1 Functions Defined in Terms of Integrals

Integrals allow us to define new functions in terms of the basic functions introduced in Week 1. Given a continuous function f(x), consider the area function

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

General Properties of F(x): The following properties will allow us to sketch F(x) even if the definite integral is impossible to simplify:

- 1. F(x) is continuous where it is defined.
- 2. F(a) = 0.
- 3. F'(x) = f(x).
- 4. F''(x) = f'(x).
- 5. If a = 0 and f(x) is even, then F(x) is odd.
- 6. If f(x) is odd, then F(x) is even.

1.1 The Natural Logarithm

Definition 1. For x > 0, the *natural logarithm* is defined by

$$\ln(x) = \int_1^x \frac{1}{t} \, dt.$$

Sketching the Curve: Using the basic properties of integral defined functions for $F(x) = \ln(x)$ we know that:

1. The x intercepts and derivatives of F are given by

$$F(1) = 0, \ F'(x) = \frac{1}{x}, \ F''(x) = -\frac{1}{x^2}.$$

2. With some work, we can also show that $\lim_{x\to 0^+} F(x) = -\infty$ and $\lim_{x\to\infty} F(x) = \infty$.

Therefore, we can conclude that F(x) is a strictly increasing concave down function that passes through the point (1,0). The second point also tells us there is a vertical asymptote at x = 0 and the integral diverges to ∞ as $x \to \infty$.

Figure 1: The graph of $f(x) = \frac{1}{x}$ and $F(x) = \ln(x)$ are displayed above. The value of F(x) is the area under the curve of $\ln(x)$ between 1 and x.

(Fundamental theorem of calculus)

(Definition of the definite integral)

(Fundamental theorem of calculus)

(Fundamental theorem of calculus)

- (Change of variables)
- (Change of variables)

Justin Ko

1.2 The Error Function

Definition 2. For $x \in \mathbb{R}$, the *error function* is defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

Sketching the Curve: Using the basic properties of integral defined functions for F(x) = erf(x) we know that:

1. The x intercepts and derivatives of F are given by

$$F(0) = 0, \ F'(x) = \frac{2}{\sqrt{\pi}}e^{-x^2}, \ F''(x) = -\frac{4x}{\sqrt{\pi}}e^{-x^2}.$$

- 2. With some work, we can also show that $\lim_{x\to\infty} F(x) = 1$.
- 3. F(x) is odd since $f(x) = \frac{2}{\sqrt{\pi}}e^{-x^2}$ is even and the lower limit of integration is 0.

Therefore, we can conclude for $x \ge 0$ that F(x) is a strictly increasing concave down function that passes through the point (0,0). The second point also implies that y = 1 is a horizontal asymptote as $x \to \infty$. Since F(x) is odd, we can recover the shape for x < 0 by reflecting around the origin.

Figure 2: The graph of $f(x) = \frac{2}{\sqrt{\pi}}e^{-x^2}$ and $F(x) = \operatorname{erf}(x)$ are displayed above. The value of F(x) is the area under the curve of $\frac{2}{\sqrt{\pi}}e^{-x^2}$ between 0 and x.

1.3 Examples of Other Integral Defined Functions

1. Fresnel Integrals:

$$S(x) = \int_0^x \sin(t^2) dt$$
 and $C(x) = \int_0^x \cos(t^2) dt$

2. Sine Integral:

$$\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} \, dt$$

3. Logarithmic Integral:

$$\operatorname{Li}(x) = \int_{2}^{x} \frac{1}{\ln(t)} dt \quad \text{for} \quad x \ge 2.$$

1.4 Example Problems

1.4.1 Properties About Integral Defined Functions

Problem 1.1. (\star) Let

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

Show that F'(x) = f(x) and F''(x) = f'(x).

Solution 1.1. By the first part of the fundamental theorem of calculus,

$$F'(x) = \frac{d}{dx} \int_a^x f(t) \, dt = f(x).$$

Differentiating this again implies

$$F''(x) = f'(x).$$

Problem 1.2. $(\star\star)$ Suppose f(x) is even, that is f(-x) = f(x). Show that the function

$$F(x) = \int_0^x f(t) \, dt$$

is an odd function.

Solution 1.2. It suffices to show F(-x) = -F(x). Using the change of variables u = -t,

$$du = -dt, \qquad t = 0 \rightarrow u = 0, \qquad t = -x \rightarrow u = x$$

we have

$$F(-x) = \int_0^{-x} f(t) dt = -\int_0^x f(-u) du$$

= $-\int_0^x f(u) du$ $f(-u) = f(u)$
= $-F(x).$

Problem 1.3. $(\star\star)$ Suppose f(x) is odd, that is f(-x) = -f(x). Show that the function

$$F(x) = \int_{a}^{x} f(t) \, dt$$

is an even function.

Solution 1.3. It suffices to show that F(-x) = F(x), that is F(x) - F(-x) = 0. This follows immediately from the properties of integration,

$$F(x) - F(-x) = \int_{a}^{x} f(t) dt - \int_{a}^{-x} f(t) dt = \int_{a}^{x} f(t) dt + \int_{-x}^{a} f(t) dt = \int_{-x}^{x} f(t) dt = 0,$$

since f(t) is odd, so its integral around a symmetric interval is 0 by symmetry.

1.4.2 The Natural Logarithm

Problem 1.4. $(\star\star)$ Using the integral definition of the natural logarithm, show that

.

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

Solution 1.4. We can integrate by parts to recover the formula for the antiderivative,

±	D	Ι	
+	$\ln(x)$	1	
$-\int$	$\frac{d}{dx}\ln(x)$	x	

Since $\frac{d}{dx}\ln(x) = \frac{1}{x}$ by the fundamental theorem, we have

$$\int \ln(x) \, dx = x \ln(x) - \int 1 \, dx = x \ln(x) - x + C.$$

Remark. It is easy to check that the $x \ln(x) - x + C$ is an antiderivative by simply differentiating.

Problem 1.5. $(\star \star \star)$ Using the integral definition of the natural logarithm, show that

$$\ln(xy) = \ln(x) + \ln(y)$$

Solution 1.5. We want to write $\ln(xy)$ in terms of its integral definition. The trick is to "split" the integral

$$\ln(xy) = \int_{1}^{xy} \frac{1}{t} dt$$

= $\int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{t} dt$ $\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$
= $\int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{u} du$ $u = \frac{t}{x}, \ du = \frac{dt}{x}, \ \int_{x}^{xy} dt \to \int_{1}^{y} du$
= $\ln(x) + \ln(y).$

1.4.3 The Error Function

Problem 1.6. $(\star\star)$ Using the integral definition of the error function, show that

$$\int \operatorname{erf}(x) \, dx = x \operatorname{erf}(x) + \frac{1}{\sqrt{\pi}} \cdot e^{-x^2} + C.$$

Solution 1.6. We can integrate by parts to recover the formula for the antiderivative,

±	D	Ι
+	$\operatorname{erf}(x)$	1
$-\int$	$\frac{d}{dx} \operatorname{erf}(x)$	x

Since $\frac{d}{dx} \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} e^{-x^2}$ by the fundamental theorem, we have

$$\int \operatorname{erf}(x) \, dx = x \operatorname{erf}(x) - \int \frac{2x}{\sqrt{\pi}} e^{-x^2} \, dx.$$

The second integral can be solved using the substitution $u = -x^2$, du = -2xdx which gives us

$$\int \operatorname{erf}(x) \, dx = x \operatorname{erf}(x) + \int \frac{1}{\sqrt{\pi}} e^u \, du = x \operatorname{erf}(x) + \frac{1}{\sqrt{\pi}} \cdot e^{-x^2} + C$$

Remark. It is easy to check that the $x \operatorname{erf}(x) + \frac{e^{-x^2}}{\sqrt{\pi}} + C$ is an antiderivative by simply differentiating.

Problem 1.7. $(\star \star \star)$ Using the integral definition of the error function, show that

$$\int_0^x e^{at} \cdot e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^2}{4}} \cdot \left(\operatorname{erf}\left(x - \frac{a}{2}\right) + \operatorname{erf}\left(\frac{a}{2}\right) \right).$$

Solution 1.7. We want to write the integral in terms of the error function. The trick is to "complete the square" in the exponent

$$\begin{split} \int_{0}^{x} e^{at} \cdot e^{-t^{2}} dt &= \int_{0}^{x} e^{-t^{2} + at - \frac{a^{2}}{4} + \frac{a^{2}}{4}} dt & \text{(complete the square)} \\ &= e^{\frac{a^{2}}{4}} \int_{0}^{x} e^{-(t - \frac{a}{2})^{2}} dt \\ &= e^{\frac{a^{2}}{4}} \int_{-\frac{a}{2}}^{x - \frac{a}{2}} e^{-u^{2}} du & u = t - \frac{a}{2}, \ du = dt, \int_{0}^{x} dt \to \int_{-\frac{a}{2}}^{x - \frac{a}{2}} du \\ &= e^{\frac{a^{2}}{4}} \left(\int_{-\frac{a}{2}}^{0} e^{-u^{2}} du + \int_{0}^{x - \frac{a}{2}} e^{-u^{2}} du \right) & \int_{a}^{b} f(t) dt = \int_{a}^{0} f(t) dt + \int_{0}^{b} f(t) dt \\ &= e^{\frac{a^{2}}{4}} \left(-\int_{0}^{-\frac{a}{2}} e^{-u^{2}} du + \int_{0}^{x - \frac{a}{2}} e^{-u^{2}} du \right) & \int_{a}^{0} f(t) dt = -\int_{0}^{a} f(t) dt \\ &= \frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot \left(\operatorname{erf} \left(x - \frac{a}{2} \right) - \operatorname{erf} \left(-\frac{a}{2} \right) \right) & \int_{0}^{x} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \\ &= \frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot \left(\operatorname{erf} \left(x - \frac{a}{2} \right) + \operatorname{erf} \left(\frac{a}{2} \right) \right). & (\operatorname{erf}(x) \text{ is odd}) \end{split}$$

1.4.4 Curve Sketching

Strategy: Given f(t) we want to sketch $F(x) = \int_0^x f(t) dt$. In general, it is very hard to find the values of F(x) without using numerical integration methods, but we are able to do a rough sketch without any computations at all. Since

$$F'(x) = f(x)$$
 and $F''(x) = f'(x)$

we have the following rules:

f(x)	F(x)				
Positive	Increasing		f(x)	F(x)	
Negative	Decreasing	and	x-intercept (crossing)	local max/min	
Increasing	Convex		$local \max/min$	inflection point	
Decreasing	Concave			·	

We also know that $F(0) = \int_0^0 f(t) dt = 0$. If f(t) is odd or even, then we can use symmetry to recover the shape of F(x) by doing an even or odd reflection of the graph of F(x) around the *y*-axis. This means we only have to sketch F(x) for $x \ge 0$, if f(t) is symmetric.

Problem 1.8. $(\star\star)$ The graph of $f(x) = \sin(x^2)$ is displayed as a dashed red line below:

Sketch the graph of the Fresnel sine function $S(x) = \int_0^x f(t) dt$.

Solution 1.8. We can use the rules in Table 1 to sketch the graph of S(x) (displayed in blue)

- (a) S(0) = 0, so the graph passes through the origin.
- (b) S(x) is odd since $f(x) = \sin(x^2)$ is an even function and the lower limit of integration is 0.
- (c) The maximum of S(x) can be approximated by a triangle with width $\sqrt{\pi}$ and height 1,

$$\int_0^{\sqrt{\pi}} \sin(t^2) \, dt \approx \frac{\sqrt{\pi}}{2} \approx 0.89.$$

Problem 1.9. $(\star\star)$ The graph of $f(x) = \cos(x^2)$ is displayed as a dashed red line below:

Sketch the graph of the Fresnel cosine function $C(x) = \int_0^x f(t) dt$.

Solution 1.9. We can use the rules in Table 1 to sketch the graph of C(x) (displayed in blue)

- (a) C(0) = 0, so the graph passes through the origin.
- (b) C(x) is odd since $f(x) = \cos(x^2)$ is an even function and the lower limit of integration is 0.
- (c) The maximum of C(x) can be approximated using a midpoint Riemann sum with one rectangle,

$$\int_0^{\sqrt{\frac{\pi}{2}}} \cos(t^2) \, dt \approx \cos\left(\left(\sqrt{\frac{\pi}{2}} \cdot \frac{1}{2}\right)^2\right) \cdot \sqrt{\frac{\pi}{2}} \approx 1.16$$