
December 13, 2019 MAT186 – Week 11 Justin Ko

1 Using Integration to Find Areas

1.1 Areas Between Curves

Formula: The area between the two curves y = f(x) and y = g(x) on the interval [a, b] is given by

A =

∫ b

a

|f(x)− g(x)| dx.

Intuition: We can approximate the area with small rectangles of the form

Ai = |f(x∗i )− g(x∗i )|∆x, (1)

where x∗i is a point in a subinterval of length ∆x. If we partition [a, b] into n uniform subintervals and
approximate the area with rectangles of the form (1), taking the limit as n→∞ implies

Area = lim
n→∞

n∑
i=1

|f(x∗i )− g(x∗i )|∆x =

∫ b

a

|f(x)− g(x)| dx.

a b
a b

|f(x∗i ) − g(x∗i )|

∆x

yTyBFigure: The height of the subrectangle is the distance between the two functions f and g. The area
of each of the approximating rectangles is given by

length × width = |f(x∗i )− g(x∗i )|∆x.

1.2 Total Distance Traveled

Net Distance: Let v(t) be the velocity of a particle. The net distance traveled by the particle over
the time interval [a, b] is given by ∫ b

a

v(t) dt.

The average velocity is given by
1

b− a

∫ b

a

v(t) dt.

Total Distance: Let v(t) be the velocity of a particle. The total distance traveled by the particle over
the time interval [a, b] is given by ∫ b

a

|v(t)| dt.

The average speed is given by
1

b− a

∫ b

a

|v(t)| dt.
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1.3 Example Problems

1.3.1 Distance/Displacement Problems

Problem 1. (??) Let v(t) = 1− ln(1 + t) be the speed of a particle for 0 ≤ t ≤ 5.

1. Find the average velocity of the particle.

2. Find the average speed of the particle.

Solution 1.

Part (a) Average Velocity: The net distance is traveled is given by,∫ 5

0

(1− ln(1 + t)) dt = t− t ln(1 + t)
∣∣∣t=5

t=0
+

∫ 5

0

t

1 + t
dt integration by parts

= t− t ln(1 + t)
∣∣∣t=5

t=0
+

∫ 5

0

1− 1

1 + t
dt long division

= t− t ln(1 + t) + t− ln(1 + t)
∣∣∣t=5

t=0

= 10− 6 ln(6) ≈ −0.7506.

The average velocity is therefore,

1

5

∫ 5

0

(1− ln(1 + t)) dt =
1

5

(
10− 6 ln(6)

)
≈ −0.15.

Part (b) Average Speed: The total distance traveled is given by∫ 5

0

|1− ln(1 + t)| dt.

We first classify the signs of f(t) = 1− ln(1 + t). The roots are given by

1− ln(1 + t) = 0⇒ 1 + t = e⇒ t = e− 1.

The signs are also given by

f(t)

0 5e− 1

+ −

Therefore, the integral is given by∫ 5

0

|1− ln(1 + t)| dt =

∫ e−1

0

(1− ln(1 + t)) dt−
∫ 5

e−1
(1− ln(1 + t)) dt definition of | · |

= 2t− (1 + t) ln(1 + t)
∣∣∣t=e−1

t=0
− (2t− (1 + t) ln(1 + t))

∣∣∣t=5

t=e−1
same steps as Part(a)

= 2(e− 1)− e ln(e)− (10− 6 ln(6)− 2(e− 1) + e ln(e))

= −14 + 2e+ 6 ln(6) ≈ 2.1871.

The average speed is therefore,

1

5

∫ 5

0

|1− ln(1 + t)| dt =
1

5

(
− 14 + 2e+ 6 ln(6)

)
≈ 0.437.
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1.3.2 Areas Between Curves

Strategy: The areas between curves can be computed without drawing a picture.

1. (Optional) Draw the Curves: Draw the curves on the (x, y) plane.

2. Set up the definite integral: Find the functions that represents the curves and the domain of
integration. It may be useful to treat our curves as a function of y instead of x in some examples.

3. Write the absolute value as a piecewise function: Find the regions where f(x) − g(x) > 0 and
f(x)− g(x) < 0 and split the region of integration into the different regions.

4. Compute the integrals.

Problem 1. (?) Find the area of the region bounded by the curves y = x2 and y =
√
x.

Solution 1.

Finding the Integral: We first start by expressing the area as a definite integral. The first curve
is given by y = x2 and the second curve is given by y =

√
x. The curves intersect when

x2 =
√
x⇒ x4 = x⇒ x(x3 − 1) = 0⇒ x = 0, 1.

The region of integration is given by the smallest and the largest of these values, so the area by∫ 1

0

|x2 −
√
x| dx.

Compute the Integral: We first classify the signs of h(x) = x2 −
√
x. From the first part, we found

that the roots are given by 0, 1 so the signs are given by

h(x)

0 1

−

Therefore, the area is given by∫ 1

0

|x2 −
√
x| dx = −

∫ 1

0

(x2 −
√
x) dx = −x

3

3
+

2

3
x3/2

∣∣∣x=1

x=0
=

1

3
.

1

f(x) = x2

g(x) =
√

x

x

y
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Problem 2. (??) Find the area of the region bounded by the curves y2 + x = 1 and y2 − x = 1.

Solution 2. This problem is must easier to do if we treat x as a function of y.

Finding the Integral: Our functions are given by x = 1−y2 and x = y2−1. The curves intersect when

1− y2 = y2 − 1⇒ 2y2 − 2 = 0⇒ y2 − 1 = 0⇒ y = ±1.

Therefore, the integral is given by∫ 1

−1
|1− y2 − (y2 − 1)| dy =

∫ 1

−1
|2− 2y2| dy.

Compute the Integral: We first classify the signs of h(y) = 2− 2y2. From the first part, we found that
the roots are given by −1, 1 so the signs are given by

h(y)

−1 1

+

Therefore, the area is given by∫ 1

−1
|2− 2y2| dy =

∫ 1

−1
2− 2y2 dy = 2y − 2

3
y3
∣∣∣y=1

y=−1
= 4− 4

3
=

8

3
.

−1 1

f(y) = 1 − y2

g(y) = y2 − 1

y

x

Remark: If we integrated with respect to x, then we would have computed∫ 0

−1

√
1 + x+

√
1 + x dx+

∫ 1

0

√
1− x+

√
1− x dx =

4

3
(1 + x)3/2

∣∣∣x=0

x=−1
− 4

3
(1− x)3/2

∣∣∣x=1

x=0
=

8

3
.

−1 1

f(x) =
√

1 + x

g(x) = −
√

1 + x

f(x) =
√

1 − x

g(x) = −
√

1 − x

x

y
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2 Using Integration to Find Volumes

2.1 Volumes Using Cross-Sectional Area

Formula: The volume of a solid with cross-sectional areas A(x) perpendicular to the x-axis from
x = a to x = b is

V =

∫ b

a

A(x) dx.

Intuition: We can approximate the volume with small cylinders of the form

Vi = A(x∗i )∆x, (2)

where x∗i is a point in a subinterval of length ∆x. If we partition [a, b] into n uniform subintervals and
approximate the area with cylinders of the form (2), taking the limit as n→∞ implies

Volume = lim
n→∞

n∑
i=1

A(x∗i )∆x =

∫ b

a

A(x) dx.

∆x

A(x∗i )

x

y

a b

Figure: The base area of the cylinder is A(x∗i ) and the height of the cylinder is ∆x. The area of each
of the approximating cylinders is given by

base area × height = A(x∗i )∆x.

2.2 Volumes Using Washers (Rotation around a Horizontal Axis)

Formula: The volume of the solid of revolution rotated about a horizontal axis with outer radius
R(x) and inner radius r(x) from x = a to x = b is

V =

∫ b

a

(
πR(x)2 − πr(x)2

)
dx.

Intuition: This formula is a special case of the volumes using cross-sectional area when the cross-
sectional area of the solid is a annulus with inner r(x) and outer radius R(x). The cross sectional area
is given explicitly by

A(x) = πR(x)2 − πr(x)2.
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r(x)

R(x)

Figure: The cross-sectional area of a solid generated by rotation around a horizontal axis is given by

Area Outer Circle − Area Inner Circle = πR(x)2 − πr(x)2.

2.3 Volumes Using Shells (Rotation around a Vertical Axis)

Formula: The volume of the solid of revolution rotated about a vertical axis with upper height H(x)
and lower height h(x) from x = a to x = b at a (positive) distance r(x) from the axis of revolution is

V =

∫ b

a

2πr(x)
(
H(x)− h(x)

)
dx.

Intuition: We can approximate the volume with small cylinders of the form

Vi = 2πr(x∗i )
(
H(x∗i )− h(x∗i )

)
∆x = 2πr(x∗i )

(
H(x∗i )− h(x∗i )

)
∆x, (3)

where x∗i is a point in a subinterval of length ∆x. If we partition [a, b] into n uniform subintervals and
approximate the area with cylinders of the form (3), taking the limit as n→∞ implies

Volume = lim
n→∞

n∑
i=1

2πr(x∗i )
(
H(x∗i )− h(x∗i )

)
∆x =

∫ b

a

2πr(x)
(
H(x)− h(x)

)
dx.

y = H(x)

y = h(x)

∆x

H(x∗i )− h(x∗i )

r(x∗i )

a b

y

x

Figure: The length of the cylindrical shell is given by the radius of a circle, length = 2πr(x∗i ). The
area of each of the approximating cylindrical shells is given by

length × height × width = 2πr(x∗i )
(
H(x∗i )− h(x∗i )

)
∆x.

Remark: If the rotation is about the y-axis, and 0 ≤ a < b (the region is to the right of the axis of

rotation), then the radius r(x) = x and the formula is V =
∫ b

a
2πx

(
H(x)− h(x)

)
dx.
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2.4 Example Problems:

Strategy:

1. (Optional) Draw the Projected Area: Draw the area of the curve projected onto the (x, y) plane.

2. Set up the definite integral: Find a formula for volume using either the cross sectional area or
cylindrical shells. Choose the representation that will result in a simpler integral.

3. Compute the integral.

Remark: Sometimes it might be more convenient to integrate with respect to y instead of x. All the
formulas in this section can be easily modified to by interchanging the axes (replace the x variable
with a y variable and treat all functions as functions of y instead of x).

Problem 1. (?) Compute the volume of a ball with radius r.

Solution 1. The area can be computed using either washers or cylindrical shells.

Washers: The ball is generated by rotating the area under the curve of y =
√
r2 − x2 on the in-

terval [−r, r] around the x-axis.

y =

√
r2 − x2

x

y

−r r
	

Finding the Integral: The cross-sectional area is a circle with radius
√
r2 − x2. Therefore, the cross-

sectional area is given by
A(x) = π(r2 − x2).

Using the volume formula for washers, the volume integral is∫ r

−r
π(r2 − x2) dx.

Computing the Integral: The integrand is even, so∫ r

−r
π(r2 − x2) dx = 2

∫ r

0

π(r2 − x2) dx = 2πr2x− 2π
x3

3

∣∣∣x=r

x=0
=

4

3
πr3.

Cylindrical Shells: The ball is generated by rotating the area bounded by the curves y =
√
r2 − x2

and y = −
√
r2 − x2 on the interval [0, r] around the y-axis.

y =

√
r2 − x2

y = −
√

r2 − x2

x

y
r

−r
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Finding the Integral: The radius of the cylinder is given by r(x) = x and the height of the cylinder is
given by

H(x)− h(x) =
√
r2 − x2 − (−

√
r2 − x2) = 2

√
r2 − x2.

Using the volume formula for cylindrical shells, the volume integral is∫ r

0

2πx(2
√
r2 − x2) dx =

∫ r

0

4πx
√
r2 − x2 dx.

Computing the Integral: Using the substitution u = r2 − x2, we have∫ r

0

4πx
√
r2 − x2 dx = −2π · 2

3
(r2 − x2)3/2

∣∣∣x=r

x=0
=

4

3
πr3.

Problem 2. (?) Compute the volume of square pyramid with base length ` and height h.

Solution 2. The area can be computed using cross sectional area.

Cross-Sectional Area: We will orient the pyramid along the x-axis with vertex at the origin. The
upper edge of the pyramid must pass through the point (h, `/2), so the height is given by y = `

2h · x.

Similarly the height of the lower edge of the pyramid is given by y = − `
2h · x.

y = `
2·h · x

y = − `
2·h · x

x

y

0 h

Finding the Integral: The cross-sectional area is a square with side length 2 · `
2hx. Therefore, the cross

sectional-area is given by

A(x) =
(

2 · `
2h
x
)2

=
`2

h2
x2.
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Using the volume formula for cross-sections, the volume integral is∫ h

0

`2

h2
x2 dx.

Computing the Integral: This integral is easy to compute,∫ h

0

`2

h2
x2 dx =

`2

3h2
x3
∣∣∣x=h

x=0
=

`2

3h2
h3 =

1

3
`2h.

Problem 3. (??) Compute the volume of a spherical cap with height h < r from a ball radius r.

Solution 3. The area can be computed using either washers or cylindrical shells. The method with
cylindrical shells is a bit harder in this case.

Washers: The spherical cap is generated by rotating the area under the curve of x =
√
r2 − y2

on the interval [r − h, r] around the y-axis.

x =

√
r2 − y2

x

y

r

r − h

	

Finding the Integral: The cross-sectional area is a circle with radius
√
r2 − y2. Therefore, the cross-

sectional area is given by
A(y) = π(r2 − y2).

Using the volume formula for washers, the volume integral is∫ r

r−h
π(r2 − y2) dy.

Computing the Integral: This integral is easy to compute,∫ r

r−h
π(r2 − y2) dy = πr2y − π

3
y3
∣∣∣y=r

y=r−h
=

1

3
πh2(3r − h).
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Problem 4. (??) Find the volume of the region bounded by y =
√
x, y = 0 and x = 1 rotated about

(a) the line y = 1

(b) the line x = 1.

y =
√

x

x

y

0 1

(b)

	

(a)	

Solution 4.

(a) We will compute the first volume using a washer.

Finding the Integral: To reduce this problem to the case of a rotation around the x-axis, we do a
change of variable ỹ = y − 1. In this case, we have the axis of rotation is the axis ỹ = 0.

The cross-sectional area is a circle with outer radius ỹ = 0 − 1 = −1 and inner radius ỹ =
√
x − 1

(the signs do not matter because we will be squaring the radius to get the area). Therefore, the
cross-sectional area is given by

A(x) = π((−1)2 − (
√
x− 1)2) = 2π

√
x− πx.

Using the volume formula for washers, the volume integral is∫ 1

0

2π
√
x− πx dx.

Computing the Integral: This integral is easy to compute,∫ 1

0

2π
√
x− πx dx = 2π

2

3
x3/2 − πx

2

2

∣∣∣x=1

x=0
=

5π

6
.

Remark: If we integrated with respect to y using the cylindrical shell general formula, we would get∫ 1

0

2π(1− y)(1− y2) dy = 2π

∫ 1

0

1− y − y2 + y3 dy = 2π
(
y − y2

2
− y3

3
+
y4

4

)∣∣∣y=1

y=0
=

5π

6
.

(b) We will compute the second volume using a cylindrical shell.

Finding the Integral: To reduce this problem to the case of a rotation around the y-axis, we do
a change of variable x̃ = x − 1. In this case, we have the axis of rotation is the axis x̃ = 0. How-
ever, our region lies to the left of the axis of rotation, so we have to modify the volume formula slightly.

The radius of the cylinder is −x̃ (since the surface is to the left of the axis of rotation) and the
height of the cylindrical shell is given by y =

√
x =

√
x̃+ 1. The region of integration changes from

x ∈ [0, 1] to x̃ ∈ [−1, 0] Using the volume formula for cylindrical shells, the volume integral is∫ 0

−1
2π(−x̃)

√
x̃+ 1 dx̃ = −

∫ 0

−1
2πx̃
√
x̃+ 1 dx̃.
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Computing the Integral: This integral can be computed using integration by parts,

−
∫ 0

−1
2πx̃
√
x̃+ 1 dx̃ = −2π

(2

3
x̃(x̃+ 1)3/2 − 4

15
(x̃+ 1)5/2

)∣∣∣x̃=0

x̃=−1
=

8π

15
.

Remark: If we used the general cylindrical shell formula, we have r(x) = 1− x giving us the volume∫ 1

0

2π(1− x)
√
x dx = 2π · 2

3
x3/2 − 2π · 2

5
x5/2

∣∣∣x=1

x=0
=

8π

15
.

Remark: If we integrated with respect to y using the washer formula, we would get∫ 1

0

π(1− y2)2 dy = π

∫ 1

0

1− 2y2 + y4 dy = π ·
(
y − 2

3
y3 +

y5

5

)∣∣∣y=1

y=0
=

8π

15
.
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