1 Functions Defined in Terms of Integrals

Integrals allow us to define new functions in terms of the basic functions introduced in Week 1. Given a continuous function $f(x)$, consider the area function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

General Properties of $F(x)$: The following properties will allow us to sketch $F(x)$ even if the definite integral is impossible to simplify:

1. $F(x)$ is continuous where it is defined.
(Fundamental theorem of calculus)
2. $F(a)=0$.
(Definition of the definite integral)
3. $F^{\prime}(x)=f(x)$.
(Fundamental theorem of calculus)
4. $F^{\prime \prime}(x)=f^{\prime}(x)$.
(Fundamental theorem of calculus)
5. If $a=0$ and $f(x)$ is even, then $F(x)$ is odd.
(Change of variables)
6. If $f(x)$ is odd, then $F(x)$ is even.
(Change of variables)

1.1 The Natural Logarithm

Definition 1. For $x>0$, the natural logarithm is defined by

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Sketching the Curve: Using the basic properties of integral defined functions for $F(x)=\ln (x)$ we know that:

1. The x intercepts and derivatives of F are given by

$$
F(1)=0, F^{\prime}(x)=\frac{1}{x}, \quad F^{\prime \prime}(x)=-\frac{1}{x^{2}}
$$

2. With some work, we can also show that $\lim _{x \rightarrow 0^{+}} F(x)=-\infty$ and $\lim _{x \rightarrow \infty} F(x)=\infty$.

Therefore, we can conclude that $F(x)$ is a strictly increasing concave down function that passes through the point $(1,0)$. The second point also tells us there is a vertical asymptote at $x=0$ and the integral diverges to ∞ as $x \rightarrow \infty$.

Figure 1: The graph of $f(x)=\frac{1}{x}$ and $F(x)=\ln (x)$ are displayed above. The value of $F(x)$ is the area under the curve of $\ln (x)$ between 1 and x.

1.2 The Error Function

Definition 2. For $x \in \mathbb{R}$, the error function is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Sketching the Curve: Using the basic properties of integral defined functions for $F(x)=\operatorname{erf}(x)$ we know that:

1. The x intercepts and derivatives of F are given by

$$
F(0)=0, F^{\prime}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}, F^{\prime \prime}(x)=-\frac{4 x}{\sqrt{\pi}} e^{-x^{2}}
$$

2. With some work, we can also show that $\lim _{x \rightarrow \infty} F(x)=1$.
3. $F(x)$ is odd since $f(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ is even and the lower limit of integration is 0 .

Therefore, we can conclude for $x \geq 0$ that $F(x)$ is a strictly increasing concave down function that passes through the point $(0,0)$. The second point also implies that $y=1$ is a horizontal asymptote as $x \rightarrow \infty$. Since $F(x)$ is odd, we can recover the shape for $x<0$ by reflecting around the origin.

Figure 2: The graph of $f(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ and $F(x)=\operatorname{erf}(x)$ are displayed above. The value of $F(x)$ is the area under the curve of $\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ between 0 and x.

1.3 Examples of Other Integral Defined Functions

1. Fresnel Integrals:

$$
S(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t \quad \text { and } \quad C(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t
$$

2. Sine Integral:

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

3. Logarithmic Integral:

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t \quad \text { for } \quad x \geq 2
$$

1.4 Example Problems

1.4.1 Properties About Integral Defined Functions

Problem 1.1. (\star) Let

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Show that $F^{\prime}(x)=f(x)$ and $F^{\prime \prime}(x)=f^{\prime}(x)$.

Solution 1.1. By the first part of the fundamental theorem of calculus,

$$
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Differentiating this again implies

$$
F^{\prime \prime}(x)=f^{\prime}(x)
$$

Problem 1.2. ($\star \star$) Suppose $f(x)$ is even, that is $f(-x)=f(x)$. Show that the function

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is an odd function.

Solution 1.2. It suffices to show $F(-x)=-F(x)$. Using the change of variables $u=-t$,

$$
d u=-d t, \quad t=0 \rightarrow u=0, \quad t=-x \rightarrow u=x
$$

we have

$$
\begin{aligned}
F(-x)=\int_{0}^{-x} f(t) d t & =-\int_{0}^{x} f(-u) d u \\
& =-\int_{0}^{x} f(u) d u \quad f(-u)=f(u) \\
& =-F(x)
\end{aligned}
$$

Problem 1.3. ($\star \star$) Suppose $f(x)$ is odd, that is $f(-x)=-f(x)$. Show that the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is an even function.

Solution 1.3. It suffices to show that $F(-x)=F(x)$, that is $F(x)-F(-x)=0$. This follows immediately from the properties of integration,

$$
F(x)-F(-x)=\int_{a}^{x} f(t) d t-\int_{a}^{-x} f(t) d t=\int_{a}^{x} f(t) d t+\int_{-x}^{a} f(t) d t=\int_{-x}^{x} f(t) d t=0
$$

since $f(t)$ is odd, so its integral around a symmetric interval is 0 by symmetry.

1.4.2 The Natural Logarithm

Problem 1.4. ($\star \star$) Using the integral definition of the natural logarithm, show that

$$
\int \ln (x) d x=x \ln (x)-x+C
$$

Solution 1.4. We can integrate by parts to recover the formula for the antiderivative,

\pm	D	I
+	$\ln (x)$	1
$-\int$	$\frac{d}{d x} \ln (x)$	x

Since $\frac{d}{d x} \ln (x)=\frac{1}{x}$ by the fundamental theorem, we have

$$
\int \ln (x) d x=x \ln (x)-\int 1 d x=x \ln (x)-x+C
$$

Remark. It is easy to check that the $x \ln (x)-x+C$ is an antiderivative by simply differentiating.

Problem 1.5. ($\star \star \star$) Using the integral definition of the natural logarithm, show that

$$
\ln (x y)=\ln (x)+\ln (y)
$$

Solution 1.5. We want to write $\ln (x y)$ in terms of its integral definition. The trick is to "split" the integral

$$
\begin{aligned}
\ln (x y) & =\int_{1}^{x y} \frac{1}{t} d t \\
& =\int_{1}^{x} \frac{1}{t} d t+\int_{x}^{x y} \frac{1}{t} d t \quad \int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t \\
& =\int_{1}^{x} \frac{1}{t} d t+\int_{1}^{y} \frac{1}{u} d u \quad u=\frac{t}{x}, d u=\frac{d t}{x}, \int_{x}^{x y} d t \rightarrow \int_{1}^{y} d u \\
& =\ln (x)+\ln (y)
\end{aligned}
$$

1.4.3 The Error Function

Problem 1.6. ($\star \star$) Using the integral definition of the error function, show that

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)+\frac{1}{\sqrt{\pi}} \cdot e^{-x^{2}}+C
$$

Solution 1.6. We can integrate by parts to recover the formula for the antiderivative,

\pm	D	I
+	$\operatorname{erf}(x)$	1
$-\int$	$\frac{d}{d x} \operatorname{erf}(x)$	x

Since $\frac{d}{d x} \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ by the fundamental theorem, we have

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)-\int \frac{2 x}{\sqrt{\pi}} e^{-x^{2}} d x
$$

The second integral can be solved using the substitution $u=-x^{2}, d u=-2 x d x$ which gives us

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)+\int \frac{1}{\sqrt{\pi}} e^{u} d u=x \operatorname{erf}(x)+\frac{1}{\sqrt{\pi}} \cdot e^{-x^{2}}+C
$$

Remark. It is easy to check that the $x \operatorname{erf}(x)+\frac{e^{-x^{2}}}{\sqrt{\pi}}+C$ is an antiderivative by simply differentiating.
Problem 1.7. $(\star \star \star)$ Using the integral definition of the error function, show that

$$
\int_{0}^{x} e^{a t} \cdot e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)+\operatorname{erf}\left(\frac{a}{2}\right)\right)
$$

Solution 1.7. We want to write the integral in terms of the error function. The trick is to "complete the square" in the exponent

$$
\begin{array}{rlrl}
\int_{0}^{x} e^{a t} \cdot e^{-t^{2}} d t & =\int_{0}^{x} e^{-t^{2}+a t-\frac{a^{2}}{4}+\frac{a^{2}}{4}} d t & & \text { (complete the square) } \\
& =e^{\frac{a^{2}}{4}} \int_{0}^{x} e^{-\left(t-\frac{a}{2}\right)^{2}} d t & & u=t-\frac{a}{2}, d u=d t, \int_{0}^{x} d t \rightarrow \int_{-\frac{a}{2}}^{x-\frac{a}{2}} d u \\
& =e^{\frac{a^{2}}{4}} \int_{-\frac{a}{2}}^{x-\frac{a}{2}} e^{-u^{2}} d u & & \int_{a}^{b} f(t) d t=\int_{a}^{0} f(t) d t+\int_{0}^{b} f(t) d t \\
& =e^{\frac{a^{2}}{4}}\left(\int_{-\frac{a}{2}}^{0} e^{-u^{2}} d u+\int_{0}^{x-\frac{a}{2}} e^{-u^{2}} d u\right) \\
& =e^{\frac{a^{2}}{4}}\left(-\int_{0}^{-\frac{a}{2}} e^{-u^{2}} d u+\int_{0}^{x-\frac{a}{2}} e^{-u^{2}} d u\right) \quad \int_{a}^{0} f(t) d t=-\int_{0}^{a} f(t) d t \\
& =\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)-\operatorname{erf}\left(-\frac{a}{2}\right)\right) & \int_{0}^{x} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \\
& =\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)+\operatorname{erf}\left(\frac{a}{2}\right)\right) . & & (\operatorname{erf}(x) \text { is odd })
\end{array}
$$

1.4.4 Curve Sketching

Strategy: Given $f(t)$ we want to sketch $F(x)=\int_{0}^{x} f(t) d t$. In general, it is very hard to find the values of $F(x)$ without using numerical integration methods, but we are able to do a rough sketch without any computations at all. Since

$$
F^{\prime}(x)=f(x) \quad \text { and } \quad F^{\prime \prime}(x)=f^{\prime}(x)
$$

we have the following rules:

$f(x)$	$F(x)$
Positive	Increasing
Negative	Decreasing
Increasing	Convex
Decreasing	Concave

and \quad\begin{tabular}{c|c}
\hline \& $f(x)$

x-intercept (crossing)
local max/min
:---
inflection point

\hline
\end{tabular}

We also know that $F(0)=\int_{0}^{0} f(t) d t=0$. If $f(t)$ is odd or even, then we can use symmetry to recover the shape of $F(x)$ by doing an even or odd reflection of the graph of $F(x)$ around the y-axis. This means we only have to sketch $F(x)$ for $x \geq 0$, if $f(t)$ is symmetric.

Problem 1.8. ($\star \star)$ The graph of $f(x)=\sin \left(x^{2}\right)$ is displayed as a dashed red line below:

Sketch the graph of the Fresnel sine function $S(x)=\int_{0}^{x} f(t) d t$.
Solution 1.8. We can use the rules in Table 1 to sketch the graph of $S(x)$ (displayed in blue)

(a) $S(0)=0$, so the graph passes through the origin.
(b) $S(x)$ is odd since $f(x)=\sin \left(x^{2}\right)$ is an even function and the lower limit of integration is 0 .
(c) The maximum of $S(x)$ can be approximated by a triangle with width $\sqrt{\pi}$ and height 1 ,

$$
\int_{0}^{\sqrt{\pi}} \sin \left(t^{2}\right) d t \approx \frac{\sqrt{\pi}}{2} \approx 0.89
$$

Problem 1.9. ($\star \star)$ The graph of $f(x)=\cos \left(x^{2}\right)$ is displayed as a dashed red line below:

Sketch the graph of the Fresnel cosine function $C(x)=\int_{0}^{x} f(t) d t$.
Solution 1.9. We can use the rules in Table 1 to sketch the graph of $C(x)$ (displayed in blue)

(a) $C(0)=0$, so the graph passes through the origin.
(b) $C(x)$ is odd since $f(x)=\cos \left(x^{2}\right)$ is an even function and the lower limit of integration is 0 .
(c) The maximum of $C(x)$ can be approximated using a midpoint Riemann sum with one rectangle,

$$
\int_{0}^{\sqrt{\frac{\pi}{2}}} \cos \left(t^{2}\right) d t \approx \cos \left(\left(\sqrt{\frac{\pi}{2}} \cdot \frac{1}{2}\right)^{2}\right) \cdot \sqrt{\frac{\pi}{2}} \approx 1.16
$$

