1 Functions Defined in Terms of Integrals

Integrals allow us to define new functions in terms of the basic functions introduced in Week 1. Given a continuous function $f(x)$, consider the area function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

General Properties of $F(x)$: The following properties will allow us to sketch $F(x)$ even if the definite integral is impossible to simplify:

1. $F(x)$ a continuous where it is defined.
2. $F(a)=0$.
3. $F^{\prime}(x)=f(x)$.
(Fundamental theorem of calculus)
4. $F^{\prime \prime}(x)=f^{\prime}(x)$.
(Fundamental theorem of calculus)
5. If $a=0$ and $f(x)$ is even, then $F(x)$ is odd.
(Change of variables)
6. If $f(x)$ is odd, then $F(x)$ is even.
(Change of variables)

1.1 The Natural Logarithm

Definition 1. For $x>0$, the natural logarithm is defined by

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Sketching the Curve: Using the basic properties of integral defined functions for $F(x)=\ln (x)$ we know that:

1. The x intercepts and derivatives of F are given by

$$
F(1)=0, F^{\prime}(x)=\frac{1}{x}, \quad F^{\prime \prime}(x)=-\frac{1}{x^{2}}
$$

2. With some work, we can also show that $\lim _{x \rightarrow 0^{+}} F(x)=-\infty$ and $\lim _{x \rightarrow \infty} F(x)=\infty$.

Therefore, we can conclude that $F(x)$ is a strictly increasing concave down function that passes through the point $(1,0)$. The second point also tells us there is a vertical asymptote at $x=0$ and the integral diverges to ∞ as $x \rightarrow \infty$.

Figure 1: The graph of $f(x)=\frac{1}{x}$ and $F(x)=\ln (x)$ are displayed above. The value of $F(x)$ is the area under the curve of $\ln (x)$ between 1 and x.

1.2 The Error Function

Definition 2. For $x \in \mathbb{R}$, the error function is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t .
$$

Sketching the Curve: Using the basic properties of integral defined functions for $F(x)=\operatorname{erf}(x)$ we know that

1. The x intercepts and derivatives of F are given by

$$
F(0)=0, F^{\prime}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}, F^{\prime \prime}(x)=-\frac{4 x}{\sqrt{\pi}} e^{-x^{2}}
$$

2. With some work, we can also show that $\lim _{x \rightarrow \infty} F(x)=1$.
3. $F(x)$ is odd since $\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ is even.

Therefore, we can conclude for $x \geq 0$ that $F(x)$ is a strictly increasing concave down function that passes through the point $(0,0)$. The second point also implies that $y=1$ is a horizontal asymptote as $x \rightarrow \infty$. Since $F(x)$ is odd, we can recover the shape for $x<0$ by reflecting around the origin.

Figure 2: The graph of $f(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ and $F(x)=\operatorname{erf}(x)$ are displayed above. The value of $F(x)$ is the area under the curve of $\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ between 0 and x.

1.3 Example Problems

1.3.1 Properties About Integral Defined Functions

Problem 1. (\star) Let

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Show that $F^{\prime}(x)=f(x)$ and $F^{\prime \prime}(x)=f^{\prime}(x)$.

Solution 1. By the first part of the fundamental theorem of calculus,

$$
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Differentiating this again implies

$$
F^{\prime \prime}(x)=f^{\prime}(x)
$$

Problem 2. ($\star \star$) Suppose $f(x)$ is even $(f(-x)=f(x))$. Show that the function

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is an odd function.

Solution 2. It suffices to show $F(-x)=-F(x)$. Using the change of variables $u=-t$,

$$
d u=-d t, \quad t=0 \rightarrow u=0, \quad t=-x \rightarrow u=x
$$

we have

$$
\begin{aligned}
F(-x)=\int_{0}^{-x} f(t) d t & =-\int_{0}^{x} f(-u) d u \\
& =-\int_{0}^{x} f(u) d u \quad f(-u)=f(u) \\
& =-F(x)
\end{aligned}
$$

Problem 3. $(\star \star \star)$ Suppose $f(x)$ is odd $(f(-x)=-f(x))$. Show that the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is an even function.

Solution 3. It suffices to show $F(-x)=F(x)$. Using the change of variables $u=-t$,

$$
d u=-d t, \quad t=a \rightarrow u=-a, \quad t=-x \rightarrow u=x
$$

we have

$$
\begin{aligned}
F(-x)=\int_{a}^{-x} f(t) d t & =-\int_{-a}^{x} f(-u) d u \\
& =\int_{-a}^{x} f(u) d u . \quad f(-u)=-f(u)
\end{aligned}
$$

It may appear that the last term is not of the same form as the term $F(x)$ because the lower bounds of integration are different. However, we can split the region of integration and use a change of variables to conclude that

$$
\begin{array}{rll}
\int_{-a}^{x} f(u) d u & =\int_{-a}^{0} f(u) d u+\int_{0}^{x} f(u) d u & \\
& =-\int_{a}^{0} f(-\tilde{u}) d \tilde{u}+\int_{0}^{x} f(u) d u \quad \tilde{u}=-u, d \tilde{u}=-d u, \int_{-a}^{0} d u \rightarrow \int_{a}^{0} d \tilde{u} \\
& =\int_{a}^{0} f(\tilde{u}) d \tilde{u}+\int_{0}^{x} f(u) d u & f(-u)=-f(u) \\
& =\int_{a}^{x} f(t) d t=F(x)
\end{array}
$$

1.3.2 The Natural Logarithm

Problem 1. ($\star \star$) Using the integral definition of the natural logarithm, show that

$$
\int \ln (x) d x=x \ln (x)-x+C
$$

Solution 1. We can integrate by parts to recover the formula for the antiderivative,

\pm	D	I
+	$\ln (x)$	1
$-\int$	$\frac{d}{d x} \ln (x)$	x

Since $\frac{d}{d x} \ln (x)=\frac{1}{x}$ by the fundamental theorem, we have

$$
\int \ln (x) d x=x \ln (x)-\int 1 d x=x \ln (x)-x+C
$$

Remark: It is easy to check that the $x \ln (x)-x+C$ is an antiderivative by simply differentiating.

Problem 2. $(\star \star \star)$ Using the integral definition of the natural logarithm, show that

$$
\ln (x y)=\ln (x)+\ln (y)
$$

Solution 2. We want to write $\ln (x y)$ in terms of its integral definition. The trick is to "split" the integral

$$
\begin{aligned}
\ln (x y) & =\int_{1}^{x y} \frac{1}{t} d t \\
& =\int_{1}^{x} \frac{1}{t} d t+\int_{x}^{x y} \frac{1}{t} d t \quad \int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t \\
& =\int_{1}^{x} \frac{1}{t} d t+\int_{1}^{y} \frac{1}{u} d u \quad u=\frac{t}{x}, d u=\frac{d t}{x}, \int_{x}^{x y} d t \rightarrow \int_{1}^{y} d u \\
& =\ln (x)+\ln (y)
\end{aligned}
$$

1.3.3 The Error Function

Problem 1. ($\star \star$) Using the integral definition of the error function, show that

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)+\frac{1}{\sqrt{\pi}} \cdot e^{-x^{2}}+C
$$

Solution 1. We can integrate by parts to recover the formula for the antiderivative,

\pm	D	I
+	$\operatorname{erf}(x)$	1
$-\int$	$\frac{d}{d x} \operatorname{erf}(x)$	x

Since $\frac{d}{d x} \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$ by the fundamental theorem, we have

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)-\int \frac{2 x}{\sqrt{\pi}} e^{-x^{2}} d x
$$

The second integral can be solved using the substitution $u=-x^{2}, d u=-2 x d x$ which gives us

$$
\int \operatorname{erf}(x) d x=x \operatorname{erf}(x)+\int \frac{1}{\sqrt{\pi}} e^{u} d u=x \operatorname{erf}(x)+\frac{1}{\sqrt{\pi}} \cdot e^{-x^{2}}+C
$$

Remark: It is easy to check that the $x \operatorname{erf}(x)+\frac{e^{-x^{2}}}{\sqrt{\pi}}+C$ is an antiderivative by simply differentiating.

Problem 2. $(\star \star \star)$ Using the integral definition of the error function, show that

$$
\int_{0}^{x} e^{a t} \cdot e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)+\operatorname{erf}\left(\frac{a}{2}\right)\right)
$$

Solution 2. We want to write the integral in terms of the error function. The trick is to "complete the square" in the exponent

$$
\begin{array}{rlrl}
\int_{0}^{x} e^{a t} \cdot e^{-t^{2}} d t & =\int_{0}^{x} e^{-t^{2}+a t-\frac{a^{2}}{4}+\frac{a^{2}}{4}} d t & & \text { (complete the square) } \\
& =e^{\frac{a^{2}}{4}} \int_{0}^{x} e^{-\left(t-\frac{a}{2}\right)^{2}} d t & & u=t-\frac{a}{2}, d u=d t, \int_{0}^{x} d t \rightarrow \int_{-\frac{a}{2}}^{x-\frac{a}{2}} d u \\
& =e^{\frac{a^{2}}{4}} \int_{-\frac{a}{2}}^{x-\frac{a}{2}} e^{-u^{2}} d u & \int_{a}^{b} f(t) d t=\int_{a}^{0} f(t) d t+\int_{0}^{b} f(t) d t \\
& =e^{\frac{a^{2}}{4}}\left(\int_{-\frac{a}{2}}^{0} e^{-u^{2}} d u+\int_{0}^{x-\frac{a}{2}} e^{-u^{2}} d u\right) \\
& =e^{\frac{a^{2}}{4}}\left(-\int_{0}^{-\frac{a}{2}} e^{-u^{2}} d u+\int_{0}^{x-\frac{a}{2}} e^{-u^{2}} d u\right) \quad \int_{a}^{0} f(t) d t=-\int_{0}^{a} f(t) d t \\
& =\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)-\operatorname{erf}\left(-\frac{a}{2}\right)\right) & \int_{0}^{x} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \\
& =\frac{\sqrt{\pi}}{2} \cdot e^{\frac{a^{2}}{4}} \cdot\left(\operatorname{erf}\left(x-\frac{a}{2}\right)+\operatorname{erf}\left(\frac{a}{2}\right)\right) . & & (\operatorname{erf}(\mathrm{x}) \text { is odd) }
\end{array}
$$

