
July 16, 2019 MAT136 – Week 9 Justin Ko

1 Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation involving a function y(x) and its derivatives,

F (x, y, y′, y′′, . . . , y(n)) = 0.

The order of the differential equation is the highest order derivative appearing in the equation. Our
goal is to find an explicit formula for the function y(x) that satisfies the differential equation.

1.1 Slope Fields

The solution to a first order differential equation can be visualized using a slope field. Any solution
y(x) to the ODE

dy

dx
= f(x, y)

must have slope y′(x0) = f(x0, y0) at the point (x0, y(x0)). The slope field is a plot in R2 such that
every point (x0, y(x0)) corresponds to a line segment with slope f(x0, y0). The solution y(x) follow
the directions of the slope field, so we can use the slope fields to visualize the family of solutions to
differential equations.

Example 1. The slope field for the ODE

dy

dx
= −x

y

is displayed below

It looks like solutions to this differential equation are circles. A particular solution is displayed in red.
In the next section we will use integration to show that x2 + y2 = C are solutions to this differential
equation. We can check that this is a solution by implicitly differentiating both sides,

x2 + y2 = C =⇒ 2x + 2y
dy

dx
= 0 =⇒ dy

dx
= −x

y
.
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Example 2. The slope field for the ODE
dy

dx
= y

is displayed below

It looks like the solutions to this differential equation grow exponentially. A particular solution is
displayed in red. In the next section we will use integration to show that y = Cex are solutions to this
differential equation. We can check that this is a solution by differentiating both sides,

y = Cex =⇒ dy

dx
= Cex =⇒ dy

dx
= y since y = Cex.

1.2 Separable Differential Equations

Suppose that we want to find a function y such that it satisfies a differential equation of the form

dy

dx
= f(x)g(y)

for some functions f(x) and g(y). We can find the solution by separating variables and integrating
both sides,

dy

dx
= f(x)g(y) =⇒ dy

g(y)
= f(x)dx =⇒

∫
1

g(y)
dy =

∫
f(x) dx =⇒ G(y) = F (x) + C

where G(y) is an antiderivative of 1
g(y) and F (x) is an antiderivative of f(x). This procedure gives

an implicit formula formula for a function y that satisfies the differential equation. If we are given an
initial condition, then we can solve for the integration constant C.
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1.3 Example Problems

Problem 1. (?) The rate of growth of a population P is modeled by

dP

dt
= kP

where k 6= 0. Suppose that the initial population P (0) = P0 for some constant P0 > 0. Find the
population function P (t). How long will it take for the population to double?

Solution 1. Separating variables and integrating, we have

dP

dt
= kP ⇒

∫
dP

P
=

∫
kdt⇒ ln |P | = kt + C

Since P (t) must be positive in a reasonable model, |P | = P , so we can exponentiate both sides to
conclude

P = ekt+C = eCekt.

To solve for the integrating constants C, since P (0) = P0, we have

P0 = P (0) = eCek·0 = eC ⇒ lnP0 = C.

Therefore, the population is given by

P (t) = elnP0ekt = P0e
kt.

To find the time for the population to double, we want to find the t such that P (t) = 2P0. That is,

2P0 = P0e
kt ⇒ ekt = 2⇒ kt = ln(2)⇒ t =

ln(2)

k
.

In particular, if k < 0 (we have a decreasing population) then we have our population will never double.

Problem 2. (??) A pizza is put in a 200◦C oven and heats up according to the differential equation

dH

dt
= −k(H − 200), where k > 0.

The pizza is put in the oven at 20◦C and is removed 30 minutes later at a temperature of 120◦C. Find
the proportionality constant k.

Solution 2. The general solution to the ODE

dH

dt
= −k(H − 200),

can be solved using separation of variables,

dH

dt
= −k(H − 200)⇒ dH

(H − 200)
= −kt dt⇒ ln |H − 200| = −kt + C

Solving for H and using the fact H − 200 < 0 in a reasonable model, we see that

ln |H − 200| = −kt + C ⇒ ln(200−H) = −kt + C ⇒ H = 200−De−kt

where D = eC > 0. To find D, we can use the fact that at H(0) = 20,

20 = H(0) = 200−D =⇒ D = 180.

Since H(30) = 120, we have

120 = H(30) = 200− 180 · e−30k =⇒ k = − 1

30
· ln 80

180
≈ 0.027.
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Problem 3. (?) Suppose the velocity of a particle is given by

v(t) :=
ds

dt
= sin(t)− cos(t).

Find the position function s(t) of the particle given that s(0) = 0.

Solution 3. The rate of change of position is velocity, so we have the differential equation

ds

dt
= sin(t)− cos(t).

Separating variables and integrating, we have

ds

dt
= sin(t)− cos(t)⇒

∫
ds =

∫
sin(t)− cos(t) dt⇒ s = − cos(t)− sin(t) + C.

To solve for the integrating constant, since s(0) = 0, we have

0 = s(0) = − cos(0)− sin(0) + C = −1 + C ⇒ C = 1.

Therefore, the position is given by

s(t) = − cos(t)− sin(t) + 1.

Problem 4. (??) Suppose the acceleration of a particle is given by

a(t) :=
d2s

dt2
= t + 1.

Find the position function s(t) of the particle given that s(0) = 0 and s(1) = 2.

Solution 4. The rate of change of velocity is acceleration, so we have the differential equation

dv

dt
= t + 1.

Separating variables and integrating, we have

dv

dt
= t + 1⇒

∫
dv =

∫
t + 1 dt⇒ v =

t2

2
+ t + C.

The rate of change of position is velocity, so using the fact above, we have the differential equation

ds

dt
=

t2

2
+ t + C.

Separating variables and integrating, we have

ds

dt
=

t2

2
+ t + C ⇒

∫
ds =

∫
t2

2
+ t + C dt⇒ s =

t3

6
+

t2

2
+ Ct + D.

To solve for the integrating constants C and D, since s(0) = 0, we have

0 = s(0) = D ⇒ D = 0.

And since s(1) = 2, we have

2 = s(1) =
1

6
+

1

2
+ C ⇒ C = 2− 1

6
− 1

2
=

4

3

Therefore, the position is given by

s(t) =
t3

6
+

t2

2
+

4t

3
.
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Problem 5. (??) Solve
dy

dx
= yx.

Solution 5.

Separate Variables: Separating variables and integrating, we have

dy

dx
= yx⇒

∫
1

y
dy =

∫
x dx⇒ ln |y| = x2

2
+ A,

for some constant A. Solving for y we get

|y| = e
x2

2 +A ⇒ y = ±eAe x2

2 .

If we define the non-zero constant B = ±eA, then we have

y = Be
x2

2 , where B is some non-zero constant.

However, notice that y ≡ 0 also satisfies dy
dx = yx, so y = 0 is also a solution. Therefore, the most

general form of our solution is

y = Ce
x2

2 , where C is some constant.

Remark: We can check that y(x) = Ce
x2

2 satisfies our differential equation. Notice that by the chain
rule, we have

dy

dx
=

d

dx
Ce

x2

2 = Ce
x2

2︸ ︷︷ ︸
y

·x = yx.

Remark: This example also explains how to remove the absolute value sign that appears when we
take the antiderivative of 1

y and the usual approach one can take to absorb the resulting plus or minus
sign into the constant of integration. For example, the solution for the population growth model in
Problem 1 can be extended to negative populations or 0 initial populations using this argument.

Problem 6. (?) Solve
dy

dx
= −x

y
, y(0) = 4.

Solution 6.

Separate Variables: Separating variables and integrating, we have

dy

dx
= −x

y
⇒
∫

y dy = −
∫

x dx⇒ y2 = −x2 + C,

for some constant C.

Solving for C: Using the initial condition y(0) = 4, we must have

42 = −02 + C ⇒ C = 16.

Therefore, the implicit particular solution to this ODE is

y2 + x2 = 16.

Remark: If we want to write our solution as a function y(x), then

y =
√

16− x2.

We chose the positive square root, because we need the point (0, y(0)) = (0, 4) to lie on the curve.
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Problem 7. (?) Solve

dy

dx
=

1

x2
·
(

1

y2
− 2

y3

)−1
, y(1) = 1.

Solution 7.

Separate Variables: Separating variables and integrating, we have

dy

dx
=

1

x2
·
(

1

y2
− 2

y3

)−1
⇒
(

1

y2
− 2

y3

)
dy =

1

x2
dx⇒ −y−1 + y−2 = −x−1 + C

for some constant C.

Solving for C: Using the initial condition y(1) = 1, we must have

−1−1 + 1−2 = −1−1 + C ⇒ C = 1.

Therefore, the implicit particular solution to this ODE is

−y−1 + y−2 + x−1 = 1.

Problem 8. (? ? ?) Justify the technique used to solve separable ordinary differential equations:

dy

dx
= f(x)g(y) =⇒

∫
dy

g(y)
=

∫
f(x) dx =⇒ G(y) = F (x) + C

where G(y) is an antiderivative of 1
g(y) and F (x) is an antiderivative of f(x).

Solution 8. Using the notation y′(x) = dy
dx and writing y = y(x) explicitly as a function of x, we have

dy

dx
= f(x)g(y)⇒ y′(x)

g(y(x))
= f(x)⇒

∫
y′(x)

g(y(x))
dx =

∫
f(x) dx.

Using the change of variables u = y(x) on the first integral involving the y(x) term, we see∫
y′(x)

g(y(x))
dx =

∫
du

g(u)
=

∫
dy

g(y)
.

Therefore, using this change of variables, we can conclude that

dy

dx
= f(x)g(y) =⇒

∫
dy

g(y)
=

∫
f(x) dx.

This means there is a hidden change of variables that goes on when we formally separated dy
dx in the

second step of the technique.
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