1 Absolute Value

For $x \in \mathbb{R}$, the absolute value of x is a piecewise function defined by

$$
|x|= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$

The graph is displayed below:

Basic Properties: The absolute value function satisfies the following properties

1. Non-negativity: $|x| \geq 0$
2. Multiplicativity: $|x y|=|x||y|$
3. Positive Definiteness: $|x|=0$ if and only if $x=0$
4. Triangle Inequality: $|x+y| \leq|x|+|y|$
5. Reverse Triangle Inequality: $||x|-|y|| \leq|x-y|$.

1.1 Example Problems

1.1.1 Absolute Value Inequalities:

Strategy: We can proceed in two ways:

1. In general, we need to break our region into cases where our absolute values change sign and solve the inequality on each region separately.
2. Shortcut: If we want to compute $|f(x)| \leq g(x)$ or $|f(x)| \geq g(x)$ then we can replace the absolute value with \pm and solve the two cases corresponding to $+f(x)$ and $-f(x)$.

Problem 1.1. (\star) Find all x such that

$$
|2 x-4| \leq|x+3|
$$

Solution 1.1. Rearranging the inequality, we see that

$$
|2 x-4| \leq|x+3| \Rightarrow\left|\frac{2 x-4}{x+3}\right| \leq 1 \Rightarrow \pm \frac{2 x-4}{x+3} \leq 1
$$

Solving for the case with the positive sign, implies

$$
\frac{2 x-4}{x+3} \leq 1 \Rightarrow 2 x-4 \leq x+3 \Rightarrow x \leq 7
$$

and for the case with the negative sign, implies

$$
-\frac{2 x-4}{x+3} \leq 1 \Rightarrow-2 x+4 \leq x+3 \Rightarrow-3 x \leq-1 \Rightarrow x \geq \frac{1}{3}
$$

Therefore, the inequality is satisfied for

$$
\frac{1}{3} \leq x \leq 7
$$

Remark: Since $x=-3$ is not a solution, we do not run into the issue of dividing by zero.
Problem 1.2. (\star) Find all x such that

$$
|x+8|<5 x+10
$$

Solution 1.2. The function $|x+8|$ changes sign when $x=-8$, so we consider the regions $x<-8$ and $x>-8$.

1. $x>-8$: In this case we have $|x+8|=x+8$, so solving the inequality gives

$$
|x+8|<5 x+10 \Rightarrow x+8<5 x+10 \Rightarrow x>-\frac{1}{2}
$$

Since we must have both $x \geq-8$ and $x>-\frac{1}{2}$, we have our inequality is satisfied when $x>-\frac{1}{2}$.
2. $x<-8$: In this case we have $|x+8|=-(x+8)$ so solving the inequality gives

$$
|x+8|<5 x+10 \Rightarrow-x-8<5 x+10 \Rightarrow x>-3
$$

Since we must have both $x<-8$ and $x>-3$, no x in this region satisfies our inequality.
3. $x=8$: When $x=-8,0<-40+10$ is a false statement, so $x=-8$ does not satisfy our inequality. Combining the cases above, our solutions are $x>-\frac{1}{2}$.

Remark: We can also solve $\pm(x+8)<5 x+10$ like in Problem 1.1 to conclude that $x>-\frac{1}{2}$.
Problem 1.3. ($\star \star$) Find all x such that

$$
|x-2|<|x+4|-2
$$

Solution 1.3. The function $|x-2|$ changes sign when $x=2$ and $|x+4|$ changes sign when $x=-4$, so we consider the cases

1. $x<-4$: On this region, we have $|x-2|=-x+2$ and $|x+4|=-x-4$ so we have

$$
|x-2|<|x+4|-2 \Rightarrow-x+2<-x-4-2 \Rightarrow 8<0
$$

which is a false expression, so no x in this region satisfies our inequality.
2. $-4<x<2$: On this region, we have $|x-2|=-x+2$ and $|x+4|=x+4$ so we have

$$
|x-2|<|x+4|-2 \Rightarrow-x+2<x+4-2 \Rightarrow x>0
$$

so we must have $x>0$ and $-4<x<2$ which means $0<x<2$ is a solution to the inequality.
3. $x>2$: On this region, we have $|x-2|=x-2$ and $|x+4|=x+4$ so we have

$$
|x-2|<|x+4|-2 \Rightarrow x-2<x+4-2 \Rightarrow 0<4
$$

which is a true expression so $x>2$ is a solution to the inequality.
4. $x=-4$ or $x=2$: When $x=-4$, we have $6<-2$ which is false, so $x=-4$ is not a solution. When $x=2$, we have $0<4$ which is true, so $x=2$ is a solution.
Combining our cases above, our solutions are $x>0$.

2 Trigonometric Functions

The 3 main trigonometric functions discussed in this course are $\sin (x), \cos (x)$ and $\tan (x)$:

$$
y=\cos x
$$

$$
y=\tan x
$$

Key Values: The key values of $\sin (x)$ and $\cos (x)$ can be summarized by the table of values

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin (x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos (x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

The other key values can be extrapolated by looking at the shapes of the graphs.
Basic Properties: The key trigonometric identities are

1. Pythagorean Identity:

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

2. Sum and Difference Formulas:

$$
\sin (\theta \pm \varphi)=\sin (\theta) \cos (\varphi) \pm \cos (\theta) \sin (\varphi), \quad \cos (\theta \pm \varphi)=\cos (\theta) \cos (\varphi) \mp \sin (\theta) \sin (\varphi)
$$

From these, one can derive the following identities
3. Symmetry and Periodicity: (Use the Sum and Difference Formulas)

$$
\sin (-\theta)=-\sin (\theta), \quad \cos (-\theta)=\cos (\theta), \quad \sin (\theta+2 k \pi)=\sin (\theta), \quad \cos (\theta+2 k \pi)=\cos (\theta)
$$

4. Complementary and Supplementary Angles: (Use the Sum and Difference Formulas)

$$
\sin \left(\frac{\pi}{2}-\theta\right)=\cos (\theta), \quad \sin (\pi-\theta)=\sin (\theta), \quad \cos \left(\frac{\pi}{2}-\theta\right)=\sin (\theta), \quad \cos (\pi-\theta)=-\cos (\theta)
$$

5. Double Angle Formulas: (Use the Sum and Difference Formulas and the Pythagorean Identity)

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta), \quad \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=1-2 \sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1
$$

6. Half Angle Formulas: (Use the Double Angle Formulas for $\cos (2 \theta)$)

$$
\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}, \quad \cos ^{2}(\theta)=\frac{1+\cos 2 \theta}{2}
$$

7. Product to Sum Formulas: (Use the Sum and Difference Formulas)

$$
\begin{gathered}
\cos (\theta) \cos (\varphi)=\frac{1}{2}(\cos (\theta+\varphi)+\cos (\theta-\varphi)), \quad \sin (\theta) \sin (\varphi)=\frac{1}{2}(\cos (\theta-\varphi)-\cos (\theta+\varphi)), \\
\sin (\theta) \cos (\varphi)=\frac{1}{2}(\sin (\theta+\varphi)+\sin (\theta-\varphi))
\end{gathered}
$$

To solve some word problems, it is also useful to recall the Cosine Law:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C \quad \text { where } C \text { is the angle opposite side } c .
$$

2.1 Example Problems

2.1.1 General Trigonometry Problems

Problem 2.1. (\star) Find the value of

$$
\sin \left(-\frac{3}{4} \pi\right)
$$

Solution 2.1. We will reduce the problem to one of the key values for sine or cosine. Since $\sin (x)$ is odd,

$$
\sin \left(-\frac{3}{4} \pi\right)=-\sin \left(\frac{3}{4} \pi\right)
$$

Using the supplementary angle identity,

$$
\sin (\theta)=\sin (\pi-\theta) \Longrightarrow-\sin \left(\frac{3}{4} \pi\right)=-\sin \left(\pi-\frac{3}{4} \pi\right)=-\sin \left(\frac{1}{4} \pi\right)=-\frac{\sqrt{2}}{2} .
$$

Problem 2.2. (\star) Find all x such that

$$
\cos \left(x+\frac{\pi}{2}\right)=0
$$

Solution 2.2. From the graph of $\cos (x)$, we know $\cos (x)=0 \Rightarrow x=\frac{\pi}{2}+k \pi$ for $k \in \mathbb{Z}$. Therefore, the solutions of our equation are x such that

$$
x+\frac{\pi}{2}=\frac{\pi}{2}+k \pi \Rightarrow x=k \pi \text { for } k \in \mathbb{Z}
$$

Problem 2.3. ($\star \star$) Let $x \in[0,2 \pi)$. How many solutions does

$$
(2 \cos (x)-1)\left(\cos ^{2}(x)-1\right)(\sin (x)+5)(\cos (x+5)-1)=0
$$

have?

Solution 2.3. We have $(2 \cos (x)-1)\left(\cos ^{2}(x)-1\right)(\sin (x)+5)(\cos (x+5)-1)=0$ if and only if

$$
2 \cos (x)-1=0 \text { or } \cos ^{2}(x)-1=0 \text { or } \sin (x)+5=0 \text { or } \cos (x+5)-1=0
$$

Notice that

1. $2 \cos (x)-1=0 \Rightarrow \cos (x)=\frac{1}{2}$ has 2 solutions in the interval $[0,2 \pi)$.
2. $\cos ^{2}(x)-1=0 \Rightarrow \cos ^{2} x=1 \Rightarrow \cos (x)= \pm 1$ has 2 solutions in the interval $[0,2 \pi)$.
3. $\sin (x)+5=0$ has no solutions since the range of $\sin (x)$ is $[-1,1]$.
4. $\cos (x+5)-1=0 \Rightarrow \cos (x+5)=1 \Rightarrow x+5=2 k \pi \Rightarrow x=2 k \pi-5$ has 1 solutions in the interval $[0,2 \pi)$ when $k=1$.

None of the solutions coincide, so there are 5 solutions in total.

Problem 2.4. ($\star \star \star$) Derive the Sum and Difference formulas:

$$
\sin (\theta \pm \varphi)=\sin (\theta) \cos (\varphi) \pm \cos (\theta) \sin (\varphi), \quad \cos (\theta \pm \varphi)=\cos (\theta) \cos (\varphi) \mp \sin (\theta) \sin (\varphi)
$$

Solution 2.4. Recall Euler's Identity,

$$
e^{i x}=\cos (x)+i \sin (x)
$$

If we take $x=\theta+\varphi$, then

$$
e^{i(\theta+\varphi)}=\cos (\theta+\varphi)+i \sin (\theta+\varphi)
$$

and using the fact $\exp (a+b)=\exp (a) \exp (b)$, we also have

$$
\begin{aligned}
e^{i(\theta+\varphi)}=e^{i \theta} e^{i \varphi} & =(\cos (\theta)+i \sin (\theta))(\cos (\varphi)+i \sin (\varphi)) \\
& =(\cos (\theta) \cos (\varphi)-\sin (\theta) \sin (\varphi))+i(\sin (\theta) \cos (\varphi)+\sin (\varphi) \cos (\theta))
\end{aligned}
$$

Therefore, our two equations above implies
$\cos (\theta+\varphi)+i \sin (\theta+\varphi)=e^{i(\theta+\varphi)}=(\cos (\theta) \cos (\varphi)-\sin (\theta) \sin (\varphi))+i(\sin (\theta) \cos (\varphi)+\sin (\varphi) \cos (\theta))$.
Equating the real and imaginary parts, we have

$$
\cos (\theta+\varphi)=\cos (\theta) \cos (\varphi)-\sin (\theta) \sin (\varphi) \text { and } \sin (\theta+\varphi)=\sin (\theta) \cos (\varphi)+\sin (\varphi) \cos (\theta)
$$

To derive the formulas for $\theta-\varphi$, we use the fact $\sin (-x)=-\sin (x)$ and $\cos (-x)=\cos (x)$ and use our formulas above to conclude

$$
\cos (\theta-\varphi)=\cos (\theta+(-\varphi))=\cos (\theta) \cos (-\varphi)-\sin (\theta) \sin (-\varphi)=\cos (\theta) \cos (\varphi)+\sin (\theta) \sin (\varphi)
$$

and

$$
\sin (\theta-\varphi)=\sin (\theta+(-\varphi))=\sin (\theta) \cos (-\varphi)+\sin (-\varphi) \cos (\theta)=\sin (\theta) \cos (\varphi)-\sin (\varphi) \cos (\theta)
$$

3 Hyperbolic Functions

The 3 main hyperbolic functions discussed in this course are

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}, \quad \tanh (x)=\frac{\sinh (x)}{\cosh (x)}
$$

The graphs of these functions are displayed below:

Basic Properties: Just like the trigonometric functions, the hyperbolic functions satisfy a similar set of identities.

1. Analogue of the "Pythagorean" Identity:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

2. Sum and Difference Formulas:

$$
\sinh (x \pm y)=\sinh (x) \cosh (y) \pm \sinh (x) \cosh (y), \quad \cosh (x \pm y)=\cosh (x) \cosh (y) \pm \sinh (x) \sinh (y)
$$

3. Double Angle Formulas: (Use sum and difference formulas and the Pythagorean identity)

$$
\sinh (2 x)=2 \sinh (x) \cosh (x), \quad \cosh (2 x)=\cosh ^{2}(x)+\sinh ^{2}(x)=2 \sinh ^{2}(x)+1=2 \cosh ^{2}(x)-1
$$

4. Half Angle Formulas: (Use the double angle formula for $\cosh (2 x)$)

$$
\sinh ^{2}(x)=\frac{\cosh (2 x)-1}{2}, \quad \cosh ^{2}(x)=\frac{\cosh (2 x)+1}{2}
$$

3.1 Example Problems

Problem 3.1. ($\star \star$) Verify the Pythagorean identity

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

Solution 3.1. This is a direct computation. We have

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=\left(\frac{e^{y}+e^{-y}}{2}\right)^{2}+\left(\frac{e^{y}-e^{-y}}{2}\right)^{2}=\frac{e^{2 y}+2+e^{-2 y}-e^{2 y}+2-e^{-2 y}}{4}=1
$$

