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1 Functions and Inverses

Definition 1. A function f : D → R is a rule that assigns each element x in a set D to exactly one
element f(x) in R. The set D is called the domain of f . The set R is called the range of f , and it
consists of all possible values of f(x)1. If the domain of a function is not explicitly specified, then we
take D to be the largest set such that the function is well-defined.

Example 1. Functions can be represented in several ways such as a formula, a graph, or a table of
values. For example, the relation x 7→ x2 from R→ [0,∞) can be expressed as:

1. Formula: A mathematical formula f(x) = x2

2. Graph: A graph is the collection of ordered pairs {(x, f(x)) : x ∈ D} expressed as a curve in the
xy-plane.

x

y f(x) = x2

Note: A curve in the xy-plane is the graph of a function if any vertical line intersects the curve
at most once. This is called the vertical line test.

3. Table: A table of values

x -5 -4 -3 -2 -1 0 1 2 3 4

x2 25 16 9 4 1 0 1 4 9 16

Definition 2. A function is one-to-one if it never takes the same value twice; that is, for every
x1, x2 ∈ D,

f(x1) = f(x2) =⇒ x1 = x2. (1)

Note: In the xy-plane, a function f is one-to-one if any horizontal line intersects the graph of f at
most once. This is called the horizontal line test.

Definition 3. Let f(x) and g(x) be two one-to-one functions. The functions f(x) and g(x) are inverses
if (f ◦ g)(x) = x for all x in the domain of g and (g ◦ f)(x) = x for all x in the domain of f . The
function g is called the inverse function of f and is usually denoted by g(x) = f−1(x).

The inverse f−1 satisfies several properties:

1. The domain of f−1 is the range of f and the range of f−1 is the domain of f

2. In the xy-plane, the graph of f−1 is obtained by reflecting the graph of f about the line y = x

3. A point (x, y) is on the graph of f if and only if (y, x) is a point on the graph of f−1.

Example 2. The functions f(x) = x2 from (0,∞) → (0,∞) is a one-to-one function and has an
inverse given by f−1(x) = g(x) =

√
x. To verify this, we can check that (f ◦ g)(x) = (

√
x)2 = x for all

x ∈ (0,∞) and (g ◦ f)(x) =
√
x2 = x for all x ∈ (0,∞).

1More generally, the set R in the notation f : D → R refers to the co-domain of f . The co-domain must contain the
possible values of f(x), but may also contain some impossible values. For example, one may write: “let f : R → R be
the function f(x) = x2” even though the range of f is only [0,∞). For simplicity, we always take the set R to refer to
the range of a function in this course, so it is not important to know what a co-domain is.
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1.1 Example Problems

1.1.1 Check if a function is one-to-one

Strategy: We need to check Definition 2 directly.

1. To show a function is one-to-one, we need to check condition (1) in Definition 2 holds by assuming
f(x1) = f(x2) and showing that we must have x1 = x2.

2. Alternatively, to show a function is one-to-one, it suffices to show that the function is strictly
increasing or decreasing on its domain (i.e. f(x1) < f(x2) whenever x1 < x2 or f(x1) > f(x2)
whenever x1 < x2). This essentially shows the contrapositive of (1), i.e. if x1 6= x2 then
f(x1) 6= f(x2). This technique will be useful later on in this course once we build the tools to
check this condition.

3. To show that a function is not one-to-one, it suffices to find points x1 6= x2 such that f(x1) =
f(x2).

Problem 1.1. (?) Is the function f(x) = x+5
x−6 one to one?

Solution 1.1. To show the function is one-to-one, notice for x1 6= 6 and x2 6= 6, we have

f(x1) =
x1 + 5

x1 − 6
=
x2 + 5

x2 − 6
= f(x2)⇒ (x1 + 5)(x2 − 6) = (x2 + 5)(x1 − 6)

⇒ x1x2 − 6x1 + 5x2 − 30 = x1x2 − 6x2 + 5x1 − 30

⇒ −11x1 = −11x2

⇒ x1 = x2,

so our function is one-to-one.

Problem 1.2. (?) Is the function f(x) = 9x one to one?

Solution 1.2. From Table 2, we know that x is a one-to-one function, so scaling by 9 will also preserve
this property. To show this directly, notice

f(x1) = 9x1 = 9x2 = f(x2)⇒ x1 = x2,

so our function is one-to-one.

Problem 1.3. (?) Is the function f(x) = |x| one to one?

Solution 1.3. From Table 2, we know that |x| is not one-to-one function. To show this directly,
notice that

f(1) = |1| = 1 = | − 1| = f(−1),

so our function is not one-to-one.

Problem 1.4. (??) Is the function f(x) = xex
2

one to one?
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Solution 1.4. We will show the function is one-to-one by proving that is strictly increasing. Taking
the derivative of f(x), we get

f ′(x) = ex
2

+ 2x2ex
2

= ex
2

(1 + x2) > 0 for all x ∈ R.

In particular, we have f(x) is strictly increasing on R and therefore also one-to-one.

Problem 1.5. (??) Is the function f(x) = x√
x2+4

one to one?

Solution 1.5. Checking the definition directly, we see that

f(x1) =
x1√
x21 + 4

=
x2√
x22 + 4

= f(x2)⇒ x1

√
x22 + 4 = x2

√
x21 + 4

⇒ x21(x22 + 4) = x22(x21 + 4) square both sides

⇒ x21 = x22 expand and simplify

⇒ x1 = x2 or x1 = −x2.

We want to rule out the case that x1 = −x2. Assuming that f(x1) = f(x2) and x1 = −x2 we see that

f(x1) =
x1√
x21 + 4

=
−x2√

(−x2)2 + 4
= − x2√

x22 + 4
= −f(x2) = −f(x1),

so we must have f(x1) = f(x2) = 0. Since f(x) = 0 only when x = 0, we can conclude that x1 = x2 = 0
if x1 and x2 have opposite signs. Therefore, we can conclude that x1 = x2 is the only possible case, so
the function is one to one.

Problem 1.6. (??) True of False: If f(x) is an even function (i.e. f(−x) = f(x)), then f(x) is not
one-to-one.

Solution 1.6. This is true. Since f(−x) = f(x) for all x ∈ Df , if we take x ∈ Df such that x 6= 0
then we have

f(x) = f(−x)

but x 6= −x so our function is not one-to-one.

Problem 1.7. (??) True of False: If f(x) is an odd function (i.e. f(−x) = −f(x)), then f(x) is
one-to-one.

Solution 1.7. This is false. For example, consider f(x) = sin(x). It is well known that sin(x) is an
odd function, but

f(0) = sin(0) = 0 = sin(2π) = f(2π),

so f(x) is not one-to-one.

Problem 1.8. (??) True or False: If g : A→ B and f : B → C are one-to-one then f ◦ g : A→ C is
one-to-one.

Solution 1.8. This is true. We can show Definition 2 directly. Suppose that (f ◦g)(x1) = (f ◦g)(x2),
we need to show that x1 = x2. Notice that both f and g satisfy (1) since they are one-to-one, so

(f ◦ g)(x1) = (f ◦ g)(x2)⇒ g(x1) = g(x2) f satisfies (1)

⇒ x1 = x2 g satisfies (1)

as required.
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1.1.2 Finding the Inverse of a Function

Strategy: Solve x = f(y) for y. The resulting equation is y = f−1(x).

Problem 1.9. (?) Find the formula for the inverse of the function f(x) = x+5
x−6 .

Solution 1.9. It is easy to check that f(x) is one-to-one. To find the formula for f−1, it suffices to
solve

x = f(y) =
y + 5

y − 6

in terms of y. Notice that

x =
y + 5

y − 6
⇒ xy − 6x = y + 5⇒ (x− 1)y = 6x+ 5⇒ f−1(x) = y =

6x+ 5

x− 1
.

Problem 1.10. (?) Find the formula for the inverse of the function f(x) = x2 + 2x+ 1.

Solution 1.10. The function is not one-to-one since f(0) = 1 = f(−2), so the inverse does not exist.

Problem 1.11. (??) Find a formula for the inverse of the function f(x) =
√
−1− x. Be sure to

specify the domain of f−1.

Solution 1.11. It is easy to check that f(x) is one-to-one on its domain (−∞,−1]. To find the
formula for f−1, it suffices to solve

x = f(y) =
√
−1− y

in terms of y. Notice that

x =
√
−1− y ⇒ x2 = −1− y ⇒ f−1(x) = y = −1− x2.

Although the function f−1(x) makes sense for all x ∈ R, the domain of this inverse is the range of
f(x), which is [0,∞).

Problem 1.12. (??) Derive the formula for cosh−1(x) by restricting cosh(x) to the domain x ≥ 0.

Solution 1.12. We explicitly compute the inverse of f(x) = cosh(x). Since cosh(x) is not one to one,
we have to restrict its domain to x ≥ 0 to make our function one-to-one to ensure the existence of an
inverse. To find the inverse, we set f(y) = x and solve for y,

cosh(y) = x⇒ ey + e−y

2
= x

⇒ ey + e−y − 2x = 0

⇒ e2y − 2xey + 1 = 0 multiply both sides by ey

⇒ ey =
2x±

√
4x2 − 4

2
using the quadratic formula

⇒ y = ln(x±
√
x2 − 1)

⇒ y = ln(x+
√
x2 − 1) since y must be ≥ 0 for all x ≥ 1.
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We used the fact that when y ≥ 0, cosh(y) = x ≥ 1, so we must pick the sign that satisfies this con-
dition. The other possible solution does not work because ln(x −

√
x2 − 1) < 0 for x ≥ 1. Therefore,

the formula for the inverse function is f−1(x) = ln(x+
√
x2 − 1).

Note: If we multiplied both sides by e−y, in the computation above, we would have deduced that
f−1(x) = − ln(x +

√
x2 − 1). This is the other possible inverse of cosh−1(x) if we choose to restrict

cosh(x) to the domain x ≤ 0.

Problem 1.13. (? ? ?) Suppose f(x) is an odd one-to-one function. Show that f−1(x) is odd.

Solution 1.13. Since f(x) is one-to-one, its inverse f−1(x) exists. We need to show that

f−1(−x) = −f−1(x)

for all x. Setting y = f−1(x), we have x = f(y) and therefore

f−1(−x) = f−1(−f(y)) = f−1(f(−y)) = −y = −f−1(x).

We used the fact f(y) is odd, that is −f(y) = f(−y) in the second inequality and the cancellation
property of inverses in the third equality.

Problem 1.14. (??) Find the formula for the inverse of the function f(x) = x√
x2+4

.

Solution 1.14. This function is one-to-one by Problem 1.5 so an inverse function exists. To find the
formula for the inverse, we set f(y) = x and solve for y,

y√
y2 + 4

= x⇒ y2 = x2(y2 + 4) simplify and square both sides

⇒ y2(1− x2) = 4x2

⇒ y = ±
√

4x2

1− x2
simplify and squareroot both sides

⇒ y = ± 2|x|√
1− x2

√
x2 = |x|.

To figure out which signs to pick, we will consider two cases:

1. If y ≥ 0, then x = f(y) = y√
y2+4

≥ 0. This means that y = f−1(x) ≥ 0 for x ≥ 0, so we pick the

positive sign,

f−1(x) =
2|x|√
1− x2

when x ≥ 0.

2. If y < 0, then x = f(y) = y√
y2+4

< 0. This means that y = f−1(x) < 0 for x < 0, so we pick the

negative sign,

f−1(x) = − 2|x|√
1− x2

when x < 0.

These two cases can be written as a single function,

f−1(x) =
2x√

1− x2
for x ∈ [−1, 1],

since the range of f(x) is [−1, 1].

Remark. Since f(x) is odd, f−1(x) must also be odd. This means we can recover the values for x < 0
by taking the odd extension of f−1(x) in for x ≥ 0 to avoid doing the computation for case 2. That is,

f−1(x) =
2|x|√
1− x2

=
2x√

1− x2
for x ≥ 0 =⇒ f−1(x) = −f−1(−x) =

2x√
1− x2

for x < 0.
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2 Exponential and Logarithm Function

An exponential function with base a > 0 is denoted by ax and its inverse is denoted by loga(x). The
most common base for an exponential function is the mathematical constant e = 2.718 . . .

Definition 4. We call function exp(x) = ex the exponential function, and its inverse ln(x) = loge(x)
the natural logarithm (some books use log(x) to refer to the natural logarithm).

Basic Properties: We summarize several properties of the exponential function and its logarithm. The
following properties hold more generally for a > 0 instead of e (just replace the e with a).

Exponential Logarithm

exp(x+ y) = exp(x) · exp(y) ln(x · y) = ln(x) + ln(y)

exp(x)y = exp(y · x) ln(xy) = y ln(x)

exp(−x) = 1
exp(x) − ln(x) = ln( 1

x )

exp(ln(x)) = x for x > 0 ln(exp(x)) = x for x ∈ R
exp(0) = 1, exp(1) = e ln(1) = 0, ln(e) = 1

limx→∞ exp(x) =∞, limx→−∞ exp(x) = 0 limx→0+ ln(x) = −∞, limx→∞ ln(x) =∞

Table 1: Properties of Exponential Functions

Change of Base Formulas: The change of base formulas allow us to express exponential functions and
logarithms with base a in terms of exp(x) and ln(x):

loga(x) =
lnx

ln a
and ax = ex ln(a)

where a > 0 and a 6= 1. Since we can freely convert into base e, it suffices to just work with base e in
most applications.

2.0.1 Graphs of the Exponential and Logarithm with base e

The graph of the exponential function ex and the logarithm function ln(x) is displayed below:
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2.1 Example Problems

2.1.1 Solving and Simplifying Expressions Involving log(x) and ex:

Problem 2.1. (?) Solve 33x = 1
92x−1 for x.

Solution 2.1. Using the properties of exponents, we have

33x =
1

92x−1
⇒ 33x = (32)−(2x−1)

⇒ 33x = 3−2(2x−1)

⇒ 3x = −2(2x− 1)

⇒ x =
2

7
.

Problem 2.2. (?) Simplify the expression e− ln( 1
3 ).

Solution 2.2. Using the properties of exponents, we have

e− ln( 1
3 ) = exp

(
− ln

(1

3

))
= exp(ln(3)) = 3.

Problem 2.3. (?) Simplify the expression

ex ln(x)+(2x−7) ln(x).

Solution 2.3. Using the properties of exponents, we have

ex ln(x)+(2x−7) ln(x) = e3x ln(x)−7 ln(x) = eln(x
3x)+ln(x−7) = eln(x

3x·x−7) = eln(x
(3x−7)) = x3x−7.

Problem 2.4. (?) Solve the following expression for x:

log54(x− 2) + log54(x+ 1) = 1.

Solution 2.4. Simplifying the left hand side, we combine the logarithms to conclude

log54(x− 2) + log54(x+ 1) = log54((x− 2) · (x+ 1)) = log54(x2 − x− 2).

Therefore, raising both sides of our original equation with base 54 implies

log54(x− 2) + log54(x+ 1) = 1⇒ log54(x2 − x− 2) = 1⇒ x2 − x− 2 = 54⇒ x2 − x− 56 = 0.

Notice that x2−x− 56 = (x− 8)(x+ 7) which means the equation x2−x− 56 = 0 has solutions x = 8
and x = −7. However, since the domain of log54(x) is x > 0, we have x = −7 is not in the domain of
either log54(x− 2) or log54(x+ 1), so our only solution is x = 8.

Problem 2.5. (??) Solve the following expression for x:

2x−1 · 3x+1 = 54.

Solution 2.5. Taking the natural logarithm of both sides, we get

2x−1 · 3x+1 = 54⇒ (x− 1) ln(2) + (x+ 1) ln(3) = ln(54)

Since 54 = 2 · 27 = 2 · 33, we have

(x− 1) ln(2) + (x+ 1) ln(3) = ln(54) = ln(2 · 33) = ln(2) + 3 ln(3).

Simplifying this equation, we get

x ln(2) + x ln(3) = 2 ln(2) + 2 ln(3)⇒ x =
2 ln(2) + 2 ln(3)

ln(2) + ln(3)
= 2.
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2.1.2 Change of Base Formulas:

Problem 2.6. (??) Let b > 0 and suppose b 6= 1. Prove the change of base formula

logb(x) =
lnx

ln b
.

Solution 2.6. We solve the following equation for y

y = logb(x)⇔ by = x compose both sides with bx

⇔ ln(by) = ln(x) compose both sides with ln(x)

⇔ y ln(b) = ln(x)

⇔ y =
ln(x)

ln(b)
.

Therefore, we have

logb(x) = y =
ln(x)

ln(b)
.

Note: We used the fact b 6= 1, to ensure we did not divide by 0.

Problem 2.7. (??) Prove the change of base formula

bx = ex ln(b).

Solution 2.7. We solve the following equation for y

bx = ey ⇔ ln bx = y compose both sides with ln(x)

⇔ y = x ln(b).

Therefore, we have
bx = ey = ex ln(b).
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3 Inverse Trigonometric Functions

The trigonometric functions are not one-to-one, so they don’t have inverse functions. However, we
can restrict the domain of the trigonometric functions to a region such that the functions are one-
to-one and define the inverse of the trigonometric functions on these restricted domains. In general,
trigonometric functions with “leading sine terms” are restricted to a subset of [−π/2, π/2] and the
trigonometric functions with “leading cosine terms” are restricted to a subset of [0, π].

3.0.1 Graphs of Inverse Trigonometric Functions

In the following pictures, the dotted blue graph is the full function. The blue graph is the one-to-one
function on the restricted domain. And the red graph is the inverse function.

Sine Function: We restrict sin(x) to the domain [−π/2, π/2]:

Cosine Function: We restrict cos(x) to the domain [0, π]:

Tangent Function: We restrict tan(x) to the domain (−π/2, π/2):
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Cosecant Function: We restrict csc(x) to the domain [−π/2, 0) ∪ (0, π/2]:

Secant Function: We restrict sec(x) to the domain [0, π/2) ∪ (π/2, π]:

Cotangent Function: We restrict cot(x) to the domain (0, π):

3.1 Example Problems

Problem 3.1. (?) Find the domain of the function

f(x) = sin−1(x3 − 7).

Solution 3.1. Since the domain of sin−1(x) is |x| ≤ 1, the domain of f(x) are the values of x such
that |x3 − 7| ≤ 1. To solve this inequality, we notice

|x3 − 7| ≤ 1⇒ ±(x3 − 7) ≤ 1

Solving for the case with the positive sign, implies

(x3 − 7) ≤ 1⇒ x3 ≤ 8⇒ x ≤ 2
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and for the case with the negative sign, implies

−(x3 − 7) ≤ 1⇒ −x3 ≤ −6⇒ x ≥ 61/3.

Therefore, the domain is
61/3 ≤ x ≤ 2.

Problem 3.2. (?) Find the x such that

1. sin(sin−1(x)) = x

2. sin−1(sin(x)) = x

3. tan−1(tan(x)) = x

4. cot−1(cot(x)) = x

5. csc(csc−1(x)) = x

6. cos(cos−1(x)) = x.

Solution 3.2. The answers to these types of problems can be read directly off the domains and ranges
of the inverse trigonometric functions in Table 2. Let Df and Rf be the domains and ranges of f .

1. The inverse identity sin(sin−1(x)) = x holds for all x ∈ Dsin−1(x) = [−1, 1].

2. The inverse identity sin−1(sin(x)) = x holds for all x ∈ Dsin(x) = Rsin−1(x) = [−π2 ,
π
2 ].

3. The inverse identity tan−1(tan(x)) = x holds for all x ∈ Dtan(x) = Rtan−1(x) = (−π2 ,
π
2 ).

4. The inverse identity cot−1(cot(x)) = x holds for all x ∈ Dcot(x) = (0, π).

5. The inverse identity csc(csc−1(x)) = x holds for all x ∈ Dcsc−1(x) = (−∞,−1] ∪ [1,∞).

6. The inverse identity cos(cos−1(x)) = x holds for all x ∈ Dcos−1(x) = [−1, 1].

Remark. Recall that the domain of a composition f ◦ g is {x ∈ Dg : g(x) ∈ Df} where Dg and Df

are the respective domains of g and f . Even though the trigonometric functions sin(x), cos(x), . . . are
defined on large domains, the functions are not one-to-one, so its inverses are not well defined on the
larger domain. We always restrict the domain of the trigonometric functions to the range of the inverse
functions so that the inverses behave nicely. In particular, the cancellation properties of the inverse
functions only hold for the restricted trigonometric functions.

Problem 3.3. (??) Show that

sec−1(x) = cos−1
( 1

x

)
.

Solution 3.3. For |x| ≥ 1 (in the domain of sec−1(x)) we can define

sec−1(x) = y ∈ [0, π/2) ∪ (π/2, π].

Writing x in terms of y and then back in terms of x, we see that

x = sec(sec−1(x)) = sec(y) =
1

cos(y)
=⇒ cos(y) =

1

x
=⇒ y = cos−1(cos(y)) = cos−1

( 1

x

)
.

We used the fact that y is in the restricted domain of cos(y) to conclude that cos−1(cos(y)) = y.
Furthermore, since 1

x ≤ 1 for |x| ≥ 1, the function cos−1( 1
x ) is defined since 1

x is in the domain of
cos−1(x). We can conclude that

sec−1(x) = y = cos−1
( 1

x

)
.

Remark. This identity is the main reason why we chose to restrict the secant function to [0, π/2) ∪
(π/2, π] to define the inverse. Later on when we learn trigonometric substitutions, it turns out that
[0, π/2) ∪ [π, 3π/2) is the more convenient restriction, because tan(x) is non-negative on this domain.
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3.1.1 Simplifying Inverse Trigonometric Functions

Problem 3.4. (??) Rewrite the expression tan(cos−1(x)) without using trigonometric functions. What
is the domain of this function?

Solution 3.4. We can solve this problem either geometrically or algebraically.

Geometric Solution: We first find the domain of our function. We have Dcos−1(x) = [−1, 1] and

Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcos−1(x) such that cos−1(x) 6= π

2 ⇒ x 6= 0.
Therefore, the domain of our function is [−1, 1] \ {0}.

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to cos(θ) = x in the first
quadrant is given by

θ

1 √
1− x2

x

From this triangle, we see

tan(cos−1(x)) = tan(θ) =

√
1− x2
x

for x ∈ (0, 1].

Case x < 0: We now consider the case such that x < 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [π2 , π] (the second quadrant). The triangle corresponding to cos(θ) = x in the second
quadrant is given by

θ

√
1− x2

1

x

Notice that x < 0, so this triangle is indeed in the second quadrant. From this triangle, we see

tan(cos−1(x)) = tan(θ) =

√
1− x2
x

for x ∈ [−1, 0).

Algebraic Solution: We first find the domain of our function. We have Dcos−1(x) = [−1, 1] and

Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcos−1(x) such that cos−1(x) 6= π

2 ⇒ x 6= 0.
Therefore, the domain of our function is [−1, 1] \ {0}.

Case x > 0: We first consider the case such that x ≥ 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [0, π2 ] so trigonometric functions are positive. We now solve the identity algebraically.
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We want to write tan(θ) in terms of cos(θ). Using the Pythagorean identity,

sin2(θ) + cos2(θ) = 1⇒ tan2(θ) + 1 =
1

cos2(θ)

⇒ tan2(θ) =
1− cos2(θ)

cos2(θ)

⇒ tan(θ) =

√
1− cos2(θ)

cos(θ)
.

Since tan(θ) ≥ 0 and cos(θ) > 0, we didn’t have to worry about absolute values when taking the
squareroots of both sides or dividing by zero. Therefore, if we set θ = cos−1(x), we have

tan(cos−1(x)) =

√
1− cos2(cos−1(x))

cos(cos−1(x))
=

√
1− x2
x

for x ∈ (0, 1].

Case x < 0: We now consider the case such that x < 0 on our domain. We can easily check
that our function tan(cos−1(x)) is odd. To see this, notice that cos−1(x) − π

2 is odd, and therefore
tan((cos−1(x)− π

2 ) + π
2 ) is a composition of odd functions and therefore odd. Extending our solution

for x > 0 to make it odd, we have

tan(cos−1(x)) = −
√

1− (−x)2

−x
=

√
1− x2
x

for x ∈ [−1, 0).

Problem 3.5. (??) Rewrite the expression tan(csc−1(x)) without using trigonometric functions. What
is the domain of this function?

Solution 3.5. We can solve this problem either geometrically or algebraically.

Geometric Solution: We first find the domain of our function. We haveDcsc−1(x) = (−∞,−1]∪[1,∞)

and Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcsc−1(x) such that csc−1(x) 6= ±π2 ⇒

x 6= ±1. Therefore, the domain of our function is (−∞,−1) ∪ (1,∞).

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to csc(θ) = x in the first
quadrant is given by

θ

x
1

√
x2 − 1

From this triangle, we see

tan(csc−1(x)) = tan(θ) =
1√

x2 − 1
for x ∈ (1,∞).

Case x < 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [−π2 , 0] (the fourth quadrant). The triangle corresponding to csc(θ) = x in the fourth
quadrant is given by
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θ

−x −1

√
x2 − 1

Notice that x < 0, so the hypotenuse is positive. From this triangle, we see

tan(csc−1(x)) = tan(θ) = − 1√
x2 − 1

for x ∈ (−∞,−1).

Algebraic Solution: We first find the domain of our function. We have Dcsc−1(x) = (−∞,−1]∪[1,∞)

and Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcsc−1(x) such that csc−1(x) 6= ±π2 ⇒

x 6= ±1. Therefore, the domain of our function is (−∞,−1) ∪ (1,∞).

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [0, π2 ] so trig functions are all positive. We now solve the identity algebraically.

We want to write tan(θ) in terms of csc(θ). Using the Pythagorean identity,

sin2(θ) + cos2(θ) = 1⇒ 1 +
1

tan2(θ)
= csc(θ)

⇒ tan2(θ) =
1

csc2(θ)− 1

⇒ tan(θ) =
1√

csc2(θ)− 1
.

Since sin(θ) > 0 and cos(θ) > 0 on this domain, we didn’t have to worry about absolute values when
taking the squareroots of both sides or dividing by zero. Therefore, if we set θ = csc−1(x), we have

tan(csc−1(x)) =
1√

x2 − 1
for x ∈ (1,∞).

Case x < 0: We now consider the case such that x < 0 on our domain. We can easily check that our
function tan(csc−1(x)) is odd. To see this, notice that csc−1(x) is odd, and therefore tan((csc−1(x)))
is a composition of odd functions and therefore odd. Extending our solution to make it odd, we have

tan(csc−1(x)) = − 1√
(−x)2 − 1

= − 1√
x2 − 1

for x ∈ (−∞,−1).

Remark. We used the following fact in Solutions 3.4 and Solution 3.5.

Suppose we know f(x) for x > 0. We can use following formulas to extend our functions in an
odd or even manner

1. Odd Extension: For x < 0, the odd extension of f is given by −f(−x).

2. Even Extension: For x < 0, the even extension of f is given by f(−x).
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4 Appendix: Summary of Essential Functions

Below is a non-exhaustive list of the basic functions we will encounter in this class.

Elementary Functions

Function Domain Range One-to-One

xn (where n is even) R [0,∞) No

xn (where n is odd) R R Yes
√
x [0,∞) [0,∞) Yes
1
x R \ {0} R \ {0} Yes

|x| R [0,∞) No

Exponential Functions

Function Domain Range One-to-One

ax (where a > 0) R (0,∞) Yes

loga(x) (where a > 0) (0,∞) R Yes

Trigonometric Functions

Function Domain Range One-to-One

sin(x) R [−1, 1] No

cos(x) R [−1, 1] No

tan(x) = sin(x)
cos(x) {x : x 6= 2k+1

2 π, k ∈ Z} R No

sin−1(x) [−1, 1] [−π2 ,
π
2 ] Yes

cos−1(x) [−1, 1] [0, π] Yes

tan−1(x) R (−π2 ,
π
2 ) Yes

csc(x) = 1
sin(x) {x : x 6= kπ, k ∈ Z} (−∞,−1] ∪ [1,∞) No

sec(x) = 1
cos(x) {x : x 6= 2k+1

2 π, k ∈ Z} (−∞,−1] ∪ [1,∞) No

cot(x) = 1
tan(x) {x : x 6= kπ, k ∈ Z} R No

csc−1(x) (−∞,−1] ∪ [1,∞) [−π2 , 0) ∪ (0, π2 ] Yes

sec−1(x) (−∞,−1] ∪ [1,∞) [0, π2 ) ∪ (π2 , π] Yes

cot−1(x) R (0, π) Yes

Hyperbolic Functions

Function Domain Range One-to-One

sinh(x) = ex−e−x

2
R R Yes

cosh(x) = ex+e−x

2
R [1,∞) No

tanh(x) = sinh(x)
cosh(x) R (−1, 1) Yes

sinh−1(x) = ln(x+
√
x2 + 1) R R Yes

cosh−1(x) = ln(x+
√
x2 − 1) [1,∞) [0,∞) Yes

tanh−1(x) = 1
2 ln( 1+x

1−x ) (−1, 1) R Yes

csch(x) = 1
sinh(x) R \ {0} R \ {0} Yes

sech(x) = 1
cosh(x) R (0, 1] No

coth(x) = 1
tanh(x) R \ {0} (−∞,−1) ∪ (1,∞) Yes

Table 2: Table of Functions
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