the functions,

f(f(x)) =

{
0 x = 0

1 x 6= 0.

Therefore, we have
lim
x→0

f(f(x)) = 1.

Remark. In this case, if we incorrectly used the property limx→0 f(g(x)) = f(limx→0 g(x)) then we
get

lim
x→0

f(f(x)) = f( lim
x→0

f(x)) = f(0) = 1,

which is the correct answer. This just happened by chance, and the steps to arrive at this conclusion
is completely wrong without more justification. This is also the usual counter example that disproves
the claim that if limg→b f(g) = L and limx→a g(x) = b, then limx→a f(g(x)) = limg→b f(g) = L.
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