1 Tangent Line Problem

Question: Given the graph of a function $y=f(x)$, what is the slope of the curve at the point $(a, f(a))$?

Our strategy is to approximate the slope by a limit of secant lines between points $(a, f(a))$ and $(b, f(b))$. The approximation improves as b gets closer and closer to a.

Definition 1. The slope of a secant line approximation for $y=f(x)$ between points $(a, f(a))$ and $(a+h, f(a+h))$ for $h>0$ is given by

$$
\frac{\Delta y}{\Delta x}=\frac{f(a+h)-f(a)}{h}
$$

The secant line approximation can be visualized below

Page 1 of $\mathbf{7}$

Definition 2. The slope $f^{\prime}(a)$ of the tangent line to $f(x)$ at point a is given by

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This is the limit of secant of secant lines between the points $(a, f(a))$ and $(a+h, f(a+h))$ as $h \rightarrow 0$. If the number $f^{\prime}(a)$ exists, then we say f is differentiable at a and we call the quantity $f^{\prime}(a)$ the derivative of f at a.

1.1 Application to Velocity

Let $s(t)$ be the position of a particle at time t. In this context, Definition 1 and Definition 2 have the following interpretations

1. Secant Line: The average velocity v_{av} of the particle is given by the secant line approximation of the function $s(t)$ on the interval $a \leq t \leq b$,

$$
v_{\mathrm{av}}=\frac{s(b)-s(a)}{b-a}
$$

2. Tangent Line: The instantaneous velocity $v_{\text {inst }}$ is the tangent line of the function $s(t)$ at the point $x=a$

$$
v_{\text {inst }}=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

1.2 Example Problems

Useful Formulas: The equation of a tangent line approximation of the function f at the point $x=a$ is given by

$$
\frac{y-f(a)}{x-a}=f^{\prime}(a)
$$

Problem 1. (\star) Let $f(x)=x^{2}-2$, find the secant line between the points $(1, f(1))$ and $(4, f(4))$
Solution 1. Taking $a=1$ and $h=3$ in our formula, we have

$$
\frac{\Delta y}{\Delta x}=\frac{f(4)-f(1)}{4-1}=\frac{14+1}{3}=5 .
$$

Problem 2. (\star) Suppose that the position of a particle moving horizontally on the x-axis is given by $s(t)=t^{3}-1$ for $t \in[0,10]$.
a) Find the average velocity of the object on the time interval $[0,5]$.
b) Find the instantaneous velocity at time $t=1$.

Solution 2.

Part a) Taking $a=0$ and $h=5$ in our formula, the average velocity is given by

$$
\frac{\Delta x}{\Delta t}=\frac{s(5)-s(0)}{5}=\frac{\left(5^{3}-1\right)-(-1)}{5}=25 .
$$

Part b) The instantaneous velocity is given by

$$
\left.\frac{d s}{d t}\right|_{t=1}=\lim _{h \rightarrow 0} \frac{s(1+h)-s(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}=\lim _{h \rightarrow 0} \frac{h^{3}+3 h^{2}+3 h+1-1}{h}=3 .
$$

2 Area Problem

Question: Given the graph of a function $y=f(x)$, what is the net area (the area above the x-axis and under the curve f minus the area below the x-axis and above the curve of f) of the graph between the points a and b ?

Our strategy is to divide the region $[a, b]$ into n subintervals and approximate the area by a limit of rectangles approximating our function. The approximation improves by taking n larger and larger.

Definition 3. The Riemann sum approximation of $\int_{a}^{b} f(x) d x$ on the interval $[a, b]$ with n uniform subintervals is given by

$$
S_{[a, b]}(f)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where $\Delta x=\frac{(b-a)}{n}$ and $x_{i}^{*} \in[a+(i-1) \Delta x, a+i \Delta x]$. The approximate net area of the graph f is given by the Riemann Sum approximation.

Remark: We usually sample our function f at the right endpoint, midpoint, or left endpoint of each interval:

1. Right Riemann Sum: Take $x_{i}^{*}=a+i \Delta x$
2. Midpoint Riemann Sum: Take $x_{i}^{*}=a+\left(i-\frac{1}{2}\right) \Delta x$
3. Left Riemann Sum: Take $x_{i}^{*}=a+(i-1) \Delta x$

The midpoint approximation can be visualized below

Definition 4. The net area of the graph f on the interval $[a, b]$ is given by the definite integral of $f(x)$ on $[a, b]$. We call the quantity $\int_{a}^{b} f(x) d x$ the definite integral of f on $[a, b]$, and it is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where $\Delta x=\frac{(b-a)}{n}$ and $x_{i}^{*} \in[a+(i-1) \Delta x, a+i \Delta x]$. This is the limit of Riemann sum approximations as $n \rightarrow \infty$. If the number $\int_{a}^{b} f(x) d x$ exists 1, then we say f is integrable on $[a, b]$.

2.1 Application to Velocity

Let $v(t)$ be the velocity of a particle at time t. In this context, Definition 4 has the following interpretations

1. Definite Integral of $|f|$: The distance traveled by the particle is given by the definite integral of $|v|$ on the interval $a \leq t \leq b$, which is given explicitly by the formula

$$
\int_{a}^{b}|v(t)| d t
$$

[^0]2. Definite Integral of f : The net distance traveled (or displacement) d_{v} of the particle is given by the definite integral of $|v|$ on the interval $a \leq t \leq b$, which is given explicitly by the formula
$$
\int_{a}^{b} v(t) d t
$$

2.2 Example Problems

Useful Formulas: The following formulas for the partial sums of a number will be useful to compute the Riemann Sums of certain functions

1. Sum of first n constants:

$$
\begin{equation*}
\sum_{i=1}^{n} 1=n \tag{1}
\end{equation*}
$$

2. Sum of first n integers:

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

3. Sum of first n squares:

$$
\begin{equation*}
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{3}
\end{equation*}
$$

4. Sum of first n cubes:

$$
\begin{equation*}
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \tag{4}
\end{equation*}
$$

Problem 1. ($* *$) Approximate the area under the curve $y=f(x)=2 x$ above the x-axis on the interval $[0,10]$ using 10 uniform subintervals and sampling $f(x)$ at the right endpoint of each interval.

Solution 1. We take $a=0, b=10$, and $n=10$ in Definition 3. Since we are sampling at the right endpoints, we choose $x_{i}^{*}=i \Delta x \in[(i-1) \Delta x, i \Delta x]$ where $\Delta x=\frac{b-a}{n}=1$. Therefore, using our formula, we have

$$
\begin{aligned}
S_{[0,10]}(f)=\sum_{i=1}^{10} f(i \Delta x) \Delta x=\sum_{i=1}^{10} 2 i & =2 \sum_{i=1}^{10} i \\
& =2 \frac{10(10+1)}{2}=110 . \quad \text { since } \sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
\end{aligned}
$$

Problem 2. $(\star \star \star)$ Approximate the area under the curve $y=f(x)=2 x$ above the x-axis on the interval $[0,10]$ using n uniform subintervals and sampling $f(x)$ at the right endpoint of each interval. What does the area converge to when we take $n \rightarrow \infty$.

Solution 2. We take $a=0, b=10$, with variable n in Definition 3. Since we are sampling at the right endpoints, we choose $x_{i}^{*}=i \Delta x \in[(i-1) \Delta x, i \Delta x]$ where $\Delta x=\frac{10-0}{n}$. Therefore, using our formula, we have

$$
\begin{aligned}
S_{[0,10]}(f)=\sum_{i=1}^{n} f\left(i \frac{10}{n}\right) \Delta x=\sum_{i=1}^{n} 2 \cdot \frac{10 i}{n} \cdot \frac{10}{n} & =\frac{200}{n^{2}} \sum_{i=1}^{n} i \\
& =\frac{200}{n^{2}} \cdot \frac{n(n+1)}{2}=100 \cdot \frac{n+1}{n} . \quad \text { since } \sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
\end{aligned}
$$

Taking $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} S_{[0,10]}(f)=\lim _{n \rightarrow \infty} 100 \cdot \frac{n+1}{n}=100
$$

Note: The final answer is the same as

$$
\int_{0}^{10} 2 x d x=\left.x^{2}\right|_{x=0} ^{x=10}=100
$$

Problem 3. ($\star \star$) Approximate the area under the curve $y=f(x)=x^{2}$ above the x-axis on the interval $[0,1]$ using 100 uniform subintervals and sampling $f(x)$ at the left endpoint of each interval.

Solution 3. We take $a=0, b=1$, and $n=100$ in Definition 3. Since we are sampling at the left endpoints, we choose $x_{i}^{*}=(i-1) \Delta x \in[(i-1) \Delta x, i \Delta x]$ where $\Delta x=\frac{1}{100}$. Therefore, using our formula, we have

$$
\left.\begin{array}{rl}
S_{[0,1]}(f)=\sum_{i=1}^{100} f((i-1) \Delta x) \Delta x & =\sum_{i=1}^{100}\left(\frac{i-1}{100}\right)^{2} \frac{1}{100} \\
& =\frac{1}{100^{3}} \sum_{i=1}^{100}(i-1)^{2} \\
& =\frac{1}{100^{3}} \sum_{i=0}^{99} j^{2} \\
& =\frac{1}{100^{3}} \cdot \frac{99(100)(199)}{6} \quad \text { by reindexing } j=i-1 . \\
& =0.32835 .
\end{array} \quad \text { since } \sum_{j=0}^{n} j^{2}=\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}\right)
$$

Problem 4. ($* *$) Approximate the area under the curve $y=f(x)=x^{2}$ above the x-axis on the interval $[1,5]$ using 100 uniform subintervals and sampling $f(x)$ at the right endpoint of each interval.

Solution 4. We take $a=1, b=5$, and $n=100$ in Definition 3. Since we are sampling at the right endpoints, we choose $x_{i}^{*}=1+i \Delta x \in[1+(i-1) \Delta x, 1+i \Delta x]$ where $\Delta x=\frac{5-1}{100}=\frac{1}{25}$. Therefore, using our formula, we have

$$
\begin{aligned}
S_{[0,1]}(f) & =\sum_{i=1}^{100} f(1+i \Delta x) \Delta x \\
& =\sum_{i=1}^{100}\left(1+\frac{i}{25}\right)^{2} \cdot \frac{1}{25} \\
& =\frac{1}{25^{3}} \sum_{i=1}^{100}(25+i)^{2} \\
& =\frac{1}{15625} \sum_{i=1}^{100}\left(625+50 i+i^{2}\right) \\
& =\frac{1}{15625}\left(625 \sum_{i=1}^{100} 1+50 \sum_{i=1}^{100} i+\sum_{i=1}^{100} i^{2}\right) \\
& =\frac{1}{15625}\left(625 \cdot 100+50 \cdot \frac{100 \cdot 101}{2}+\frac{100(101)(201)}{6}\right) \quad \text { formulas }(1),(2),(3) \\
& =41.8144
\end{aligned}
$$

Problem 5. ($\star \star \star$) Approximate the area under the curve $y=f(x)=x^{2}$ above the x-axis on the interval $[0,1]$ using n uniform subintervals and sampling $f(x)$ at the midpoint of each interval. What does the area converge to when we take $n \rightarrow \infty$.

Solution 5. We take $a=0, b=1$, with variable n in Definition 3. Since we are sampling at the midpoints of the intervals, we choose $x_{i}^{*}=\left(i-\frac{1}{2}\right) \Delta x \in[(i-1) \Delta x, i \Delta x]$ where $\Delta x=\frac{1}{n}$. Therefore, using our formula, we have

$$
\begin{aligned}
S_{[0,1]}(f) & =\sum_{i=1}^{n} f\left(\left(i-\frac{1}{2}\right) \Delta x\right) \Delta x \\
& =\sum_{i=1}^{n}\left(\frac{2 i-1}{2 n}\right)^{2} \frac{1}{n} \\
& =\frac{1}{4 n^{3}} \sum_{i=1}^{n}(2 i-1)^{2} \\
& =\frac{1}{4 n^{3}} \sum_{i=1}^{n}\left(4 i^{2}-4 i+1\right) \\
& =\frac{1}{4 n^{3}}\left(4 \sum_{i=1}^{n} i^{2}-4 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1\right) \\
& =\frac{1}{4 n^{3}}\left(4 \cdot \frac{n(n+1)(2 n+1)}{6}-4 \cdot \frac{n(n+1)}{2}+n\right) \quad \text { using formulas }(1),(2),(3) \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}}-\frac{(n+1)}{2 n^{2}}+\frac{1}{4 n^{2}} .
\end{aligned}
$$

As $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{n(n+1)(2 n+1)}{6 n^{3}}-\frac{(n+1)}{2 n^{2}}+\frac{1}{4 n^{2}}\right)=\frac{1}{3} .
$$

Remark: The final answer is the same as

$$
\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{x=0} ^{x=1}=\frac{1}{3}
$$

Problem 6. (\star) Approximate the value of $\int_{1}^{2} \ln (x) d x$ by using a left endpoint Riemann sum and 4 uniform subintervals.

Solution 6. We take $a=1, b=2$, and $n=4$ in Definition 3. Since we are sampling at the left endpoints, we choose $x_{i}=1+(i-1) \Delta x \in[1+(i-1) \Delta x, 1+i \Delta x]$ where $\Delta x=\frac{b-a}{n}=\frac{1}{4}$. Therefore, using our formula, we have

$$
\begin{aligned}
S_{[1,2]}(f) & =\sum_{i=1}^{4} f\left(1+\frac{i-1}{4}\right) \frac{1}{4} \\
& =\frac{1}{4} \sum_{i=1}^{4} \ln \left(1+\frac{i-1}{4}\right) \\
& =\frac{1}{4}(\ln (1)+\ln (1.25)+\ln (1.5)+\ln (1.75)) \approx 0.2970 \ldots
\end{aligned}
$$

[^0]: ${ }^{1}$ The limit has to exist and must all be identical for all choices of samples x_{i}^{*}.

