
October 10, 2019 MAT186 – Week 3 Justin Ko

1 Limits

1.1 Intuitive Definitions of Limits

We use the following notation to describe the limiting behavior of functions.

1. (Limit of a Function) A limit is written as

lim
x→a

f(x) = L “the limit of f(x) as x approaches a is L”.

This means f gets arbitrarily close to L whenever x is sufficiently close but not equal to a.

2. (One-sided limit) A right one-sided limit is written as

lim
x→a+

f(x) = L “the limit of f(x) as x approaches a from the right is L”.

This means f gets arbitrarily close to L whenever x is sufficiently close but strictly greater than a.

Similarly, a left one-sided limit is written as

lim
x→a−

f(x) = L “the limit of f(x) as x approaches a from the left is L”.

This means f gets arbitrarily close to L whenever x is sufficiently close but strictly less than a.

3. (Limit at Infinity) A limit at infinity is written as

lim
x→∞

f(x) = L “the limit of f(x) at infinity is L”.

This means f gets arbitrarily close to L whenever x is sufficiently large.

Similarly, a limit at negative infinity is written as

lim
x→−∞

f(x) = L “the limit of f(x) at negative infinity is L”.

This means f gets arbitrarily close to L whenever x is sufficiently small.

4. (Infinite Limit) If L = +∞ in the definitions above, then it means that f gets arbitrarily large.
Likewise, if L = −∞ then we mean that f gets arbitrarily small.

1.2 Special Limits

We have the following special limits

1.

lim
x→0

sinx

x
= 1,

2.

lim
x→0

cosx− 1

x
= 0,

3.

lim
x→0

(1 + ax)
1
x = ea or lim

x→±∞

(
1 +

a

x

)x
= ea,

4.

lim
x→0

ex − 1

x
= 1.
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1.3 Limit Laws

Suppose that
lim
x→a

f(x) and lim
x→a

g(x) exists.

We can use the following properties to compute the limits of complicated functions.

1. Sums of Functions:
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

2. Products of Functions:
lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

3. Composition of Functions: If f(x) is continuous at L and limx→a g(x) = L, then

lim
x→a

f(g(x)) = f( lim
x→a

g(x)) = f(L).

This means if f(x) is continuous at a, then we can evaluate our function at the limit,

lim
x→a

f(x) = f(a).

4. Squeeze Theorem: If g(x) ≤ f(x) ≤ h(x) when x is near a (except possibly at a) and

lim
x→a

g(x) = lim
x→a

h(x) = L

then
lim
x→a

f(x) = L.

Remark. The functions introduced in Week 1, i.e. polynomials, exponentials, trigonometric functions,
hyperbolic functions, and their inverses, etc are continuous at every number in their domains. See
the examples in Section 1.2.4 in Week 4 for examples of what can happen when taking limits for
compositions of discontinuous functions.

1.4 Infinite Limits and Graphs

Limits at infinity or approaching infinity tell us a lot about the shape of our graph. Consider the curve
y = f(x), there are three types of typical behavior described by these limits

1. Vertical Asymptote: A vertical line x = a is called a vertical asymptote of the curve y = f(x)
if at least one of the following occurs,

lim
x→a−

f(x) = ±∞, or lim
x→a+

f(x) = ±∞, or lim
x→a

f(x) = ±∞.

A curve may have multiple vertical asymptotes.

2. Horizontal Asymptote: A horizontal line y = L is called a horizontal asymptote of the curve
y = f(x) if

lim
x→∞

[f(x)− L] = 0, or lim
x→−∞

[f(x)− L] = 0.

Note that a curve may have 0, 1 or 2 horizontal asymptotes.

3. Slant Asymptote: An oblique line y = mx+ b (we require m 6= 0) is called a slant asymptote
of the curve y = f(x) if

lim
x→∞

[f(x)− (mx+ b)] = 0 or lim
x→−∞

[f(x)− (mx+ b)] = 0.

Note that a curve may have 0, 1 or 2 slant asymptotes.
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Example 1: The graph of

y = f(x) =


1

x− 1
+ 1 x > 1

3

2
· x− 1 +

1

4(x− 1)
x < 1

is displayed above. This graph has a vertical asymptote at x = 1, a horizontal asymptote y = 1 as x
approaches ∞, and a slant asymptote y = 3

2x− 1 as x approaches −∞.

1.5 Example Problems

1.5.1 Showing a Limit Exists

Strategy: In this course, we use an algebraic approach and limit laws to derive a limit. The following
procedure generally works for combinations of functions we encountered in Week 1.

1. We first check f(a) to figure out the form of the limit. If this gives us a number, then f(a) is
our limit and there is nothing more to do (provided that we are dealing with the composition of
continuous functions).

2. If we have an indeterminate form, 0
0 , ∞∞ , 0 ×∞, ∞−∞, 00, 1∞, ∞0, etc then we simplify our

function by factoring, collecting like terms, rationalizing, etc. The goal is to remove the “bad
point” that makes our behavior indeterminate.

3. After simplifying our function, we evaluate our simplified function at a. If it gives us a number,
then that is our limit.

Useful Formulas: When factoring, the following formulas may be useful

1. Difference of Powers: For a, b ∈ R and n ≥ 2,

(an − bn) = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1).

There are n terms in the second part of the factored equation. For example, if n = 4, then

(x4 − y4) = (x− y)(x3 + x2y + xy2 + y3).

2. Quadratic Formulas: For a 6= 0, the equation ax2 + bx+ c = 0 has solution(s)

x =
−b±

√
b2 − 4ac

2a
.
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Problem 1.1. (?) Determine the following limit

lim
x→4

x2 + x− 4

x+ 4
.

Solution 1.1. We first try to substitute x = 4 into our function

x2 + x− 4

x+ 4

∣∣∣
x=4

=
42 + 4− 4

4 + 4
= 2.

This is not an indeterminate form, so we can conclude

lim
x→4

x2 + x− 4

x+ 4
= 2.

Problem 1.2. (?) Determine the following limit

lim
x→−1

x2 − 1

x+ 1
.

Solution 1.2. We first try to substitute x = −1 into our function

x2 − 1

x+ 1

∣∣∣
x=−1

=
(−1)2 − 1

−1 + 1
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by factoring. Using the difference
of squares formula to factor the numerator, we notice

lim
x→−1

x2 − 1

x+ 1
= lim
x→−1

(x− 1)(x+ 1)

x+ 1
= lim
x→−1

(x− 1) = −2.

Problem 1.3. (??) Determine the following limit

lim
x→1

x5 − 1

x3 − 1
.

Solution 1.3. We first try to substitute x = 1 into our function

x5 − 1

x3 − 1

∣∣∣
x=1

=
15 − 1

13 − 1
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by factoring. Using the difference
of powers formula to factor the numerator and denominator, we notice

lim
x→1

x5 − 1

x3 − 1
= lim
x→1

(x− 1)(x4 + x3 + x2 + x+ 1)

(x− 1)(x2 + x+ 1)
= lim
x→1

x4 + x3 + x2 + x+ 1

x2 + x+ 1
=

5

3
.

Problem 1.4. (??) Determine the following limit

lim
x→0

√
x2 + 1− 1

x2
.
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Solution 1.4. We first try to substitute x = 1 into our function

√
x2 + 1− 1

x2

∣∣∣
x=0

=
1− 1

0
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by rationalizing the numerator,

lim
x→0

√
x2 + 1− 1

x2
= lim
x→0

√
x2 + 1− 1

x2
·
√
x2 + 1 + 1√
x2 + 1 + 1

= lim
x→0

(
√
x2 + 1)2 − 1

x2(
√
x2 + 1 + 1)

= lim
x→0

1√
x2 + 1 + 1

=
1

2
.

Problem 1.5. (? ? ?) Let a ∈ R. Determine the following limit

lim
x→0

3
√
a+ x− 3

√
a

x
.

Solution 1.5. We first try to substitute x = 0 into our function

3
√
a+ x− 3

√
a

x

∣∣∣
x=0

=
3
√
a− 3
√
a

0
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by rationalizing the numerator.
To remove the cube root from the numerator, we use the difference of powers formula,

lim
x→0

3
√
a+ x− 3

√
a

x
= lim
x→0

(a+ x)
1
3 − a 1

3

x
· (a+ x)

2
3 + (a+ x)

1
3 a

1
3 + a

2
3

(a+ x)
2
3 + (a+ x)

1
3 a

1
3 + a

2
3

= lim
x→0

a+ x− a
x · ((a+ x)

2
3 + (a+ x)

1
3 a

1
3 + a

2
3 )

= lim
x→0

1

(a+ x)
2
3 + (a+ x)

1
3 a

1
3 + a

2
3

=
1

3a
2
3

.

Remark. This number is equal to

d

dx
x

1
3

∣∣∣
x=a

=
1

3
a−

2
3 =

1

3a
2
3

.

1.5.2 Showing a One-Sided Limit Exists

Strategy: The strategy is identical as the last section. We might have to be careful with piecewise
functions in these examples.

Problem 1.6. (?) Determine the following limit

lim
x→0−

7|x|
x
.
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Solution 1.6. We first try to substitute x = 0− into our function

7|x|
x

∣∣∣
x=0−

=
7 · |0|

0
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by canceling the numerator.
Since |x| = −x for x < 0, we have

lim
x→0−

7|x|
x

= lim
x→0−

−7x

x
= lim
x→0−

−7 = −7.

Problem 1.7. (??) Determine the following limit

lim
x→1+

( 1

x− 1
− 2

x2 − 1

)
.

Solution 1.7. We first try to substitute x = 1+ into our function( 1

x− 1
− 2

x2 − 1

)∣∣∣
x=1+

=∞−∞.

This is an indeterminate form, so we attempt to simplify our function by simplifying the difference,

lim
x→1+

( 1

x− 1
− 2

x2 − 1

)
= lim
x→1+

( (x+ 1)

(x− 1)(x+ 1)
− 2

(x− 1)(x+ 1)

)
= lim
x→1+

x− 1

(x− 1)(x+ 1)

= lim
x→1+

1

x+ 1

=
1

2
.

1.5.3 Showing a Limit Does not Exist

Strategy: Unless our function is exceptionally ugly, the usual way to show a limit does not exist is to
show that its left and right limits are different.

Problem 1.8. (?) Show that the following limit does not exist,

lim
x→3

x− 3

|x− 3|
.

Solution 1.8. It suffices to show that our left and right limits approach different values. Since |x| = x
for x > 0, we have

lim
x→3+

x− 3

|x− 3|
= lim
x→3+

x− 3

x− 3
= lim
x→3+

1 = 1,

and since |x| = −x for x < 0, we have

lim
x→3−

x− 3

|x− 3|
= lim
x→3−

x− 3

−(x− 3)
= lim
x→3−

−1 = −1.

The left and right limits do not agree, so our limit does not exist.
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Problem 1.9. (? ? ?) Show that the following limit does not exist,

lim
x→0+

sin
( 1

x

)
.

Solution 1.9. Let t = 1/x. We have limx→0+ f(x) = limt→∞ f( 1
t ). In particular, we have

lim
x→0+

sin
( 1

x

)
= lim
t→∞

sin(t)

which does not have a limit, because sin(t) oscillates between −1 and 1 infinitely often and does not
converge to a particular value.

1.5.4 Limits at Infinity (Horizontal Asymptotes)

Strategy: The limit as x→∞ is usually straightforward. We proceed as follows:

1. We first check f(∞) to figure out the form of the limit. If this gives us a number, then f(∞) is
our limit and there is nothing more to do.

2. If our function is in an in-determinant form, then we simplify our equation until it is of the form
∞
∞ or 0

0 .

3. Divide the numerator and denominator by the highest degree term (sometimes the lowest degree
term if that fails), then take x→∞ and recompute the limit.

If we take the x → −∞ and there is a square root in our problem, then we have to be careful. It is
usually best to make a change of variables t = −x, and use the fact limx→−∞ f(x) = limt→∞ f(−t).

Problem 1.10. (?) Determine the following limit

lim
x→−∞

e−x
2+2.

Solution 1.10. We first try to substitute −∞ into our function

e−x
2+2
∣∣∣
x=−∞

= e−∞
2+2 = e−∞ = 0

is not an indeterminate form, so

lim
x→−∞

e−x
2+2 = 0.

Problem 1.11. (?) Determine the following limit

lim
x→∞

x+ 1√
x2 + 2x+ 7

.

Solution 1.11. We first try to substitute ∞ into our function

x+ 1√
x2 + 2x+ 7

∣∣∣
x=∞

=
∞
∞
.

This is an indeterminate form of the form ∞
∞ , so we can divide the numerator and denominator by the

highest degree polynomial,

lim
x→∞

x+ 1√
x2 + 2x+ 7

= lim
x→∞

1
x
1
x

· x+ 1√
x2 + 2x+ 7

= lim
x→∞

1 + 1
x√

1 + 2
x + 7

x2

= 1.
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Problem 1.12. (??) Determine the following limit

lim
x→−∞

x+ 1√
x2 + 2x+ 7

.

Solution 1.12. We first try to substitute −∞ into our function

x+ 1√
x2 + 2x+ 7

∣∣∣
x=∞

= −∞
∞
.

This is an indeterminate form of the form ∞
∞ , so we can divide the numerator and denominator by the

highest degree polynomial. Since there is a square root in our question, we have to be careful because
we cannot put a negative number inside of the square root to simplify it. Instead, we use the change
of variables t = −x and notice

lim
x→−∞

x+ 1√
x2 + 2x+ 7

= lim
t→∞

−t+ 1√
(−t)2 − 2t+ 7

= lim
t→∞

1
t
1
t

· −t+ 1√
t2 − 2t+ 7

= lim
t→∞

−1 + 1
t√

1− 2
t + 7

t2

= −1.

Problem 1.13. (??) Determine the following limit

lim
x→∞

(
√

9x2 + x− 3x).

Solution 1.13. We first try to substitute ∞ into our function

(
√

9x2 + x− 3x)
∣∣∣
x=∞

=∞−∞.

This is an indeterminate form of the form ∞−∞. This form is really hard to work with, so we first
rewrite our function by rationalizing the square root

lim
x→∞

(
√

9x2 + x− 3x) = lim
x→∞

(
√

9x2 + x− 3x) ·
√

9x2 + x+ 3x√
9x2 + x+ 3x

= lim
x→∞

x√
9x2 + x+ 3x

.

It is easy to check that this limit is of the form ∞
∞ , so we can divide the numerator and denominator

by the highest power and conclude

lim
x→∞

x√
9x2 + x+ 3x

= lim
x→∞

1
x
1
x

x√
9x2 + x+ 3x

= lim
x→∞

1√
9 + 1

x + 3
=

1√
9 + 3

=
1

6
.

1.5.5 Infinite Limits (Vertical Asymptotes)

Strategy: To find the behavior of our function at a vertical asymptote, we first substitute a value of
x at the asymptote, and remember the asymptotic behavior of the graphs of the standard function

1

0+
=∞, 1

0−
= −∞, e∞ =∞, ln(0+) = −∞, ln(∞) =∞, tan

(π
2

−)
=∞, etc

If our answer is infinite, then we don’t need to do any more work. However, if we have an indeterminate
form, then we can proceed like usual to compute the limit.

If we want to find the vertical asymptotes of a combination of basic functions introduced, we should
start by checking for asymptotes where f(x) is undefined.
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Problem 1.14. (?) Determine the following limit

lim
x→1−

( 2

x
− 1

ln(x)

)
.

Solution 1.14. We first substitute x = 1− into our function

2

x
− 1

ln(x)

∣∣∣
x=1−

=
2

1−
− 1

ln(1−)
= 2− 1

0−
= 2 +∞ =∞.

This is not an indeterminate form, so we can conclude,

lim
x→1−

( 2

x
− 1

ln(x)

)
=∞.

Problem 1.15. (??) Find the vertical asymptotes of the function

f(x) =
x+ 1

x2 − 4
.

Solution 1.15. Since f(x) is undefined when x = ±2, and continuous everywhere else, it suffices to
check for vertical asymptotes at x = ±2. Notice that

lim
x→2+

x+ 1

x2 − 4
=

3

0+
=∞ and lim

x→2−

x+ 1

x2 − 4
=

3

0−
= −∞

so there is vertical asymptote at x = 2. Similarly,

lim
x→−2+

x+ 1

x2 − 4
=
−1

0−
=∞ and lim

x→−2−
x+ 1

x2 − 4
=
−1

0+
= −∞

so there is vertical asymptote at x = −2.

1.5.6 Special case of a limit at infinity (Slant Asymptotes)

Recall that a line y = mx+ b and m 6= 0 is called a slant asymptote if

lim
x→∞

[f(x)− (mx+ b)] = 0 or lim
x→−∞

[f(x)− (mx+ b)] = 0.

We call the line mx+b a slant asymptote at∞ (or a slant asymptote at −∞ if the second case occurs).

Problem 1.16. (??) Find the slant asymptotes of the function

f(x) =
x3

x2 + 1
.

Solution 1.16. Using long division, we notice that

x3

x2 + 1
= x− x

x2 + 1
.

In this form, we see that f(x) is almost the equation of a line x+ b, with the intercept term b = − x
x2+1

going to 0 as x gets large. To check that x is a slant asymptote at ∞, we have

lim
x→∞

[ x3

x2 + 1
− x
]

= lim
x→∞

x

x2 + 1
= 0

and similarly, to check that x is a slant asymptote at −∞, we have

lim
x→−∞

[ x3

x2 + 1
− x
]

= lim
x→−∞

x

x2 + 1
= 0.
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Problem 1.17. (??) Find the slant asymptotes of the function

f(x) = πx+ tan−1(x).

Solution 1.17. We see that f(x) is almost the equation of a line πx + b, with the intercept term
b = tan−1(x) going to π/2 as x gets large and −π/2 as x gets small. To check that πx+ π/2 is a slant
asymptote at ∞, we have

lim
x→∞

[
πx+ tan−1(x)− (πx+

π

2
)
]

= lim
x→∞

tan−1(x)− π

2
= 0

and similarly, to check that πx− π/2 is a slant asymptote at −∞, we have

lim
x→−∞

[
πx+ tan−1(x)− (πx− π

2
)
]

= lim
x→−∞

tan−1(x) +
π

2
= 0.

The graph of the f(x) is in red and the slant asymptotes are plotted in the dotted blue lines,

1.5.7 Using Special Limits

Problem 1.18. (??) Determine the following limit

lim
x→0

cos(x)− 1

x
.

Solution 1.18. We first try to substitute x = 0 into our function

cos(x)− 1

x

∣∣∣
x=0

=
1− 1

0
=

0

0
.

This is an indeterminate form, so we attempt to simplify our function by rationalizing the numerator.

We will use the special limit limx→0
sin(x)
x = 1 to compute this limit. To remove the cos(x) − 1 the

numerator, we use the difference of powers formula,

lim
x→0

cos(x)− 1

x
= lim
x→0

cos(x)− 1

x
· cos(x) + 1

cos(x) + 1
= lim
x→0

cos2(x)− 1

x(cos(x) + 1)
= lim
x→0

sin2(x)

x(cos(x) + 1)
.

Splitting the limit, we see that

lim
x→0

sin2(x)

x(cos(x) + 1)
= lim
x→0

sin(x)

x

sin(x)

cos(x) + 1
= 1 · 0 = 0.
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Problem 1.19. (??) Determine the following limit

lim
x→0+

sin(x2) + x√
x4 + 4x2

.

Solution 1.19. Instead of using the squeeze theorem like in the last section, we can use the identity

limx→0
sin(x)
x = 1. In this case, if we multiply the numerator and denominator by x, we have

lim
x→0+

1
x
1
x

· sin(x2) + x√
x4 + 4x2

= lim
x→0+

sin(x2)
x + 1
√
x2 + 4

= lim
x→0+

sin(x2)
x2 · x+ 1
√
x2 + 4

=
1√
4

=
1

2
.

Problem 1.20. (??) Determine the following limit

lim
x→0

x sin(3x) tan(x)

sin3(9x)
.

Solution 1.20. We can use the identity limx→0
sin(x)
x = 1 to solve this problem. Since our functions

are continuous, we can use the limit composition theorem to conclude for all a 6= 0,

lim
x→0

sin(ax)

x
= a lim

x→0

sin(ax)

ax
= a · lim

t→0

sin(t)

t
= a and lim

x→0

x

sin(ax)
= lim
x→0

( sin(ax)

x

)−1
=

1

a

where we used the fact that x→ 0 is the same as t = ax→ 0. Therefore,

lim
x→0

x sin(3x) tan(x)

sin3(9x)
= lim
x→0

x sin(3x) sin(x)

sin3(9x) cos(x)

= lim
x→0

( x

sin(9x)
· sin(3x)

sin(9x)
· sin(x)

sin(9x)
· 1

cos(x)

)
= lim
x→0

( x

sin(9x)
· sin(3x)

x
· x

sin(9x)
· sin(x)

x
· x

sin(9x)
· 1

cos(x)

)
=

1

9
· 3 · 1

9
· 1 · 1

9
· 1 lim

x→0

sin(ax)

x
= a

=
1

243
.

Problem 1.21. (??) Determine the following limit

lim
x→0

1− cos(3x)

sin(2x)
.

Solution 1.21. We can use the identity limx→0
sin(x)
x = 1 and limx→0

cos(x)−1
x = 0 to solve this

problem. We have,

lim
x→0

1− cos(3x)

sin(2x)
= lim
x→0

(
− cos(3x)− 1

x
· x

sin(2x)

)
= lim
x→0

(
− 3

2
· cos(3x)− 1

3x
· 2x

sin(2x)

)
= −3

2
· 0 · 1

2
lim
x→0

sin(ax)

ax
= 1, lim

x→0

cos(ax)− 1

ax
= 0

= 0.
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1.5.8 Squeeze Theorem Problems

Strategy: We want to find upper and lower bounds of f(x) that have the same limits as x→ a.

Problem 1.22. (?) Determine the following limit

lim
x→0+

x sin
( 1

x

)
.

Solution 1.22. We first substitute x = 0+ into our function

x sin
( 1

x

)∣∣∣
x=0+

= 0 · sin(∞).

which is an indeterminate form. There is no algebraic way of simplifying the sin(x), so we use the
Squeeze theorem to find an appropriate limit. Notice that the range of sin(x) ∈ [−1, 1], so we have

−1 ≤ sin
( 1

x

)
≤ 1 for all x > 0.

Therefore, multiplying both sides by x > 0, we have

−x ≤ x sin
( 1

x

)
≤ x

Computing the limits of the lower and upper bounds we see

lim
x→0+

(−x) = 0 and lim
x→0+

x = 0.

These limits are the same, so the squeeze theorem implies

lim
x→0+

x sin
( 1

x

)
= 0.

Problem 1.23. (??) Determine the following limit

lim
x→0+

√
xesin(π/x).

Solution 1.23. We first substitute x = 0+ into our function
√
xesin(π/x)

∣∣∣
x=0+

= 0 · esin(∞).

which is an indeterminate form. There is no algebraic way of simplifying the esin(π/x), so we use the
Squeeze theorem to find an appropriate limit. Notice that the range of sin(x) ∈ [−1, 1], so we have

−1 ≤ sin
(π
x

)
≤ 1 for all x > 0.

Therefore, exponentiating everything we have

e−1 ≤ esin(π/x) ≤ e1

and then multiplying by
√
x, we have

√
xe−1 ≤

√
xesin(π/x) ≤

√
xe1.

Computing the limits of the lower and upper bounds we see

lim
x→0+

√
xe−1 = 0 and lim

x→0+

√
xe1 = 0.

These limits are the same, so the squeeze theorem implies

lim
x→0+

√
xesin(π/x) = 0.
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Problem 1.24. (? ? ?) Prove the basic trigonometric limit,

lim
x→0

sin(x)

x
= 1.

Solution 1.24. Let 0 < x < π
2 and consider the picture of the unit circle:

O A

B

C

D

x

1

cos(x)

sin(x)
tan(x)

From the picture, we see that the area of the inner triangle 4OCB is less than the area of the sector
^OAB, which is less than the area of the outer triangle 4OAD. Computing the areas explicitly using
the formula for the triangle and the sector of a circle, we have

1

2
sin(x) cos(x) ≤ 1

2
x ≤ 1

2
tan(x)⇒ sin(x) cos(x) ≤ x ≤ tan(x).

Since sin(x) > 0 on this interval, we can divide by sin(x) and conclude

cos(x) ≤ x

sin(x)
≤ 1

cos(x)
.

Taking reciprocals (the direction of the inequalities reverse), we have

cos(x) ≤ sin(x)

x
≤ 1

cos(x)
.

Computing the limits as x→ 0+ of the upper and lower bounds, we see

lim
x→0+

1

cos(x)
= 1, and lim

x→0+
cos(x) = 1.

These limits are the same, so the squeeze theorem implies

lim
x→0+

sin(x)

x
= 1.

To compute the other one-sided limit, notice that sin(x)
x is even, so limx→0−

sin(x)
x = 1 by symmetry.
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Problem 1.25. (??) Determine the following limit

lim
x→0+

sin(x2) + x√
x4 + 4x2

.

Hint: Use the fact | sin(θ)| ≤ |θ| for all θ ∈ R.

Solution 1.25. We first substitute x = 0+ into our function

sin(x2) + x√
x4 + 4x2

∣∣∣
x=0+

=
0

0
.

which is an indeterminate form. For θ ≥ 0, we have the bounds −θ ≤ sin(θ) ≤ θ (we can prove this
bound later in the course using the mean value theorem). Taking θ = x2, for x > 0 we have

−x2 ≤ sin(x2) ≤ x2.

Therefore, we can add x and divide by
√
x4 + 4x2 to conclude

−x2 + x√
x4 + 4x2

≤ sin(x2) + x√
x4 + 4x2

≤ x2 + x√
x4 + 4x2

.

Computing the limits of the lower and upper bounds, we see

lim
x→0+

−x2 + x√
x4 + 4x2

= lim
x→0+

−x+ 1√
x2 + 4

=
1√
4

=
1

2

and

lim
x→0+

x2 + x√
x4 + 4x2

= lim
x→0+

x+ 1√
x2 + 4

=
1√
4

=
1

2
.

These limits are the same, so the squeeze theorem implies

lim
x→0+

sin(x2) + x√
x4 + 4x2

=
1

2
.

Note: The identity 0 ≤ sin(θ) ≤ θ for 0 < θ < π/2 can also be used to derive the same limit. However,
one can check that the usual bounds −1 ≤ sin(x) ≤ 1 will not work in this problem, so we have to use
a sharper bound for sin(x).
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