Justin Ko

1 Tangent Line Problem

Question: Given the graph of a function y = f(x), what is the slope of the curve at the point (a, f(a))?

Our strategy is to approximate the slope by a limit of secant lines between points (a, f(a)) and (b, f(b)). The approximation improves as b gets closer and closer to a.

Definition 1. The slope of a secant line approximation for y = f(x) between points (a, f(a)) and (a + h, f(a + h)) for h > 0 is given by

$$\frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$

The secant line approximation can be visualized below

Page 1 of 7

Definition 2. The slope f'(a) of the tangent line to f(x) at point a is given by

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

This is the limit of secant of secant lines between the points (a, f(a)) and (a + h, f(a + h)) as $h \to 0$. If the number f'(a) exists, then we say f is differentiable at a and we call the quantity f'(a) the derivative of f at a.

1.1 Application to Velocity

Let s(t) be the position of a particle at time t. In this context, Definition 1 and Definition 2 have the following interpretations

1. Secant Line: The average velocity v_{av} of the particle is given by the secant line approximation of the function s(t) on the interval $a \le t \le b$,

$$v_{\rm av} = \frac{s(b) - s(a)}{b - a}$$

2. Tangent Line: The *instantaneous velocity* v_{inst} is the tangent line of the function s(t) at the point x = a

$$v_{\text{inst}} = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

1.2 Example Problems

Useful Formulas: The equation of a tangent line approximation of the function f at the point x = a is given by

$$\frac{y - f(a)}{x - a} = f'(a)$$

Problem 1. (*) Let $f(x) = x^2 - 2$, find the secant line between the points (1, f(1)) and (4, f(4))

Solution 1. Taking a = 1 and h = 3 in our formula, we have

$$\frac{\Delta y}{\Delta x} = \frac{f(4) - f(1)}{4 - 1} = \frac{14 + 1}{3} = 5.$$

Problem 2. (*) Suppose that the position of a particle moving horizontally on the x-axis is given by $s(t) = t^3 - 1$ for $t \in [0, 10]$.

- a) Find the average velocity of the object on the time interval [0, 5].
- b) Find the instantaneous velocity at time t = 1.

Solution 2.

Part a) Taking a = 0 and h = 5 in our formula, the average velocity is given by

$$\frac{\Delta x}{\Delta t} = \frac{s(5) - s(0)}{5} = \frac{(5^3 - 1) - (-1)}{5} = 25.$$

Part b) The instantaneous velocity is given by

$$\frac{ds}{dt}\Big|_{t=1} = \lim_{h \to 0} \frac{s(1+h) - s(1)}{h} = \lim_{h \to 0} \frac{(1+h)^3 - 1}{h} = \lim_{h \to 0} \frac{h^3 + 3h^2 + 3h + 1 - 1}{h} = 3.$$

2 Area Problem

Question: Given the graph of a function y = f(x), what is the net area (the area above the x-axis and under the curve f minus the area below the x-axis and above the curve of f) of the graph between the points a and b?

Our strategy is to divide the region [a, b] into n subintervals and approximate the area by a limit of rectangles approximating our function. The approximation improves by taking n larger and larger.

Definition 3. The Riemann sum approximation of $\int_a^b f(x) dx$ on the interval [a, b] with n uniform subintervals is given by

$$S_{[a,b]}(f) = \sum_{i=1}^{n} f(x_i^*) \Delta x$$

where $\Delta x = \frac{(b-a)}{n}$ and $x_i^* \in [a + (i-1)\Delta x, a + i\Delta x]$. The approximate net area of the graph f is given by the Riemann Sum approximation.

Remark: We usually sample our function f at the right endpoint, midpoint, or left endpoint of each interval:

- 1. Right Riemann Sum: Take $x_i^* = a + i\Delta x$
- 2. Midpoint Riemann Sum: Take $x_i^* = a + (i \frac{1}{2})\Delta x$
- 3. Left Riemann Sum: Take $x_i^* = a + (i-1) \Delta x$

The midpoint approximation can be visualized below

Definition 4. The net area of the graph f on the interval [a, b] is given by the definite integral of f(x) on [a, b]. We call the quantity $\int_a^b f(x) dx$ the *definite integral* of f on [a, b], and it is defined by

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

where $\Delta x = \frac{(b-a)}{n}$ and $x_i^* \in [a+(i-1)\Delta x, a+i\Delta x]$. This is the limit of Riemann sum approximations as $n \to \infty$. If the number $\int_a^b f(x) dx$ exists¹, then we say f is *integrable* on [a, b].

2.1 Application to Velocity

Let v(t) be the velocity of a particle at time t. In this context, Definition 4 has the following interpretations

1. Definite Integral of |f|: The *distance traveled* by the particle is given by the definite integral of |v| on the interval $a \le t \le b$, which is given explicitly by the formula

$$\int_{a}^{b} |v(t)| \, dt.$$

¹The limit has to exist and must all be identical for all choices of samples x_i^* .

2. Definite Integral of f: The net distance traveled (or displacement) d_v of the particle is given by the definite integral of |v| on the interval $a \le t \le b$, which is given explicitly by the formula

$$\int_{a}^{b} v(t) \, dt.$$

2.2 Example Problems

Useful Formulas: The following formulas for the partial sums of a number will be useful to compute the Riemann Sums of certain functions

1. Sum of first n constants:

$$\sum_{i=1}^{n} 1 = n.$$
 (1)

2. Sum of first n integers:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$
(2)

3. Sum of first n squares:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$
(3)

4. Sum of first n cubes:

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$
(4)

Problem 1. $(\star\star)$ Approximate the area under the curve y = f(x) = 2x above the x-axis on the interval [0, 10] using 10 uniform subintervals and sampling f(x) at the right endpoint of each interval.

Solution 1. We take a = 0, b = 10, and n = 10 in Definition 3. Since we are sampling at the right endpoints, we choose $x_i^* = i\Delta x \in [(i-1)\Delta x, i\Delta x]$ where $\Delta x = \frac{b-a}{n} = 1$. Therefore, using our formula, we have

$$S_{[0,10]}(f) = \sum_{i=1}^{10} f(i\Delta x)\Delta x = \sum_{i=1}^{10} 2i = 2\sum_{i=1}^{10} i$$
$$= 2\frac{10(10+1)}{2} = 110. \qquad \text{since } \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Problem 2. $(\star \star \star)$ Approximate the area under the curve y = f(x) = 2x above the x-axis on the interval [0, 10] using n uniform subintervals and sampling f(x) at the right endpoint of each interval. What does the area converge to when we take $n \to \infty$.

Solution 2. We take a = 0, b = 10, with variable n in Definition 3. Since we are sampling at the right endpoints, we choose $x_i^* = i\Delta x \in [(i-1)\Delta x, i\Delta x]$ where $\Delta x = \frac{10-0}{n}$. Therefore, using our formula, we have

$$S_{[0,10]}(f) = \sum_{i=1}^{n} f\left(i\frac{10}{n}\right) \Delta x = \sum_{i=1}^{n} 2 \cdot \frac{10i}{n} \cdot \frac{10}{n} = \frac{200}{n^2} \sum_{i=1}^{n} i$$
$$= \frac{200}{n^2} \cdot \frac{n(n+1)}{2} = 100 \cdot \frac{n+1}{n}. \qquad \text{since } \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\lim_{n \to \infty} S_{[0,10]}(f) = \lim_{n \to \infty} 100 \cdot \frac{n+1}{n} = 100.$$

Note: The final answer is the same as

$$\int_0^{10} 2x \, dx = x^2 \Big|_{x=0}^{x=10} = 100.$$

Problem 3. $(\star\star)$ Approximate the area under the curve $y = f(x) = x^2$ above the x-axis on the interval [0,1] using 100 uniform subintervals and sampling f(x) at the left endpoint of each interval.

Solution 3. We take a = 0, b = 1, and n = 100 in Definition 3. Since we are sampling at the left endpoints, we choose $x_i^* = (i-1)\Delta x \in [(i-1)\Delta x, i\Delta x]$ where $\Delta x = \frac{1}{100}$. Therefore, using our formula, we have

$$S_{[0,1]}(f) = \sum_{i=1}^{100} f\left((i-1)\Delta x\right)\Delta x = \sum_{i=1}^{100} \left(\frac{i-1}{100}\right)^2 \frac{1}{100}$$

$$= \frac{1}{100^3} \sum_{i=1}^{100} (i-1)^2$$

$$= \frac{1}{100^3} \sum_{i=0}^{99} j^2 \qquad \text{by reindexing } j = i-1.$$

$$= \frac{1}{100^3} \cdot \frac{99(100)(199)}{6} \qquad \text{since } \sum_{j=0}^n j^2 = \sum_{j=1}^n j^2 = \frac{n(n+1)(2n+1)}{6}$$

$$= 0.32835.$$

Problem 4. $(\star\star)$ Approximate the area under the curve $y = f(x) = x^2$ above the x-axis on the interval [1,5] using 100 uniform subintervals and sampling f(x) at the right endpoint of each interval.

Solution 4. We take a = 1, b = 5, and n = 100 in Definition 3. Since we are sampling at the right endpoints, we choose $x_i^* = 1 + i\Delta x \in [1 + (i-1)\Delta x, 1 + i\Delta x]$ where $\Delta x = \frac{5-1}{100} = \frac{1}{25}$. Therefore, using our formula, we have

$$S_{[0,1]}(f) = \sum_{i=1}^{100} f\left(1 + i\Delta x\right)\Delta x$$

$$= \sum_{i=1}^{100} \left(1 + \frac{i}{25}\right)^2 \cdot \frac{1}{25}$$

$$= \frac{1}{25^3} \sum_{i=1}^{100} (25 + i)^2$$

$$= \frac{1}{15625} \sum_{i=1}^{100} (625 + 50i + i^2)$$

$$= \frac{1}{15625} \left(625 \sum_{i=1}^{100} 1 + 50 \sum_{i=1}^{100} i + \sum_{i=1}^{100} i^2\right)$$

$$= \frac{1}{15625} \left(625 \cdot 100 + 50 \cdot \frac{100 \cdot 101}{2} + \frac{100(101)(201)}{6}\right) \quad \text{formulas } (1), (2), (3)$$

$$= 41.8144.$$

Justin Ko

Problem 5. $(\star \star \star)$ Approximate the area under the curve $y = f(x) = x^2$ above the x-axis on the interval [0, 1] using n uniform subintervals and sampling f(x) at the midpoint of each interval. What does the area converge to when we take $n \to \infty$.

Solution 5. We take a = 0, b = 1, with variable n in Definition 3. Since we are sampling at the midpoints of the intervals, we choose $x_i^* = (i - \frac{1}{2})\Delta x \in [(i - 1)\Delta x, i\Delta x]$ where $\Delta x = \frac{1}{n}$. Therefore, using our formula, we have

$$S_{[0,1]}(f) = \sum_{i=1}^{n} f\left(\left(i - \frac{1}{2}\right)\Delta x\right)\Delta x$$

$$= \sum_{i=1}^{n} \left(\frac{2i-1}{2n}\right)^{2} \frac{1}{n}$$

$$= \frac{1}{4n^{3}} \sum_{i=1}^{n} (2i-1)^{2}$$

$$= \frac{1}{4n^{3}} \sum_{i=1}^{n} (4i^{2} - 4i + 1)$$

$$= \frac{1}{4n^{3}} \left(4 \sum_{i=1}^{n} i^{2} - 4 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1\right)$$

$$= \frac{1}{4n^{3}} \left(4 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + n\right) \text{ using formulas (1), (2), (3)}$$

$$= \frac{n(n+1)(2n+1)}{6n^{3}} - \frac{(n+1)}{2n^{2}} + \frac{1}{4n^{2}}.$$

As $n \to \infty$, we have

$$\lim_{n \to \infty} \left(\frac{n(n+1)(2n+1)}{6n^3} - \frac{(n+1)}{2n^2} + \frac{1}{4n^2} \right) = \frac{1}{3}.$$

Remark: The final answer is the same as

$$\int_0^1 x^2 \, dx = \frac{x^3}{3} \Big|_{x=0}^{x=1} = \frac{1}{3}.$$

Problem 6. (*) Approximate the value of $\int_{1}^{2} \ln(x) dx$ by using a left endpoint Riemann sum and 4 uniform subintervals.

Solution 6. We take a = 1, b = 2, and n = 4 in Definition 3. Since we are sampling at the left endpoints, we choose $x_i = 1 + (i-1)\Delta x \in [1 + (i-1)\Delta x, 1 + i\Delta x]$ where $\Delta x = \frac{b-a}{n} = \frac{1}{4}$. Therefore, using our formula, we have

$$S_{[1,2]}(f) = \sum_{i=1}^{4} f\left(1 + \frac{i-1}{4}\right) \frac{1}{4}$$

= $\frac{1}{4} \sum_{i=1}^{4} \ln\left(1 + \frac{i-1}{4}\right)$
= $\frac{1}{4} \left(\ln(1) + \ln(1.25) + \ln(1.5) + \ln(1.75)\right) \approx 0.2970...$