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1 Functions and Inverses

Definition 1. A function f : D → R is a rule that assigns each element x in a set D to exactly one
element f(x) in R. The set D is called the domain of f . The set R is called the range of f , and it
consists of all possible values of f(x)1. If the domain of a function is not explicitly specified, then we
take D to be the largest set such that the function is well-defined.

Example 1. Functions can be represented in several ways such as a formula, a graph, or a table of
values. For example, the relation x 7→ x2 from R→ [0,∞) can be expressed as:

1. Formula: A mathematical formula f(x) = x2

2. Graph: A graph is the collection of ordered pairs {(x, f(x)) : x ∈ D} expressed as a curve in the
xy-plane.

x

y f(x) = x2

Note: A curve in the xy-plane is the graph of a function if any vertical line intersects the curve
at most once. This is called the vertical line test.

3. Table: A table of values

x -5 -4 -3 -2 -1 0 1 2 3 4

x2 25 16 9 4 1 0 1 4 9 16

Definition 2. A function is one-to-one if it never takes the same value twice; that is, for every
x1, x2 ∈ D,

f(x1) = f(x2) =⇒ x1 = x2. (1)

Note: In the xy-plane, a function f is one-to-one if any horizontal line intersects the graph of f at
most once. This is called the horizontal line test.

Definition 3. Let f(x) and g(x) be two one-to-one functions. The functions f(x) and g(x) are inverses
if (f ◦ g)(x) = x for all x in the domain of g and (g ◦ f)(x) = x for all x in the domain of f . The
function g is called the inverse function of f and is usually denoted by g(x) = f−1(x).

The inverse f−1 satisfies several properties:

1. The domain of f−1 is the range of f and the range of f−1 is the domain of f

2. In the xy-plane, the graph of f−1 is obtained by reflecting the graph of f about the line y = x

3. A point (x, y) is on the graph of f if and only if (y, x) is a point on the graph of f−1.

Example 2. The functions f(x) = x2 from (0,∞) → (0,∞) is a one-to-one function and has an
inverse given by f−1(x) = g(x) =

√
x. To verify this, we can check that (f ◦ g)(x) = (

√
x)2 = x for all

x ∈ (0,∞) and (g ◦ f)(x) =
√
x2 = x for all x ∈ (0,∞).

1More generally, the set R in the notation f : D → R refers to the co-domain of f . The co-domain must contain the
possible values of f(x), but may also contain some impossible values. For example, one may write: “let f : R → R be
the function f(x) = x2” even though the range of f is only [0,∞). For simplicity, we always take the set R to refer to
the range of a function in this course, so it is not important to know what a co-domain is.
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1.1 Example Problems

1.1.1 Check if a function is one-to-one

Strategy: We need to check Definition 2 directly.

1. To show a function is one-to-one, we need to check condition (1) in Definition 2 holds by assuming
f(x1) = f(x2) and showing that we must have x1 = x2.

2. Alternatively, to show a function is one-to-one, it suffices to show that the function is strictly
increasing or decreasing on its domain (i.e. f(x1) < f(x2) whenever x1 < x2 or f(x1) > f(x2)
whenever x1 < x2). This essentially shows the contrapositive of (1), i.e. if x1 6= x2 then
f(x1) 6= f(x2). This technique will be useful later on in this course once we build the tools to
check this condition.

3. To show that a function is not one-to-one, it suffices to find points x1 6= x2 such that f(x1) =
f(x2).

Problem 1. (?) Is the function f(x) = x+5
x−6 one to one?

Solution 1. To show the function is one-to-one, notice for x1 6= 6 and x2 6= 6, we have

f(x1) =
x1 + 5

x1 − 6
=
x2 + 5

x2 − 6
= f(x2)⇒ (x1 + 5)(x2 − 6) = (x2 + 5)(x1 − 6)

⇒ x1x2 − 6x1 + 5x2 − 30 = x1x2 − 6x2 + 5x1 − 30

⇒ −11x1 = −11x2

⇒ x1 = x2,

so our function is one-to-one.

Problem 2. (?) Is the function f(x) = |x| one to one?

Solution 2. From Table 2, we know that |x| is not one-to-one function. To show this directly, notice
that

f(1) = |1| = 1 = | − 1| = f(−1),

so our function is not one-to-one.

Problem 3. (??) Is the function f(x) = xex
2

one to one?

Solution 3. We will show the function is one-to-one by proving that is strictly increasing. Taking
the derivative of f(x), we have

f ′(x) = ex
2

+ 2x2ex
2

= ex
2

(1 + x2) > 0 for all x ∈ R.

In particular, we have f(x) is strictly increasing on R and therefore also one-to-one.

Problem 4. (??) True of False: If f(x) is an even function (i.e. f(−x) = f(x)), then f(x) is not
one-to-one.
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Solution 4. This is true. Since f(−x) = f(x) for all x ∈ Df , if we take x ∈ Df such that x 6= 0 then
we have

f(x) = f(−x)

but x 6= −x so our function is not one-to-one.

Problem 5. (??) True of False: If f(x) is an odd function (i.e. f(−x) = −f(x)), then f(x) is
one-to-one.

Solution 5. This is false. For example, consider f(x) = sin(x). It is well known that sin(x) is an odd
function, but

f(0) = sin(0) = 0 = sin(2π) = f(2π),

so f(x) is not one-to-one.

Problem 6. (??) True or False: If g : A → B and f : B → C are one-to-one then f ◦ g : A → C is
one-to-one.

Solution 6. This is true. We can show Definition 2 directly. Suppose that (f ◦ g)(x1) = (f ◦ g)(x2),
we need to show that x1 = x2. Notice that both f and g satisfy (1) since they are one-to-one, so

(f ◦ g)(x1) = (f ◦ g)(x2)⇒ g(x1) = g(x2) f satisfies (1)

⇒ x1 = x2 g satisfies (1)

as required.

1.1.2 Finding the Inverse of a Function

Strategy: Solve x = f(y) for y. The resulting equation is y = f−1(x).

Problem 1. (?) Find the formula for the inverse of the function f(x) = x+5
x−6 .

Solution 1. It is easy to check that f(x) is one-to-one. To find the formula for f−1, it suffices to
solve

x = f(y) =
y + 5

y − 6

in terms of y. Notice that

x =
y + 5

y − 6
⇒ xy − 6x = y + 5⇒ (x− 1)y = 6x+ 5⇒ f−1(x) = y =

6x+ 5

x− 1
.

Problem 2. (?) Find the formula for the inverse of the function f(x) = x2 + 2x+ 1.

Solution 2. The function f(x) is not one-to-one since f(0) = 1 = f(−2), so the inverse does not
exist.

Problem 3. (??) Find a formula for the inverse of the function f(x) =
√
−1− x. Be sure to specify

the domain of f−1.

Solution 3. It is easy to check that f(x) is one-to-one on its domain (−∞,−1]. To find the formula
for f−1, it suffices to solve

x = f(y) =
√
−1− y

in terms of y. Notice that

x =
√
−1− y ⇒ x2 = −1− y ⇒ f−1(x) = y = −1− x2.

Although the function f−1(x) makes sense for all x ∈ R, the domain of this inverse is the range of
f(x), which is [0,∞).
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2 Exponential Functions

An exponential function with base a > 0 is denoted by ax and its inverse is denoted by loga(x). The
most common base for an exponential function is the mathematical constant e = 2.718 . . .

Definition 4. We call function exp(x) = ex the exponential function, and its inverse ln(x) = loge(x)
the natural logarithm (some books use log(x) to refer to the natural logarithm).

We summarize several properties of the exponential function and its logarithm. The following
properties hold more generally for a > 0 instead of e (just replace the e with a). We will prove some
change of base formulas in the exercises that express exponential functions and logarithms with base
a in terms of exp(x) and ln(x). Since we can freely convert into base e, it suffices to just work with
base e in most applications.

Exponential Logarithm

exp(x+ y) = exp(x) · exp(y) ln(x · y) = ln(x) + ln(y)

exp(x)y = exp(y · x) ln(xy) = y ln(x)

exp(−x) = 1
exp(x) − ln(x) = ln( 1

x )

exp(ln(x)) = x for x > 0 ln(exp(x)) = x for x ∈ R
exp(0) = 1, exp(1) = e ln(1) = 0, ln(e) = 1

x

y f(x) = ex

x

y f(x) = lnx

Table 1: Properties of Exponential Functions

Note: Some exponential expressions are defined for a < 0. For example, (−8)2 = 64 and (−8)1/3 = −2.
However, (−8)x is not defined on R (for example, (−8)1/2 does not have a real solution).

2.1 Example Problems:

2.1.1 Solving and Simplifying Expressions Involving log(x) and ex:

Problem 1. (?) Solve 33x = 1
92x−1 for x.

Solution 1. Using the properties of exponents, we have

33x =
1

92x−1
⇒ 33x = (32)−(2x−1)

⇒ 33x = 3−2(2x−1)

⇒ 3x = −2(2x− 1)

⇒ x =
2

7
.

Problem 2. (?) Simplify the expression e− ln( 1
3 ).
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Solution 2. Using the properties of exponents, we have

e− ln( 1
3 ) = exp

(
− ln

(1

3

))
= exp(ln(3)) = 3.

Problem 3. (?) Simplify the expression

ex ln(x)+(2x−7) ln(x).

Solution 3. Using the properties of exponents, we have

ex ln(x)+(2x−7) ln(x) = e3x ln(x)−7 ln(x) = eln(x
3x)+ln(x−7) = eln(x

3x·x−7) = eln(x
(3x−7)) = x3x−7.

Problem 4. (?) Solve the following expression for x:

log54(x− 2) + log54(x+ 1) = 1.

Solution 4. Simplifying the left hand side, we combine the logarithms to conclude

log54(x− 2) + log54(x+ 1) = log54((x− 2) · (x+ 1)) = log54(x2 − x− 2).

Therefore, raising both sides of our original equation with base 54 implies

log54(x− 2) + log54(x+ 1) = 1⇒ log54(x2 − x− 2) = 1⇒ x2 − x− 2 = 54⇒ x2 − x− 56 = 0.

Notice that x2−x− 56 = (x− 8)(x+ 7) which means the equation x2−x− 56 = 0 has solutions x = 8
and x = −7. However, since the domain of log54(x) is x > 0, we have x = −7 is not in the domain of
either log54(x− 2) or log54(x+ 1), so our only solution is x = 8.

Problem 5. (??) Solve the following expression for x:

2x−1 · 3x+1 = 54.

Solution 5. Taking the natural logarithm of both sides, we have

2x−1 · 3x+1 = 54⇒ (x− 1) ln(2) + (x+ 1) ln(3) = ln(54)

Since 54 = 2 · 27 = 2 · 33, we have

(x− 1) ln(2) + (x+ 1) ln(3) = ln(54) = ln(2 · 33) = ln(2) + 3 ln(3).

Simplifying this equation, we have

x ln(2) + x ln(3) = 2 ln(2) + 2 ln(3)⇒ x =
2 ln(2) + 2 ln(3)

ln(2) + ln(3)
= 2.
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2.1.2 Change of Base Formulas:

Problem 1. (??) Let b > 0 and suppose b 6= 1. Prove the change of base formula

logb(x) =
lnx

ln b
.

Solution 1. We solve the following equation for y

y = logb(x)⇔ by = x compose both sides with bx

⇔ ln(by) = ln(x) compose both sides with ln(x)

⇔ y ln(b) = ln(x)

⇔ y =
ln(x)

ln(b)
.

Therefore, we have

logb(x) = y =
ln(x)

ln(b)
.

Note: We used the fact b 6= 1, to ensure we did not divide by 0.

Problem 2. (??) Prove the change of base formula

bx = ex ln(b).

Solution 2. We solve the following equation for y

bx = ey ⇔ ln bx = y compose both sides with ln(x)

⇔ y = x ln(b).

Therefore, we have
bx = ey = ex ln(b).
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3 Absolute Value

For x ∈ R, the absolute value of x is a piecewise function defined by

|x| =

{
x x ≥ 0

−x x < 0
.

It is easy to check that for x, y ∈ R, we have

1. Non-negativity: |x| ≥ 0

2. Multiplicativity: |xy| = |x||y|

3. Positive Definiteness: |x| = 0 if and only if x = 0

4. Triangle Inequality: |x+ y| ≤ |x|+ |y|

5. Reverse Triangle Inequality: ||x| − |y|| ≤ |x− y|.

The graph is given below:

x

y
y = |x|

3.1 Example Problems

3.1.1 Absolute Value Inequalities:

Strategy: We can proceed in two ways:

1. In general, we need to break our region into cases where our absolute values change sign and
solve the inequality on each region separately.

2. Shortcut: If we want to compute |f(x)| ≤ C or |f(x)| ≥ C then we can replace the absolute
value with ± and solve the two cases corresponding to +f(x) and −f(x).

Problem 1. (?) Find all x such that

|2x− 4| ≤ |x+ 3|.

Solution 1. Rearranging the inequality, we have

|2x− 4| ≤ |x+ 3| ⇒
∣∣∣2x− 4

x+ 3

∣∣∣ ≤ 1⇒ ±2x− 4

x+ 3
≤ 1.

Solving for the case with the positive sign, we have

2x− 4

x+ 3
≤ 1⇒ 2x− 4 ≤ x+ 3⇒ x ≤ 7
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and for the case with the negative sign, we have

−2x− 4

x+ 3
≤ 1⇒ −2x+ 4 ≤ x+ 3⇒ −3x ≤ −1⇒ x ≥ 1

3
.

Therefore, we have
1

3
≤ x ≤ 7.

Note: Notice that x 6= −3, so we do not run into the issue of dividing by zero in the first step.

Problem 2. (?) Find the domain of the function

f(x) = sin−1(x3 − 7).

Solution 2. Since the domain of sin−1 x is |x| ≤ 1, the domain of f(x) are the values of x such that
|x3 − 7| ≤ 1. To solve this inequality, we notice

|x3 − 7| ≤ 1⇒ ±(x3 − 7) ≤ 1

Solving for the case with the positive sign, we have

(x3 − 7) ≤ 1⇒ x3 ≤ 8⇒ x ≤ 2

and for the case with the negative sign, we have

−(x3 − 7) ≤ 1⇒ −x3 ≤ −6⇒ x ≥ 61/3.

Therefore, we have
61/3 ≤ x ≤ 2.

Problem 3. (?) Find all x such that

|x+ 8| < 5x+ 10.

Solution 3. The function |x+ 8| changes sign when x = −8, so we consider the regions x < −8 and
x > −8.

1. x > −8: In this case we have |x+ 8| = x+ 8, so solving the inequality gives

|x+ 8| < 5x+ 10⇒ x+ 8 < 5x+ 10⇒ x > −1

2
.

Since we must have both x ≥ −8 and x > − 1
2 , we have our inequality is satisfied when x > − 1

2 .

2. x < −8: In this case we have |x+ 8| = −(x+ 8) so solving the inequality gives

|x+ 8| < 5x+ 10⇒ −x− 8 < 5x+ 10⇒ x > −3.

Since we must have both x < −8 and x > −3, no x satisfies our inequality.

3. x = 8: When x = −8, we have 0 < −40 + 10, so x = −8 does not satisfy our inequality.

Combining the cases above, our solutions are x > − 1
2 .
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Problem 4. (??) Find all x such that

|x− 2| < |x+ 4| − 2.

Solution 4. The function |x− 2| changes sign when x = 2 and |x+ 4| changes sign when x = −4, so
we consider the cases

1. x < −4: On this region, we have |x− 2| = −x+ 2 and |x+ 4| = −x− 4 so we have

|x− 2| < |x+ 4| − 2⇒ −x+ 2 < −x− 4− 2⇒ 8 < 0,

which is a false expression, so no x in this region satisfies our inequality.

2. −4 < x < 2: On this region, we have |x− 2| = −x+ 2 and |x+ 4| = x+ 4 so we have

|x− 2| < |x+ 4| − 2⇒ −x+ 2 < x+ 4− 2⇒ x > 0.

so we must have x > 0 and −4 < x < 2 which means 0 < x < 2 is a solution to the inequality.

3. x > 2: On this region, we have |x− 2| = x− 2 and |x+ 4| = x+ 4 so we have

|x− 2| < |x+ 4| − 2⇒ x− 2 < x+ 4− 2⇒ 0 < 4,

which is a true expression so x > 2 is a solution to the inequality.

4. x = −4 or x = 2: When x = −4, we have 6 < −2 which is false, so x = −4 is not a solution.
When x = 2, we have 0 < 4 which is true, so x = 2 is a solution.

Combining our cases above, our solutions are x > 0.
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4 Trigonometric Functions

The 3 main trigonometric functions discussed in this course are sin(x), cos(x) and tan(x). The key
values of sin(x) and cos(x) can be summarized by the table of values

x 0 π
6

π
4

π
3

π
2

sin(x) 0 1
2

√
2
2

√
3
2 1

cos(x) 1
√
3
2

√
2
2

1
2 0

The values for other key values can be extrapolated by remembering the shapes of the graphs

x

y

y = sinx

x

y

y = cosx

x

y

y = tanx

The key trigonometric identities are

1. Pythagorean Identity:
sin2 θ + cos2 θ = 1.

2. Sum and Difference Formulas:

sin(α± β) = sin(α) cos(β)± sin(β) cos(α), cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β).

from these, one can derive the following identities

3. Symmetry and Periodicity: (Use the Sum and Difference Formulas)

sin(−θ) = − sin(θ), cos(−θ) = cos(θ), sin(θ + 2kπ) = sin(θ), cos(θ + 2kπ) = cos(θ)

4. Complementary and Supplementary Angles: (Use the Sum and Difference Formulas)

sin
(π

2
− θ
)

= cos(θ), sin(π − θ) = sin(θ), cos
(π

2
− θ
)

= sin(θ), cos(π − θ) = − cos(θ).

5. Double Angle Formulas: (Use the Sum and Difference Formulas and the Pythagorean Identity)

sin(2θ) = 2 sin(θ) cos(θ), cos(2θ) = cos2(θ)− sin2(θ) = 1− 2 sin2(θ) = 2 cos2(θ)− 1.

6. Half Angle Formulas: (Use the Double Angle Formulas for cos(2θ))

sin2 θ =
1− cos(2θ)

2
, cos2 θ =

1 + cos 2θ

2
.

7. Product to Sum Formulas: (Use the Sum and Difference Formulas)

cos(α) cos(β) =
1

2
(cos(α+ β) + cos(α− β)), sin(α) sin(β) =

1

2
(cos(α− β)− cos(α+ β)),

sin(α) cos(β) =
1

2
(sin(α+ β) + sin(α− β)).

To solve some word problems, it is also useful to recall the Cosine Law

c2 = a2 + b2 − 2ab cosC where C is the angle opposite side c.
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4.1 Example Problems

4.1.1 General Trigonometry Problems

Problem 1. (?) Find all x such that

cos
(
x+

π

2

)
= 0.

Solution 1. From the graph of cos(x), we know cos(x) = 0⇒ x = π
2 + kπ for k ∈ Z. Therefore, the

solutions of our equation are x such that

x+
π

2
=
π

2
+ kπ ⇒ x = kπ for k ∈ Z.

Problem 2. (? ? ?) Derive the Sum and Difference formulas.

Solution 2. Recall Euler’s Identity,

eiθ = cos(θ) + i sin(θ).

If we take θ = α+ β, then
ei(α+β) = cos(α+ β) + i sin(α+ β)

and using the fact exp(a+ b) = exp(a) exp(b), we also have

ei(α+β) = eiαeiβ = (cos(α) + i sin(α))(cos(β) + i sin(β))

=
(

cos(α) cos(β)− sin(α) sin(β)
)

+ i
(

sin(α) cos(β) + sin(β) cos(α)
)
.

Therefore, our two equations above implies

cos(α+β)+ i sin(α+β) = ei(α+β) =
(

cos(α) cos(β)−sin(α) sin(β)
)

+ i
(

sin(α) cos(β)+sin(β) cos(α)
)
.

Equating the real and imaginary parts, we have

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) and sin(α+ β) = sin(α) cos(β) + sin(β) cos(α).

To derive the formulas for α − β, we use the fact sin(−x) = − sin(x) and cos(−x) = cos(x) and use
our formulas above to conclude

cos(α− β) = cos(α+ (−β)) = cos(α) cos(−β)− sin(α) sin(−β) = cos(α) cos(β) + sin(α) sin(β)

and

sin(α− β) = sin(α+ (−β)) = sin(α) cos(−β) + sin(−β) cos(α) = sin(α) cos(β)− sin(β) cos(α).

4.1.2 Inverse Trig Problems

Problem 1. (?) Find the x such that

1. sin(sin−1(x)) = x

2. sin−1(sin(x)) = x

3. tan−1(tan(x)) = x

4. cot−1(cot(x)) = x

5. csc(csc−1(x)) = x

6. cos(cos−1(x)) = x.
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Solution 1. Recall that the domain of a composition f ◦ g is {x ∈ Dg : g(x) ∈ Df} where Dg and
Df are the respective domains of g and f . Even though the trigonometric functions sin(x), cos(x), . . .
are defined on large domains, the functions are not one-to-one, so its inverses are not well defined on
the larger domain. We always restrict the domain of the trigonometric functions to the range of the
inverse functions so that the inverses behave nicely.

The answers to these problems can be read directly off the domains and ranges of the inverse
trigonometric functions in Table 2. Let Df and Rf be the domains and ranges of f .

1. The inverse identity sin(sin−1(x)) = x holds for all x ∈ Dsin−1(x) = [−1, 1].

2. The inverse identity sin−1(sin(x)) = x holds for all x ∈ Dsin(x) = Rsin−1(x) = [−π2 ,
π
2 ].

3. The inverse identity tan−1(tan(x)) = x holds for all x ∈ Dtan(x) = Rtan−1(x) = (−π2 ,
π
2 ).

4. The inverse identity cot−1(cot(x)) = x holds for all x ∈ Dcot(x) = (0, π).

5. The inverse identity csc(csc−1(x)) = x holds for all x ∈ Dcsc−1(x) = (−∞,−1] ∪ [1,∞).

6. The inverse identity cos(cos−1(x)) = x holds for all x ∈ Dcos−1(x) = [−1, 1].

Problem 2. (??) Rewrite the expression tan(cos−1(x)) without using trigonometric functions. What
is the domain of this function?

Solution 2. We can solve this problem either geometrically or algebraically.

Geometric Solution: We first find the domain of our function. We have Dcos−1(x) = [−1, 1] and

Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcos−1(x) such that cos−1(x) 6= π

2 ⇒ x 6= 0.
Therefore, the domain of our function is [−1, 1] \ {0}.

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to cos(θ) = x in the first
quadrant is given by

θ

1 √
1− x2

x

From this triangle, we see

tan(cos−1(x)) = tan(θ) =

√
1− x2
x

for x ∈ (0, 1].

Case x < 0: We now consider the case such that x < 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [π2 , π] (the second quadrant). The triangle corresponding to cos(θ) = x in the second
quadrant is given by
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θ

√
1− x2

1

x

Notice that x < 0, so this triangle is indeed in the second quadrant. From this triangle, we see

tan(cos−1(x)) = tan(θ) =

√
1− x2
x

for x ∈ [−1, 0).

Algebraic Solution: We first find the domain of our function. We have Dcos−1(x) = [−1, 1] and

Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcos−1(x) such that cos−1(x) 6= π

2 ⇒ x 6= 0.
Therefore, the domain of our function is [−1, 1] \ {0}.

Case x > 0: We first consider the case such that x ≥ 0 on our domain. On this region, we have
θ = cos−1(x) ∈ [0, π2 ] so trigonometric functions are positive. We now solve the identity algebraically.

We want to write tan(θ) in terms of cos(θ). Using the Pythagorean identity,

sin2(θ) + cos2(θ) = 1⇒ tan2(θ) + 1 =
1

cos2(θ)

⇒ tan2(θ) =
1− cos2(θ)

cos2(θ)

⇒ tan(θ) =

√
1− cos2(θ)

cos(θ)
.

Since tan(θ) ≥ 0 and cos(θ) > 0, we didn’t have to worry about absolute values when taking the
squareroots of both sides or dividing by zero. Therefore, if we set θ = cos−1(x), we have

tan(cos−1(x)) =

√
1− cos2(cos−1(x))

cos(cos−1(x))
=

√
1− x2
x

for x ∈ (0, 1].

Case x < 0: We now consider the case such that x < 0 on our domain. We can easily check
that our function tan(cos−1(x)) is odd. To see this, notice that cos−1(x) − π

2 is odd, and therefore
tan((cos−1(x)− π

2 ) + π
2 ) is a composition of odd functions and therefore odd. Extending our solution

for x > 0 to make it odd, we have

tan(cos−1(x)) = −
√

1− (−x)2

−x
=

√
1− x2
x

for x ∈ [−1, 0).

Problem 6. (??) Rewrite the expression tan(csc−1(x)) without using trigonometric functions. What
is the domain of this function?

Solution 6. We can solve this problem either geometrically or algebraically.

Geometric Solution: We first find the domain of our function. We haveDcsc−1(x) = (−∞,−1]∪[1,∞)

and Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcsc−1(x) such that csc−1(x) 6= ±π2 ⇒

x 6= ±1. Therefore, the domain of our function is (−∞,−1) ∪ (1,∞).

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to csc(θ) = x in the first
quadrant is given by
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θ

x
1

√
x2 − 1

From this triangle, we see

tan(csc−1(x)) = tan(θ) =
1√

x2 − 1
for x ∈ (1,∞).

Case x < 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [−π2 , 0] (the fourth quadrant). The triangle corresponding to csc(θ) = x in the fourth
quadrant is given by

θ

−x −1

√
x2 − 1

Notice that x < 0, so the hypotenuse is positive. From this triangle, we see

tan(csc−1(x)) = tan(θ) = − 1√
x2 − 1

for x ∈ (−∞,−1).

Algebraic Solution: We first find the domain of our function. We have Dcsc−1(x) = (−∞,−1]∪[1,∞)

and Dtan(x) = {x 6= 2k+1
2 π}, so our domain consists of points in Dcsc−1(x) such that csc−1(x) 6= ±π2 ⇒

x 6= ±1. Therefore, the domain of our function is (−∞,−1) ∪ (1,∞).

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = csc−1(x) ∈ [0, π2 ] so trig functions are all positive. We now solve the identity algebraically.

We want to write tan(θ) in terms of csc(θ). Using the Pythagorean identity,

sin2(θ) + cos2(θ) = 1⇒ 1 +
1

tan2(θ)
= csc(θ)

⇒ tan2(θ) =
1

csc2(θ)− 1

⇒ tan(θ) =
1√

csc2(θ)− 1
.

Since sin(θ) > 0 and cos(θ) > 0 on this domain, we didn’t have to worry about absolute values when
taking the squareroots of both sides or dividing by zero. Therefore, if we set θ = csc−1(x), we have

tan(csc−1(x)) =
1√

x2 − 1
for x ∈ (1,∞).

Case x < 0: We now consider the case such that x < 0 on our domain. We can easily check that our
function tan(csc−1(x)) is odd. To see this, notice that csc−1(x) is odd, and therefore tan((csc−1(x)) is
a composition of odd functions and therefore odd. Extending our solution to make it odd, we have

tan(csc−1(x)) = − 1√
(−x)2 − 1

= − 1√
x2 − 1

for x ∈ (−∞,−1).
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Remark: We used the following fact in Solutions 5 and Solution 6.

Suppose we know f(x) for x > 0. We can use following formulas to extend our functions in an
odd or even manner

1. Odd Extension: For x < 0, the odd extension of f is given by −f(−x).

2. Even Extension: For x < 0, the even extension of f is given by f(−x).
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5 Hyperbolic Functions

The 3 main hyperbolic functions discussed in this course are

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
, tanh(x) =

sinh(x)

cosh(x)
.

The graphs of these functions are given by

x

y

y = sinhx

x

y

y = coshx

x

y

y = tanhx

Just like the trigonometric functions, the hyperbolic functions satisfy a similar set of properties

1. Analogue of the “Pythagorean” Identity:

cosh2(x)− sinh2(x) = 1.

2. Sum and Difference Formulas:

sinh(x±y) = sinh(x) cosh(y)±sinh(x) cosh(y), cosh(x±y) = cosh(x) cosh(y)±sinh(x) sinh(y).

3. Double Angle Formulas: (Use sum and difference formulas and the Pythagorean identity)

sinh(2x) = 2 sinh(x) cosh(x), cosh(2x) = cosh2(x)+sinh2(x) = 2 sinh2(x)+1 = 2 cosh2(x)−1.

4. Half Angle Formulas: (Use the double angle formula for cosh(2x))

sinh2(x) =
cosh(2x)− 1

2
, cosh2(x) =

cosh(2x) + 1

2
.

Similarly to the trigonometric functions, we can also define the following lesser used hyperbolic
functions

csch(x) =
1

sinh(x)
, sech(x) =

1

cosh(x)
, coth(x) =

1

tanh(x)
.

5.1 Example Problems

Problem 1. (??) Derive the formula for cosh−1(x) restricted to x ≥ 0.

Solution W. e explicitly compute the inverse of f(x) = cosh(x). Since cosh(x) is not one to one,
we have to restrict its domain to x ≥ 0 to make our function one to one. We know that the range of
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cosh(x) is [1,∞). Setting f(y) = x and solving for y, we have

cosh(y) = x⇒ ey + e−y

2
= x

⇒ ey + e−y − 2x = 0

⇒ e2y − 2xey + 1 = 0 multiply both sides by ey

⇒ ey =
2x±

√
4x2 − 4

2
using the quadratic formula

⇒ y = ln(x±
√
x2 − 1)

⇒ y = ln(x+
√
x2 − 1) since y must be > 0 for all x ≥ 1.

The other possible solution does not work because ln(x −
√
x2 − 1) < 0 for x ≥ 1. Therefore, the

formula for the inverse function is f−1(x) = ln(x+
√
x2 − 1).

Note: If we multiplied both sides by e−y, in the computation above, we would have deduced that
f−1(x) = − ln(x+

√
x2 − 1). This is the other possible inverse of cosh−1(x) if we choose to restrict its

domain to x ≤ 0.

Problem 2. (??) Verify the Pythagorean identity

cosh2(x)− sinh2(x) = 1.

Solution 2. This is a direct computation. We have

cosh2(x)− sinh2(x) =
(ey + e−y

2

)2
+
(ey − e−y

2

)2
=
e2y + 2 + e−2y − e2y + 2− e−2y

4
= 1.
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6 Appendix: Essential Functions and Their Graphs

Below is a non-exhaustive list of the basic functions we will encounter in this class.

Elementary Functions

Function Domain Range One-to-One

xn (where n is even) R [0,∞) No

xn (where n is odd) R R Yes
√
x [0,∞) [0,∞) Yes
1
x R \ {0} R \ {0} Yes

|x| R [0,∞) No

Exponential Functions

Function Domain Range One-to-One

ax (where a > 0) R (0,∞) Yes

loga(x) (where a > 0) (0,∞) R Yes

Trigonometric Functions

Function Domain Range One-to-One

sin(x) R [−1, 1] No

cos(x) R [−1, 1] No

tan(x) = sin(x)
cos(x) {x : x 6= 2k+1

2 π, k ∈ Z} R No

sin−1(x) [−1, 1] [−π2 ,
π
2 ] Yes

cos−1(x) [−1, 1] [0, π] Yes

tan−1(x) R (−π2 ,
π
2 ) Yes

csc(x) = 1
sin(x) {x : x 6= kπ, k ∈ Z} (−∞,−1] ∪ [1,∞) No

sec(x) = 1
cos(x) {x : x 6= 2k+1

2 π, k ∈ Z} (−∞,−1] ∪ [1,∞) No

cot(x) = 1
tan(x) {x : x 6= kπ, k ∈ Z} R No

csc−1(x) (−∞,−1] ∪ [1,∞) [−π2 , 0) ∪ (0, π2 ] Yes

sec−1(x) (−∞,−1] ∪ [1,∞) [0, π2 ) ∪ (π2 , π] Yes

cot−1(x) R (0, π) Yes

Hyperbolic Functions

Function Domain Range One-to-One

sinh(x) = ex−e−x

2
R R Yes

cosh(x) = ex+e−x

2
R [1,∞) No

tanh(x) = sinh(x)
cosh(x) R (−1, 1) Yes

sinh−1(x) = ln(x+
√
x2 + 1) R R Yes

cosh−1(x) = ln(x+
√
x2 − 1) [1,∞) [0,∞) Yes

tanh−1(x) = 1
2 ln( 1+x

1−x ) (−1, 1) R Yes

csch(x) = 1
sinh(x) R \ {0} R \ {0} Yes

sech(x) = 1
cosh(x) R (0, 1] No

coth(x) = 1
tanh(x) R \ {0} (−∞,−1) ∪ (1,∞) Yes

Table 2: Table of Functions
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6.1 Graphs

6.1.1 Trigonometric Functions

The trigonometric functions are not one-to-one, so we first restrict the domain of the trig functions to
a region such that the functions is one-to-one. Trigonometric functions with “leading sine terms” are
restricted to a subset of the domain [−π/2, π/2] and the Trigonometric functions with “leading cosine
terms” are restricted to the domain [0, π].

Note: In the following pictures, the dotted blue graph is the full function. The blue graph is the
one-to-one function on the restricted domain. And the red graph is the inverse function.

Sine Function:

Cosine Function:

Tangent Function:
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Cosecant Function:

Secant Function:

Cotangent Function:

6.1.2 Exponential Functions

Exponential Function with base e:
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6.1.3 Hyperbolic Functions

Hyperbolic Sine:

Hyperbolic Cosine:

Hyperbolic Tangent:
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