
September 23, 2019 MAT186 – Week 2 Justin Ko

1 The Tangent Line Problem and the Derivative

Question: Given the graph of a function y = f(x), what is the slope of the curve at the point (a, f(a))?

x

y

a

Our strategy is to approximate the slope by a limit of secant lines between points (a, f(a)) and (b, f(b)).
The approximation improves as b gets closer and closer to a.

x

y

a b
x

y

a b

Definition 1. The difference quotient is the slope of a secant line approximation for y = f(x) between
points (a, f(a)) and (a + h, f(a + h)) for h > 0 and is given by the formula

∆y

∆x
=

f(a + h)− f(a)

h
.

The slope of the tangent line is approximated by the difference quotient. The secant line approximation
can be visualized below

x

y

f(a)

a a + h

f(a + h)− f(a)︸ ︷︷ ︸
∆y

∆x = h

h

f(a + h)
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Definition 2. The slope f ′(a) of the tangent line to f(x) at point a is given by

f ′(a) =
dy

dx

∣∣∣
x=a

= lim
h→0

f(a + h)− f(a)

h
.

This is the limit of secant of secant lines between the points (a, f(a)) and (a + h, f(a + h)) as h→ 0.
If the number f ′(a) exists, then we say f is differentiable at a and we call the quantity f ′(a) the
derivative of f at a.

1.1 Application to Velocity

Let s(t) be the position of a particle at time t. In this context, Definition 1 and Definition 2 have the
following interpretations

1. Secant Line: The average velocity vav of the particle is given by the secant line approximation
of the function s(t) on the interval a ≤ t ≤ b,

vav =
s(b)− s(a)

b− a

2. Tangent Line: The instantaneous velocity vinst is the tangent line of the function s(t) at the
point x = a

vinst = lim
h→0

s(a + h)− s(a)

h

1.2 Example Problems

Useful Formulas: The equation of a tangent line approximation of the function f at the point x = a
is given by

y − f(a)

x− a
= f ′(a).

Problem 1.1. (?) Let f(x) = x2 − 2, find the secant line between the points (1, f(1)) and (4, f(4))

Solution 1.1. Taking a = 1 and h = 3 in our formula, we have

∆y

∆x
=

f(4)− f(1)

4− 1
=

14 + 1

3
= 5.

Problem 1.2. (?) Suppose that the position of a particle moving horizontally on the x-axis is given
by s(t) = t3 − 1 for t ∈ [0, 10].

a) Find the average velocity of the object on the time interval [0, 5].

b) Find the instantaneous velocity at time t = 1.

Solution 1.2.

Part a) Taking a = 0 and h = 5 in our formula, the average velocity is given by

∆x

∆t
=

s(5)− s(0)

5
=

(53 − 1)− (−1)

5
= 25.

Part b) The instantaneous velocity is given by

ds

dt

∣∣∣
t=1

= lim
h→0

s(1 + h)− s(1)

h
= lim

h→0

(1 + h)3 − 1− 0

h
= lim

h→0

h3 + 3h2 + 3h + 1− 1

h
= 3.
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2 The Area Problem and the Definite Integral

Question: Given the graph of a function y = f(x), what is the net area (the area above the x-axis
and under the curve f minus the area below the x-axis and above the curve of f) of the graph between
the points a and b?

a b x

y

Our strategy is to divide the region [a, b] into n subintervals and approximate the area by a limit of
rectangles approximating our function. The approximation improves by taking n larger and larger.

a b x

y

a b x

y

Definition 3. The Riemann sum approximation of
∫ b

a
f(x) dx on the interval [a, b] with n uniform

subintervals is given by

Sn =

n∑
i=1

f(x∗i )∆x

where ∆x = (b−a)
n and x∗i ∈ [a+ (i− 1)∆x, a+ i∆x]. The net area under the graph f is approximated

by the Riemann sum.
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Remark: We usually sample our function f at the right endpoint, midpoint, or left endpoint of each
interval. The formula for xi in each of these cases is given by:

1. Right Riemann Sum: x∗i = a + i∆x

2. Midpoint Riemann Sum: x∗i = a + (i− 1
2 )∆x

3. Left Riemann Sum: x∗i = a + (i− 1)∆x

The midpoint approximation can be visualized below

x

y

a bx∗
5

f(x∗5)

Definition 4. The net area of the graph f on the interval [a, b] is given by the definite integral of

f(x) on [a, b]. We call the quantity
∫ b

a
f(x) dx the definite integral of f on [a, b], and it is defined by∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

where ∆x = (b−a)
n and x∗i ∈ [a+ (i−1)∆x, a+ i∆x]. This is the limit of Riemann sum approximations

as n → ∞. If the number
∫ b

a
f(x) dx exists and is identical for all choices of samples x∗i , then we say

f is integrable on [a, b].

2.1 Accuracy of Riemann Sum Approximations

Without doing any computations, we can determine if the Riemann sums are over or under approxi-
mations by looking at the shape of the curve we want to estimate the area of:

f(x) Left Right Midpoint

Increasing Under Over ?
Decreasing Over Under ?

Convex ? ? Under
Concave ? ? Over

For example, the table says that if f(x) is increasing on [a, b], then the left Riemann sum is an under
approximation of the definite integral, and the right Riemann sum is an over approximation of the
definite integral. The fact f is increasing does not tell us enough to determine if the midpoint is an
over or under approximation in general.
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2.2 Application to Velocity

Let v(t) be the velocity of a particle at time t. In this context, Definition 4 has the following interpre-
tations

1. Definite Integral of |f |: The distance traveled by the particle is given by the definite integral of
|v| on the interval a ≤ t ≤ b, which is given explicitly by the formula∫ b

a

|v(t)| dt.

2. Definite Integral of f : The net distance traveled (or displacement) dv of the particle is given by
the definite integral of |v| on the interval a ≤ t ≤ b, which is given explicitly by the formula∫ b

a

v(t) dt.

2.3 Example Problems

Useful Formulas: The following formulas for the partial sums of a number will be useful to compute
the Riemann Sums of certain functions

1. Sum of first n constants:
n∑

i=1

1 = n. (1)

2. Sum of first n integers:
n∑

i=1

i =
n(n + 1)

2
. (2)

3. Sum of first n squares:
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
. (3)

4. Sum of first n cubes:
n∑

i=1

i3 =

(
n(n + 1)

2

)2

. (4)

5. Geometric series:
n∑

i=1

ri = r

(
1− rn

1− r

)
. (5)

Problem 2.1. (?) Approximate the value of
∫ 2

1
ln(x) dx by using a left endpoint Riemann sum and

4 uniform subintervals.

Solution 2.1. We take f(x) = ln(x), a = 1, b = 2, and n = 4 in Definition 3. Since we are sampling
at the left endpoints, we choose xi = 1 + (i− 1)∆x where ∆x = b−a

n = 1
4 . Using our formula, we have

S4 =

4∑
i=1

f
(
1 + (i− 1)∆x

)
∆x =

4∑
i=1

f
(

1 +
i− 1

4

)1

4

=
1

4

4∑
i=1

ln
(

1 +
i− 1

4

)
=

1

4

(
ln(1) + ln(1.25) + ln(1.5) + ln(1.75)

)
≈ 0.2970 . . .
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Problem 2.2. (?) Approximate the area under the curve y = 2x above the x-axis on the interval
[0, 10] using 10 uniform subintervals and samples at the right endpoint of each interval.

Solution 2.2. We take f(x) = 2x, a = 0, b = 10, and n = 10 in Definition 3. Since we are sampling
at the right endpoints, we choose x∗i = i∆x where ∆x = b−a

n = 1. Using our formula, we have

S10 =

10∑
i=1

f(i∆x)∆x =

10∑
i=1

2i = 2

10∑
i=1

i

= 2
10(10 + 1)

2
= 110. since

n∑
i=1

i =
n(n + 1)

2
.

Problem 2.3. (??) Approximate the area under the curve y = 2x above the x-axis on the interval
[0, 10] using n uniform subintervals and samples at the right endpoint of each interval. What does the
sum converge to when we take n→∞?

Solution 2.3. We take f(x) = 2x, a = 0, b = 10, with variable n in Definition 3. Since we are
sampling at the right endpoints, we choose x∗i = i∆x where ∆x = 10−0

n = 10
n . Using our formula, we

have

Sn =

n∑
i=1

f
(
i∆x

)
∆x =

n∑
i=1

2 · 10i

n
· 10

n
=

200

n2

n∑
i=1

i

=
200

n2
· n(n + 1)

2
= 100 · n + 1

n
. since

n∑
i=1

i =
n(n + 1)

2

As n→∞, we have

lim
n→∞

Sn = lim
n→∞

100 · n + 1

n
= 100.

Remark. The final answer is the same as∫ 10

0

2x dx = x2
∣∣∣x=10

x=0
= 100.

This is also the same as the area of a triangle with base 10 and height 20.

Problem 2.4. (??) Approximate the area under the curve y = x2 above the x-axis on the interval
[0, 1] using 100 uniform subintervals and samples at the left endpoint of each interval.

Solution 2.4. We take f(x) = x2, a = 0, b = 1, and n = 100 in Definition 3. Since we are sampling
at the left endpoints, we choose x∗i = (i− 1)∆x where ∆x = 1

100 . Using our formula, we have

S100 =

100∑
i=1

f
(
(i− 1)∆x

)
∆x =

100∑
i=1

( i− 1

100

)2 1

100

=
1

1003

100∑
i=1

(i− 1)2

=
1

1003

99∑
i=0

j2 by reindexing j = i− 1

=
1

1003
· 99(100)(199)

6
since

n∑
j=0

j2 =

n∑
j=1

j2 =
n(n + 1)(2n + 1)

6

= 0.32835.
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Problem 2.5. (??) Approximate the area under the curve y = 3x on the interval [0, 1] using 1000
uniform subintervals and samples at the left endpoint. Is the approximation an over or under approx-
imation of the area?

Solution 2.5. We take f(x) = 3x, a = 0, b = 1, and n = 1000 in Definition 3. Since we are sampling
at the left endpoints, we choose x∗i = (i−1)∆x where ∆x = 1

1000 . Using the formula for the geometric
series implies that

S1000 =

1000∑
i=1

f(x∗i )∆x =
1

1000

1000∑
i=1

3
i−1
1000 =

1

1000
· 1

3
1

1000

1000∑
i=1

(
3

1
1000

)i
=

1

1000
·
(1− 3

1000
1000

1− 3
1

1000

)
≈ 1.81948.

Since f ′(x) = ln(3) · 3x ≥ 0 on [0, 1], our function is increasing, and therefore the Riemann sum is an
under approximation of the area.

Remark. The approximate area is very close to the real area,∫ 1

0

3x dx =
3x

ln(3)

∣∣∣∣x=1

x=0

=
3− 1

ln(3)
≈ 1.8205.

Problem 2.6. (? ? ?) Approximate the area under the curve y = x2 above the x-axis on the interval
[0, 1] using n uniform subintervals and samples at the midpoint of each interval. What does the sum
converge to when we take n→∞?

Solution 2.6. We take f(x) = x2, a = 0, b = 1, with variable n in Definition 3. Since we are sampling
at the midpoints of the intervals, we choose x∗i = (i − 1

2 )∆x where ∆x = 1
n . Using our formula, we

have

Sn =

n∑
i=1

f
((

i− 1

2

)
∆x
)

∆x

=

n∑
i=1

(2i− 1

2n

)2 1

n

=
1

4n3

n∑
i=1

(2i− 1)2

=
1

4n3

n∑
i=1

(4i2 − 4i + 1)

=
1

4n3

(
4

n∑
i=1

i2 − 4

n∑
i=1

i +

n∑
i=1

1

)
=

1

4n3

(
4 · n(n + 1)(2n + 1)

6
− 4 · n(n + 1)

2
+ n

)
using formulas (1), (2), (3)

=
n(n + 1)(2n + 1)

6n3
− (n + 1)

2n2
+

1

4n2
.

As n→∞, we have

lim
n→∞

Sn = lim
n→∞

(
n(n + 1)(2n + 1)

6n3
− (n + 1)

2n2
+

1

4n2

)
=

1

3
.

Remark. The final answer is the same as∫ 1

0

x2 dx =
x3

3

∣∣∣x=1

x=0
=

1

3
.
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