1 Continuity

Definition 1. A function is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Similarly, a function is continuous from the right at a, if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

and continuous from the left at a, if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

In the definitions above, we implicitly assumed that the all the quantities are well defined, that is, the appropriate limits $\lim _{x \rightarrow a} f(x)$ or $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a^{-}} f(x)$ exists, and $f(a)$ exists.
Definition 2. A function is continuous at on an interval if is continuous at every point in the interval (with the appropriate one-sided notion of continuity at an endpoint). For example, a function f is continuous on (a, b) if f is continuous at all $x \in(a, b)$. A function f is continuous on $(a, b]$ if f is continuous at all $x \in(a, b)$ and f is continuous from the left at the endpoint b.

All the basic functions introduced in Week 1 are continuous at all points where the function is defined. Furthermore, all basic function operations $f+g, f \cdot g, f \circ g$, etc, preserve continuity:

1. Addition: If f and g are continuous at a, then $f+g$ is continuous at a.
2. Multiplication: If f and g are continuous at a, then $f \cdot g$ is continuous at a.
3. Composition: If g is continuous at a and f is continuous at $g(a)$, then $f \circ g$ is continuous at a.

This means that basic combinations of functions in Week 1 are also continuous where defined.
Definition 3. There are 3 main types of discontinuities

1. Removable Discontinuity: A removable discontinuity occurs at a when $\lim _{x \rightarrow a} f(x)$ exists, but $\lim _{x \rightarrow a} f(x) \neq f(a)$ or $f(a)$ is not defined.
2. Jump Discontinuity: A jump discontinuity occurs at a when both $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ different and finite. Note that we do not need $f(a)$ to exist.
3. Infinite Discontinuity: An infinite discontinuity occurs at a when one or both of the limits $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ are infinite. Note that we do not need $f(a)$ to exist.

Example 1: This graph has a removable discontinuity at $x=0$, a jump discontinuity at $x=1$, and an infinite discontinuity at $x=2$.

1.1 Three Theorems about Continuous Functions

We state several important theorems related to continuous functions.

1.1.1 Intermediate Value Theorem:

Theorem 1 (Intermediate Value Theorem). If f is continuous on the interval $[a, b]$ and N is an intermediate value between $f(a)$ and $f(b)$, that is

$$
\min (f(a), f(b))<N<\max (f(a), f(b))
$$

then there exists a $c \in(a, b)$ such that $f(c)=N$.
The Intermediate Value Theorem provides a nice way to solve inequalities involving continuous functions.

Corollary 1. If f is continuous on (a, b) and $f(x) \neq 0$ for all $x \in(a, b)$, then $f(x)>0$ for all $x \in(a, b)$ or $f(x)<0$ for all $x \in(a, b)$
Proof. We do a proof by contradiction. Suppose that f is continuous on (a, b) and $f(x) \neq 0$ for all $x \in(a, b)$ and there exists two points c and d in (a, b) such that $f(c)<0$ and $f(d)>0$. The intermediate value theorem then implies that there exists a point y between c and d such that $f(y)=0$ contradicting the fact $f(x)$ is non-zero on (a, b).

1.1.2 Differentiable implies Continuous:

We now state the relation between differentiable and continuous functions. Recall that the derivative of $y=f(x)$ is given by

$$
f^{\prime}(x)=\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Definition 4. We say a function is differentiable at a if $f^{\prime}(a)$ exists, and differentiable on an interval (a, b) if $f^{\prime}(x)$ exists for all $x \in(a, b)$.

Every differentiable function is continuous, but not every continuous function is differentiable. This follows from the fact

Theorem 2. If f is differentiable at a, then f is continuous at a.
Proof. Suppose f is differentiable at a. We need to show that $\lim _{x \rightarrow a} f(x)=f(a)$. Since f is differentiable, we know

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. If we define $h=x-a$, then we have

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

which is the alternate definition of a derivative. Using the alternate definition, we have

$$
\begin{array}{rlrl}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}(f(x)-f(a)+f(a)) & \\
& \left.=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}(x-a)+f(a)\right)\right) & \\
& \left.=\left(\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)+\lim _{x \rightarrow a} f(a)\right)\right) & & \text { Limit Laws } \\
& =f^{\prime}(a) \cdot \lim _{x \rightarrow a}(x-a)+f(a) & & \text { Alternate Definition } \\
& =f(a) &
\end{array}
$$

so f is continuous.

1.1.3 Continuous implies integrable

We now state the relationship between integrable and continuous functions. Recall that the definite integral of $f(x)$ is given by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}^{*} \in[a+(i-1) \Delta x, a+i \Delta x]$.
A function is called integrable provided the limit on the right exists. We have that every continuous function is integrable, but there are also many integrable functions that are not continuous.

Theorem 3. If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x$ exists.
The proof is out of the scope of this course, and usually requires a more general notion of a Riemann Sum.

1.2 Example Problems

1.2.1 Checking Continuity

Problem 1. (\star) Given that

$$
f(x)= \begin{cases}\ln (x-1)+b & x>2 \\ x^{2} & x=2 \\ e^{x+a} & x<2\end{cases}
$$

find the values of a and b such that f is continuous on \mathbb{R}.

Solution 1. We know that the continuity is preserved under basic function operations, so $f(x)$ is continuous where it is defined. In particular, this means that $f(x)$ is continuous on $(2, \infty)$ and $(-\infty, 2)$. We only have to check the about the potential discontinuity at $x=2$. Notice that

$$
\lim _{x \rightarrow 2^{-}}(\ln (x-1)+b)=\ln (1)+b=b
$$

and by continuity,

$$
\lim _{x \rightarrow 2^{+}} e^{x+a}=e^{\lim _{x \rightarrow 2^{+}} x+a}=e^{2+a}
$$

Since $f(2)=2^{2}=4$, we need $b=e^{2+a}=4$ for our function to be continuous. In particular, we need

$$
b=4 \text { and } e^{2+a}=4 \Longrightarrow a=\ln (4)-2 \text { and } b=4 .
$$

Problem 2. ($\star \star$) Let

$$
f(x)=\frac{x^{2}-4}{x-a}
$$

1. Find the value(s) of a such that $f(x)$ has a removable discontinuity.
2. Find the value(s) of a such that $f(x)$ has a infinite discontinuity.
3. Find the value(s) of a such that $f(x)$ has a jump discontinuity.

Solution 2. Notice that

$$
f(x)=\frac{x^{2}-4}{x-a}=\frac{(x-2)(x+2)}{x-a}
$$

We have that $f(x)$ is not defined at $x=a$, and our function is continuous everywhere else. If $a=2$, notice that

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4
$$

so $\lim _{x \rightarrow 2} f(x)$ exists. Therefore, there is a removable discontinuity at $x=2$. Similarly, if $a=-2$, notice that

$$
\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{(x-2)(x+2)}{x+2}=\lim _{x \rightarrow-2}(x-2)=-4
$$

so $\lim _{x \rightarrow-2} f(x)$ exists. Therefore, there is a removable discontinuity at $x=-2$. For $a \neq \pm 2$, we have

$$
\lim _{x \rightarrow a^{+}} \frac{(x-2)(x+2)}{x-a}=\frac{(a-2)(a+2)}{0^{+}}= \begin{cases}\infty & |a|>2 \\ -\infty & |a|<2\end{cases}
$$

since the numerator is not 0 . Therefore, we have an infinite discontinuity at $x=a$.

To summarize, the function $f(x)$ has a removable discontinuity if $a= \pm 2$ and an infinite discontinuity if $a \neq \pm 2$.

1.2.2 Application of the Intermediate Value Theorem

Problem 1. ($\star \star$) Show that the function

$$
f(x)=x^{2}-3-\ln (x)
$$

has at least 2 roots in the interval $(0,2)$.

Solution 1. Notice that $f(x)$ is continuous on $(0,2)$. To show a continuous function has a root in $(0,2)$, it suffices to find two points a and b in $(0,2)$ such that $f(a)>0$ and $f(b)<0$. To show that a function has at least 2 roots, we essentially have to do this procedure twice, and double check that our points lie in disjoint intervals.

One can check that $f(0.01)=0.01^{2}-3-\ln (0.01) \approx 1.6025>0$, and $f(1)=-2<0, f(1.99)=$ $1.99^{2}-3-\ln (1.99) \approx 0.2720>0$. Therefore, since our function is continuous on $[0.01,1]$ and $f(1)<0<f(0.01)$, there exists a root $c_{1} \in(0.01,1)$ such that $f\left(c_{1}\right)=0$. Similarly, since our function is continuous on $[1,1.99]$ and $f(1)<0<f(1.99)$, there exists a root $c_{2} \in(1,1.99)$ such that $f\left(c_{2}\right)=0$. Since the intervals $(0.01,1)$ and $(1,1.99)$ are disjoint, we have $c_{1} \neq c_{2}$, so $f(x)$ has at least 2 roots in the interval $(0,2)$.

Problem 2. ($\star \star$) Find x such that

$$
f(x)=e^{2 x}-6 e^{x}+8>0
$$

Solution 2. Notice that $f(x)$ is continuous for all $x \in \mathbb{R}$. We can apply the Corrolary 1 to find the regions where $f(x)>0$. We first find the roots $f(x)=0$,

$$
e^{2 x}-6 e^{x}+8=\left(e^{x}-4\right)\left(e^{x}-2\right)=0 \Leftrightarrow e^{x}-2=0 \text { or } e^{x}-4=0 \Leftrightarrow x=\ln (2) \text { or } x=\ln (4) .
$$

Therefore, $f(x)$ is non-zero on the intervals $(-\infty, \ln (2)),(\ln (2), \ln (4)),(\ln (4), \infty)$. By Corrolary 1, it suffices to check one point in each of the intervals to determine the sign of f for all x in the interval.

1. $(-\infty, \ln (2))$: Take $0 \in(-\infty, \ln (2)), f(0)=e^{0}-6 e^{0}+8>0$, so $f(x)>0$ for all $x \in(-\infty, \ln (2))$
2. $(\ln (2), \ln (4)):$ Take $\ln (3) \in(\ln (2), \ln (4)), f(\ln (3))=e^{\ln \left(3^{2}\right)}-6 e^{\ln (3)}+8=9-18+8<0$, so $f(x)<0$ for all $x \in(\ln (2), \ln (4))$
3. $(\ln (4), \infty)$: Take $\ln (10) \in(\ln (4), \infty), f(\ln (10))=e^{\ln \left(10^{2}\right)}-6 e^{\ln (10)}+8=100-60+8>0$, so $f(x)>0$ for all $x \in(\ln (4), \infty)$

Therefore, $f(x)>0$ for $x \in(-\infty, \ln (2)) \cup(\ln (4), \infty)$.

