
December 10, 2019 MAT186 – Week 13 Justin Ko

1 Functions Defined in Terms of Integrals

Integrals allow us to define new functions in terms of the basic functions introduced in Week 1. Given
a continuous function f(x), consider the area function

F (x) =

∫ x

a

f(t) dt.

General Properties of F (x): The following properties will allow us to sketch F (x) even if the definite
integral is impossible to simplify:

1. F (x) is continuous where it is defined. (Fundamental theorem of calculus)

2. F (a) = 0. (Definition of the definite integral)

3. F ′(x) = f(x). (Fundamental theorem of calculus)

4. F ′′(x) = f ′(x). (Fundamental theorem of calculus)

5. If a = 0 and f(x) is even, then F (x) is odd. (Change of variables)

6. If f(x) is odd, then F (x) is even. (Change of variables)

1.1 The Natural Logarithm

Definition 1. For x > 0, the natural logarithm is defined by

ln(x) =

∫ x

1

1

t
dt.

Sketching the Curve: Using the basic properties of integral defined functions for F (x) = ln(x) we
know that:

1. The x intercepts and derivatives of F are given by

F (1) = 0, F ′(x) =
1

x
, F ′′(x) = − 1

x2
.

2. With some work, we can also show that limx→0+ F (x) = −∞ and limx→∞ F (x) =∞.

Therefore, we can conclude that F (x) is a strictly increasing concave down function that passes through
the point (1, 0). The second point also tells us there is a vertical asymptote at x = 0 and the integral
diverges to ∞ as x→∞.

1

−1

1

f(x) = 1/x

F (x) = ln(x)

x

Figure 1: The graph of f(x) = 1
x and F (x) = ln(x) are displayed above. The value of F (x) is the

area under the curve of ln(x) between 1 and x.
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1.2 The Error Function

Definition 2. For x ∈ R, the error function is defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Sketching the Curve: Using the basic properties of integral defined functions for F (x) = erf(x) we
know that:

1. The x intercepts and derivatives of F are given by

F (0) = 0, F ′(x) =
2√
π
e−x

2

, F ′′(x) = − 4x√
π
e−x

2

.

2. With some work, we can also show that limx→∞ F (x) = 1.

3. F (x) is odd since f(x) = 2√
π
e−x

2

is even and the lower limit of integration is 0.

Therefore, we can conclude for x ≥ 0 that F (x) is a strictly increasing concave down function that
passes through the point (0, 0). The second point also implies that y = 1 is a horizontal asymptote as
x→∞. Since F (x) is odd, we can recover the shape for x < 0 by reflecting around the origin.

−2 2

−1

1
f(x) = 2√

π
e−x

2

F (x) = erf(x)

x

Figure 2: The graph of f(x) = 2√
π
e−x

2

and F (x) = erf(x) are displayed above. The value of F (x) is

the area under the curve of 2√
π
e−x

2

between 0 and x.

1.3 Examples of Other Integral Defined Functions

1. Fresnel Integrals:

S(x) =

∫ x

0

sin(t2) dt and C(x) =

∫ x

0

cos(t2) dt.

2. Sine Integral:

Si(x) =

∫ x

0

sin(t)

t
dt.

3. Logarithmic Integral:

Li(x) =

∫ x

2

1

ln(t)
dt for x ≥ 2.
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1.4 Example Problems

1.4.1 Properties About Integral Defined Functions

Problem 1.1. (?) Let

F (x) =

∫ x

a

f(t) dt.

Show that F ′(x) = f(x) and F ′′(x) = f ′(x).

Solution 1.1. By the first part of the fundamental theorem of calculus,

F ′(x) =
d

dx

∫ x

a

f(t) dt = f(x).

Differentiating this again implies
F ′′(x) = f ′(x).

Problem 1.2. (??) Suppose f(x) is even, that is f(−x) = f(x). Show that the function

F (x) =

∫ x

0

f(t) dt

is an odd function.

Solution 1.2. It suffices to show F (−x) = −F (x). Using the change of variables u = −t,

du = −dt, t = 0→ u = 0, t = −x→ u = x

we have

F (−x) =

∫ −x
0

f(t) dt = −
∫ x

0

f(−u) du

= −
∫ x

0

f(u) du f(−u) = f(u)

= −F (x).

Problem 1.3. (??) Suppose f(x) is odd, that is f(−x) = −f(x). Show that the function

F (x) =

∫ x

a

f(t) dt

is an even function.

Solution 1.3. It suffices to show that F (−x) = F (x), that is F (x) − F (−x) = 0. This follows
immediately from the properties of integration,

F (x)− F (−x) =

∫ x

a

f(t) dt−
∫ −x
a

f(t) dt =

∫ x

a

f(t) dt+

∫ a

−x
f(t) dt =

∫ x

−x
f(t) dt = 0,

since f(t) is odd, so its integral around a symmetric interval is 0 by symmetry.
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1.4.2 The Natural Logarithm

Problem 1.4. (??) Using the integral definition of the natural logarithm, show that∫
ln(x) dx = x ln(x)− x+ C.

Solution 1.4. We can integrate by parts to recover the formula for the antiderivative,

± D I

+ ln(x) 1

−
∫

d
dx ln(x) x

.

Since d
dx ln(x) = 1

x by the fundamental theorem, we have∫
ln(x) dx = x ln(x)−

∫
1 dx = x ln(x)− x+ C.

Remark. It is easy to check that the x ln(x)− x+ C is an antiderivative by simply differentiating.

Problem 1.5. (? ? ?) Using the integral definition of the natural logarithm, show that

ln(xy) = ln(x) + ln(y)

Solution 1.5. We want to write ln(xy) in terms of its integral definition. The trick is to “split” the
integral

ln(xy) =

∫ xy

1

1

t
dt

=

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

=

∫ x

1

1

t
dt+

∫ y

1

1

u
du u =

t

x
, du =

dt

x
,

∫ xy

x

dt→
∫ y

1

du

= ln(x) + ln(y).

1.4.3 The Error Function

Problem 1.6. (??) Using the integral definition of the error function, show that∫
erf(x) dx = xerf(x) +

1√
π
· e−x

2

+ C.

Solution 1.6. We can integrate by parts to recover the formula for the antiderivative,

± D I

+ erf(x) 1

−
∫

d
dxerf(x) x
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Since d
dxerf(x) = 2√

π
e−x

2

by the fundamental theorem, we have∫
erf(x) dx = xerf(x)−

∫
2x√
π
e−x

2

dx.

The second integral can be solved using the substitution u = −x2, du = −2xdx which gives us∫
erf(x) dx = xerf(x) +

∫
1√
π
eu du = xerf(x) +

1√
π
· e−x

2

+ C

Remark. It is easy to check that the xerf(x) + e−x
2

√
π

+C is an antiderivative by simply differentiating.

Problem 1.7. (? ? ?) Using the integral definition of the error function, show that∫ x

0

eat · e−t
2

dt =

√
π

2
· e a

2

4 ·
(

erf
(
x− a

2

)
+ erf

(a
2

))
.

Solution 1.7. We want to write the integral in terms of the error function. The trick is to “complete
the square” in the exponent∫ x

0

eat · e−t
2

dt =

∫ x

0

e−t
2+at− a24 + a2

4 dt (complete the square)

= e
a2

4

∫ x

0

e−(t−
a
2 )

2

dt

= e
a2

4

∫ x− a2

− a2
e−u

2

du u = t− a

2
, du = dt,

∫ x

0

dt→
∫ x− a2

− a2
du

= e
a2

4

(∫ 0

− a2
e−u

2

du+

∫ x− a2

0

e−u
2

du
) ∫ b

a

f(t) dt =

∫ 0

a

f(t) dt+

∫ b

0

f(t) dt

= e
a2

4

(
−
∫ − a2
0

e−u
2

du+

∫ x− a2

0

e−u
2

du
) ∫ 0

a

f(t) dt = −
∫ a

0

f(t) dt

=

√
π

2
· e a

2

4 ·
(

erf
(
x− a

2

)
− erf

(
−a

2

)) ∫ x

0

e−t
2

dt =

√
π

2
erf(x)

=

√
π

2
· e a

2

4 ·
(

erf
(
x− a

2

)
+ erf

(a
2

))
. (erf(x) is odd)

1.4.4 Curve Sketching

Strategy: Given f(t) we want to sketch F (x) =
∫ x
0
f(t) dt. In general, it is very hard to find the values

of F (x) without using numerical integration methods, but we are able to do a rough sketch without
any computations at all. Since

F ′(x) = f(x) and F ′′(x) = f ′(x)

we have the following rules:

f(x) F (x)

Positive Increasing
Negative Decreasing

Increasing Convex
Decreasing Concave

and

f(x) F (x)

x-intercept (crossing) local max/min
local max/min inflection point

(1)

We also know that F (0) =
∫ 0

0
f(t) dt = 0. If f(t) is odd or even, then we can use symmetry to recover

the shape of F (x) by doing an even or odd reflection of the graph of F (x) around the y-axis. This
means we only have to sketch F (x) for x ≥ 0, if f(t) is symmetric.
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Problem 1.8. (??) The graph of f(x) = sin(x2) is displayed as a dashed red line below:

− 5π
6

−π
2

−π
6

π
6

π
2

5π
6

−1

1

x

y

Sketch the graph of the Fresnel sine function S(x) =
∫ x
0
f(t) dt.

Solution 1.8. We can use the rules in Table 1 to sketch the graph of S(x) (displayed in blue)

− 5π
6

−π
2

−π
6

π
6

π
2

5π
6

−1

1

x

y

(a) S(0) = 0, so the graph passes through the origin.

(b) S(x) is odd since f(x) = sin(x2) is an even function and the lower limit of integration is 0.

(c) The maximum of S(x) can be approximated by a triangle with width
√
π and height 1,∫ √π

0

sin(t2) dt ≈
√
π

2
≈ 0.89.
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Problem 1.9. (??) The graph of f(x) = cos(x2) is displayed as a dashed red line below:

− 5π
6

−π
2

−π
6

π
6

π
2

5π
6

−1

1

x

y

Sketch the graph of the Fresnel cosine function C(x) =
∫ x
0
f(t) dt.

Solution 1.9. We can use the rules in Table 1 to sketch the graph of C(x) (displayed in blue)

− 5π
6

−π
2

−π
6

π
6

π
2

5π
6

−1

1

x

y

(a) C(0) = 0, so the graph passes through the origin.

(b) C(x) is odd since f(x) = cos(x2) is an even function and the lower limit of integration is 0.

(c) The maximum of C(x) can be approximated using a midpoint Riemann sum with one rectangle,∫ √π
2

0

cos(t2) dt ≈ cos

((√π

2
· 1

2

)2)
·
√
π

2
≈ 1.16.
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