1 Using Integration to Find Areas

1.1 Areas Between Curves

Formula: The area between the two curves $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$ is given by

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Intuition: We can approximate the area with small rectangles of the form

$$
\begin{equation*}
A_{i}=\left|f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right| \Delta x \tag{1}
\end{equation*}
$$

where x_{i}^{*} is a point in a subinterval of length Δx. If we partition $[a, b]$ into n uniform subintervals and approximate the area with rectangles of the form (1), taking the limit as $n \rightarrow \infty$ implies

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right| \Delta x=\int_{a}^{b}|f(x)-g(x)| d x
$$

Figure: The height of the subrectangle is the distance between the two functions f and g. The area of each of the approximating rectangles is given by

$$
\text { length } \times \text { width }=\left|f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right| \Delta x
$$

1.2 Total Distance Traveled

Net Distance: Let $v(t)$ be the velocity of a particle. The net distance traveled by the particle over the time interval $[a, b]$ is given by

$$
\int_{a}^{b} v(t) d t
$$

The average velocity is given by

$$
\frac{1}{b-a} \int_{a}^{b} v(t) d t
$$

Total Distance: Let $v(t)$ be the velocity of a particle. The total distance traveled by the particle over the time interval $[a, b]$ is given by

$$
\int_{a}^{b}|v(t)| d t
$$

The average speed is given by

$$
\frac{1}{b-a} \int_{a}^{b}|v(t)| d t
$$

1.3 Example Problems

1.3.1 Distance/Displacement Problems

Problem 1. ($\star \star)$ Let $v(t)=1-\ln (1+t)$ be the speed of a particle for $0 \leq t \leq 5$.

1. Find the average velocity of the particle.
2. Find the average speed of the particle.

Solution 1.

Part (a) Average Velocity: The net distance is traveled is given by,

$$
\begin{array}{rlrl}
\int_{0}^{5}(1-\ln (1+t)) d t & =t-\left.t \ln (1+t)\right|_{t=0} ^{t=5}+\int_{0}^{5} \frac{t}{1+t} d t & & \text { integration by parts } \\
& =t-\left.t \ln (1+t)\right|_{t=0} ^{t=5}+\int_{0}^{5} 1-\frac{1}{1+t} d t & \text { long division } \\
& =t-t \ln (1+t)+t-\left.\ln (1+t)\right|_{t=0} ^{t=5} \\
& =10-6 \ln (6) \approx-0.7506
\end{array}
$$

The average velocity is therefore,

$$
\frac{1}{5} \int_{0}^{5}(1-\ln (1+t)) d t=\frac{1}{5}(10-6 \ln (6)) \approx-0.15
$$

Part (b) Average Speed: The total distance traveled is given by

$$
\int_{0}^{5}|1-\ln (1+t)| d t
$$

We first classify the signs of $f(t)=1-\ln (1+t)$. The roots are given by

$$
1-\ln (1+t)=0 \Rightarrow 1+t=e \Rightarrow t=e-1
$$

The signs are also given by

Therefore, the integral is given by

$$
\begin{array}{rlr}
\int_{0}^{5}|1-\ln (1+t)| d t & =\int_{0}^{e-1}(1-\ln (1+t)) d t-\int_{e-1}^{5}(1-\ln (1+t)) d t & \text { definition of }|\cdot| \\
& =2 t-\left.(1+t) \ln (1+t)\right|_{t=0} ^{t=e-1}-\left.(2 t-(1+t) \ln (1+t))\right|_{t=e-1} ^{t=5} \quad \text { same steps as Part(a) } \\
& =2(e-1)-e \ln (e)-(10-6 \ln (6)-2(e-1)+e \ln (e)) \\
& =-14+2 e+6 \ln (6) \approx 2.1871
\end{array}
$$

The average speed is therefore,

$$
\frac{1}{5} \int_{0}^{5}|1-\ln (1+t)| d t=\frac{1}{5}(-14+2 e+6 \ln (6)) \approx 0.437
$$

1.3.2 Areas Between Curves

Strategy: The areas between curves can be computed without drawing a picture.

1. (Optional) Draw the Curves: Draw the curves on the (x, y) plane.
2. Set up the definite integral: Find the functions that represents the curves and the domain of integration. It may be useful to treat our curves as a function of y instead of x in some examples.
3. Write the absolute value as a piecewise function: Find the regions where $f(x)-g(x)>0$ and $f(x)-g(x)<0$ and split the region of integration into the different regions.
4. Compute the integrals.

Problem 1. (\star) Find the area of the region bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$.

Solution 1.

Finding the Integral: We first start by expressing the area as a definite integral. The first curve is given by $y=x^{2}$ and the second curve is given by $y=\sqrt{x}$. The curves intersect when

$$
x^{2}=\sqrt{x} \Rightarrow x^{4}=x \Rightarrow x\left(x^{3}-1\right)=0 \Rightarrow x=0,1
$$

The region of integration is given by the smallest and the largest of these values, so the area by

$$
\int_{0}^{1}\left|x^{2}-\sqrt{x}\right| d x
$$

Compute the Integral: We first classify the signs of $h(x)=x^{2}-\sqrt{x}$. From the first part, we found that the roots are given by 0,1 so the signs are given by

Therefore, the area is given by

$$
\int_{0}^{1}\left|x^{2}-\sqrt{x}\right| d x=-\int_{0}^{1}\left(x^{2}-\sqrt{x}\right) d x=-\frac{x^{3}}{3}+\left.\frac{2}{3} x^{3 / 2}\right|_{x=0} ^{x=1}=\frac{1}{3}
$$

Problem 2. ($\star \star$) Find the area of the region bounded by the curves $y^{2}+x=1$ and $y^{2}-x=1$.

Solution 2. This problem is must easier to do if we treat x as a function of y.
Finding the Integral: Our functions are given by $x=1-y^{2}$ and $x=y^{2}-1$. The curves intersect when

$$
1-y^{2}=y^{2}-1 \Rightarrow 2 y^{2}-2=0 \Rightarrow y^{2}-1=0 \Rightarrow y= \pm 1
$$

Therefore, the integral is given by

$$
\int_{-1}^{1}\left|1-y^{2}-\left(y^{2}-1\right)\right| d y=\int_{-1}^{1}\left|2-2 y^{2}\right| d y
$$

Compute the Integral: We first classify the signs of $h(y)=2-2 y^{2}$. From the first part, we found that the roots are given by $-1,1$ so the signs are given by

Therefore, the area is given by

$$
\int_{-1}^{1}\left|2-2 y^{2}\right| d y=\int_{-1}^{1} 2-2 y^{2} d y=2 y-\left.\frac{2}{3} y^{3}\right|_{y=-1} ^{y=1}=4-\frac{4}{3}=\frac{8}{3}
$$

Remark: If we integrated with respect to x, then we would have computed

$$
\int_{-1}^{0} \sqrt{1+x}+\sqrt{1+x} d x+\int_{0}^{1} \sqrt{1-x}+\sqrt{1-x} d x=\left.\frac{4}{3}(1+x)^{3 / 2}\right|_{x=-1} ^{x=0}-\left.\frac{4}{3}(1-x)^{3 / 2}\right|_{x=0} ^{x=1}=\frac{8}{3}
$$

2 Using Integration to Find Volumes

2.1 Volumes Using Cross-Sectional Area

Formula: The volume of a solid with cross-sectional areas $A(x)$ perpendicular to the x-axis from $x=a$ to $x=b$ is

$$
V=\int_{a}^{b} A(x) d x
$$

Intuition: We can approximate the volume with small cylinders of the form

$$
\begin{equation*}
V_{i}=A\left(x_{i}^{*}\right) \Delta x \tag{2}
\end{equation*}
$$

where x_{i}^{*} is a point in a subinterval of length Δx. If we partition $[a, b]$ into n uniform subintervals and approximate the area with cylinders of the form (2), taking the limit as $n \rightarrow \infty$ implies

$$
\text { Volume }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

Figure: The base area of the cylinder is $A\left(x_{i}^{*}\right)$ and the height of the cylinder is Δx. The area of each of the approximating cylinders is given by

$$
\text { base area } \times \text { height }=A\left(x_{i}^{*}\right) \Delta x
$$

2.2 Volumes Using Washers (Rotation around a Horizontal Axis)

Formula: The volume of the solid of revolution rotated about a horizontal axis with outer radius $R(x)$ and inner radius $r(x)$ from $x=a$ to $x=b$ is

$$
V=\int_{a}^{b}\left(\pi R(x)^{2}-\pi r(x)^{2}\right) d x
$$

Intuition: This formula is a special case of the volumes using cross-sectional area when the crosssectional area of the solid is a annulus with inner $r(x)$ and outer radius $R(x)$. The cross sectional area is given explicitly by

$$
A(x)=\pi R(x)^{2}-\pi r(x)^{2}
$$

Figure: The cross-sectional area of a solid generated by rotation around a horizontal axis is given by

$$
\text { Area Outer Circle - Area Inner Circle }=\pi R(x)^{2}-\pi r(x)^{2} .
$$

2.3 Volumes Using Shells (Rotation around a Vertical Axis)

Formula: The volume of the solid of revolution rotated about a vertical axis with upper height $H(x)$ and lower height $h(x)$ from $x=a$ to $x=b$ at a (positive) distance $r(x)$ from the axis of revolution is

$$
V=\int_{a}^{b} 2 \pi r(x)(H(x)-h(x)) d x
$$

Intuition: We can approximate the volume with small cylinders of the form

$$
\begin{equation*}
V_{i}=2 \pi r\left(x_{i}^{*}\right)\left(H\left(x_{i}^{*}\right)-h\left(x_{i}^{*}\right)\right) \Delta x=2 \pi r\left(x_{i}^{*}\right)\left(H\left(x_{i}^{*}\right)-h\left(x_{i}^{*}\right)\right) \Delta x \tag{3}
\end{equation*}
$$

where x_{i}^{*} is a point in a subinterval of length Δx. If we partition $[a, b]$ into n uniform subintervals and approximate the area with cylinders of the form (3), taking the limit as $n \rightarrow \infty$ implies

$$
\text { Volume }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi r\left(x_{i}^{*}\right)\left(H\left(x_{i}^{*}\right)-h\left(x_{i}^{*}\right)\right) \Delta x=\int_{a}^{b} 2 \pi r(x)(H(x)-h(x)) d x
$$

Figure: The length of the cylindrical shell is given by the radius of a circle, length $=2 \pi r\left(x_{i}^{*}\right)$. The area of each of the approximating cylindrical shells is given by

$$
\text { length } \times \text { height } \times \text { width }=2 \pi r\left(x_{i}^{*}\right)\left(H\left(x_{i}^{*}\right)-h\left(x_{i}^{*}\right)\right) \Delta x
$$

Remark: If the rotation is about the y-axis, and $0 \leq a<b$ (the region is to the right of the axis of rotation), then the radius $r(x)=x$ and the formula is $V=\int_{a}^{b} 2 \pi x(H(x)-h(x)) d x$.

2.4 Example Problems:

Strategy:

1. (Optional) Draw the Projected Area: Draw the area of the curve projected onto the (x, y) plane.
2. Set up the definite integral: Find a formula for volume using either the cross sectional area or cylindrical shells. Choose the representation that will result in a simpler integral.
3. Compute the integral.

Remark: Sometimes it might be more convenient to integrate with respect to y instead of x. All the formulas in this section can be easily modified to by interchanging the axes (replace the x variable with a y variable and treat all functions as functions of y instead of x).

Problem 1. (\star) Compute the volume of a ball with radius r.

Solution 1. The area can be computed using either washers or cylindrical shells.
Washers: The ball is generated by rotating the area under the curve of $y=\sqrt{r^{2}-x^{2}}$ on the interval $[-r, r]$ around the x-axis.

Finding the Integral: The cross-sectional area is a circle with radius $\sqrt{r^{2}-x^{2}}$. Therefore, the crosssectional area is given by

$$
A(x)=\pi\left(r^{2}-x^{2}\right)
$$

Using the volume formula for washers, the volume integral is

$$
\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x
$$

Computing the Integral: The integrand is even, so

$$
\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x=2 \int_{0}^{r} \pi\left(r^{2}-x^{2}\right) d x=2 \pi r^{2} x-\left.2 \pi \frac{x^{3}}{3}\right|_{x=0} ^{x=r}=\frac{4}{3} \pi r^{3}
$$

Cylindrical Shells: The ball is generated by rotating the area bounded by the curves $y=\sqrt{r^{2}-x^{2}}$ and $y=-\sqrt{r^{2}-x^{2}}$ on the interval $[0, r]$ around the y-axis.

Page $\mathbf{7}$ of $\mathbf{1 1}$

Finding the Integral: The radius of the cylinder is given by $r(x)=x$ and the height of the cylinder is given by

$$
H(x)-h(x)=\sqrt{r^{2}-x^{2}}-\left(-\sqrt{r^{2}-x^{2}}\right)=2 \sqrt{r^{2}-x^{2}}
$$

Using the volume formula for cylindrical shells, the volume integral is

$$
\int_{0}^{r} 2 \pi x\left(2 \sqrt{r^{2}-x^{2}}\right) d x=\int_{0}^{r} 4 \pi x \sqrt{r^{2}-x^{2}} d x
$$

Computing the Integral: Using the substitution $u=r^{2}-x^{2}$, we have

$$
\int_{0}^{r} 4 \pi x \sqrt{r^{2}-x^{2}} d x=-\left.2 \pi \cdot \frac{2}{3}\left(r^{2}-x^{2}\right)^{3 / 2}\right|_{x=0} ^{x=r}=\frac{4}{3} \pi r^{3}
$$

Problem 2. (\star) Compute the volume of square pyramid with base length ℓ and height h.

Solution 2. The area can be computed using cross sectional area.
Cross-Sectional Area: We will orient the pyramid along the x-axis with vertex at the origin. The upper edge of the pyramid must pass through the point $(h, \ell / 2)$, so the height is given by $y=\frac{\ell}{2 h} \cdot x$. Similarly the height of the lower edge of the pyramid is given by $y=-\frac{\ell}{2 h} \cdot x$.

Finding the Integral: The cross-sectional area is a square with side length $2 \cdot \frac{\ell}{2 h} x$. Therefore, the cross sectional-area is given by

$$
A(x)=\left(2 \cdot \frac{\ell}{2 h} x\right)^{2}=\frac{\ell^{2}}{h^{2}} x^{2}
$$

Using the volume formula for cross-sections, the volume integral is

$$
\int_{0}^{h} \frac{\ell^{2}}{h^{2}} x^{2} d x
$$

Computing the Integral: This integral is easy to compute,

$$
\int_{0}^{h} \frac{\ell^{2}}{h^{2}} x^{2} d x=\left.\frac{\ell^{2}}{3 h^{2}} x^{3}\right|_{x=0} ^{x=h}=\frac{\ell^{2}}{3 h^{2}} h^{3}=\frac{1}{3} \ell^{2} h
$$

Problem 3. ($\star \star$) Compute the volume of a spherical cap with height $h<r$ from a ball radius r.

Solution 3. The area can be computed using either washers or cylindrical shells. The method with cylindrical shells is a bit harder in this case.

Washers: The spherical cap is generated by rotating the area under the curve of $x=\sqrt{r^{2}-y^{2}}$ on the interval $[r-h, r]$ around the y-axis.

Finding the Integral: The cross-sectional area is a circle with radius $\sqrt{r^{2}-y^{2}}$. Therefore, the crosssectional area is given by

$$
A(y)=\pi\left(r^{2}-y^{2}\right)
$$

Using the volume formula for washers, the volume integral is

$$
\int_{r-h}^{r} \pi\left(r^{2}-y^{2}\right) d y
$$

Computing the Integral: This integral is easy to compute,

$$
\int_{r-h}^{r} \pi\left(r^{2}-y^{2}\right) d y=\pi r^{2} y-\left.\frac{\pi}{3} y^{3}\right|_{y=r-h} ^{y=r}=\frac{1}{3} \pi h^{2}(3 r-h)
$$

Problem 4. ($\star \star$) Find the volume of the region bounded by $y=\sqrt{x}, y=0$ and $x=1$ rotated about
(a) the line $y=1$
(b) the line $x=1$.

Solution 4.

(a) We will compute the first volume using a washer.

Finding the Integral: To reduce this problem to the case of a rotation around the x-axis, we do a change of variable $\tilde{y}=y-1$. In this case, we have the axis of rotation is the axis $\tilde{y}=0$.

The cross-sectional area is a circle with outer radius $\tilde{y}=0-1=-1$ and inner radius $\tilde{y}=\sqrt{x}-1$ (the signs do not matter because we will be squaring the radius to get the area). Therefore, the cross-sectional area is given by

$$
A(x)=\pi\left((-1)^{2}-(\sqrt{x}-1)^{2}\right)=2 \pi \sqrt{x}-\pi x
$$

Using the volume formula for washers, the volume integral is

$$
\int_{0}^{1} 2 \pi \sqrt{x}-\pi x d x
$$

Computing the Integral: This integral is easy to compute,

$$
\int_{0}^{1} 2 \pi \sqrt{x}-\pi x d x=2 \pi \frac{2}{3} x^{3 / 2}-\left.\pi \frac{x^{2}}{2}\right|_{x=0} ^{x=1}=\frac{5 \pi}{6}
$$

Remark: If we integrated with respect to y using the cylindrical shell general formula, we would get

$$
\int_{0}^{1} 2 \pi(1-y)\left(1-y^{2}\right) d y=2 \pi \int_{0}^{1} 1-y-y^{2}+y^{3} d y=\left.2 \pi\left(y-\frac{y^{2}}{2}-\frac{y^{3}}{3}+\frac{y^{4}}{4}\right)\right|_{y=0} ^{y=1}=\frac{5 \pi}{6}
$$

(b) We will compute the second volume using a cylindrical shell.

Finding the Integral: To reduce this problem to the case of a rotation around the y-axis, we do a change of variable $\tilde{x}=x-1$. In this case, we have the axis of rotation is the axis $\tilde{x}=0$. However, our region lies to the left of the axis of rotation, so we have to modify the volume formula slightly.

The radius of the cylinder is $-\tilde{x}$ (since the surface is to the left of the axis of rotation) and the height of the cylindrical shell is given by $y=\sqrt{x}=\sqrt{\tilde{x}+1}$. The region of integration changes from $x \in[0,1]$ to $\tilde{x} \in[-1,0]$ Using the volume formula for cylindrical shells, the volume integral is

$$
\int_{-1}^{0} 2 \pi(-\tilde{x}) \sqrt{\tilde{x}+1} d \tilde{x}=-\int_{-1}^{0} 2 \pi \tilde{x} \sqrt{\tilde{x}+1} d \tilde{x}
$$

Computing the Integral: This integral can be computed using integration by parts,

$$
-\int_{-1}^{0} 2 \pi \tilde{x} \sqrt{\tilde{x}+1} d \tilde{x}=-\left.2 \pi\left(\frac{2}{3} \tilde{x}(\tilde{x}+1)^{3 / 2}-\frac{4}{15}(\tilde{x}+1)^{5 / 2}\right)\right|_{\tilde{x}=-1} ^{\tilde{x}=0}=\frac{8 \pi}{15}
$$

Remark: If we used the general cylindrical shell formula, we have $r(x)=1-x$ giving us the volume

$$
\int_{0}^{1} 2 \pi(1-x) \sqrt{x} d x=2 \pi \cdot \frac{2}{3} x^{3 / 2}-\left.2 \pi \cdot \frac{2}{5} x^{5 / 2}\right|_{x=0} ^{x=1}=\frac{8 \pi}{15}
$$

Remark: If we integrated with respect to y using the washer formula, we would get

$$
\int_{0}^{1} \pi\left(1-y^{2}\right)^{2} d y=\pi \int_{0}^{1} 1-2 y^{2}+y^{4} d y=\left.\pi \cdot\left(y-\frac{2}{3} y^{3}+\frac{y^{5}}{5}\right)\right|_{y=0} ^{y=1}=\frac{8 \pi}{15}
$$

