
June 20, 2019 MAT136 – Week 4 Justin Ko

1 Integrating Rational Functions

We can use algebraic techniques to integrate ratio of polynomials (also called rational functions),

f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0
.

1.1 Partial Fraction Decomposition

If m > n, that is the degree of the denominator is larger than the degree of the numerator, then we
can use partial fractions to write a rational function as the sum of simpler rational functions. We care
about three main types of terms in the denominator,

1. Distinct Degree 1 Factors: If the denominator is a product of distinct linear factors, then use
partial fractions of the form

A

ax− b
.

2. Repeated Degree 1 Factors: If the denominator contains a term of the form (ax− b)2, use partial
fractions of the form

A

(ax− b)2
+

B

ax− b
.

3. Irreducible Degree 2 Factors: If the denominator contains a unfactorable term of the form ax2 +
bx+ c use partial fractions of the form

Ax+B

ax2 + bx+ c
.

Example 1. The partial fraction decomposition implies there exists constants such that

10x− 2x2

(x− 1)2(x+ 3)
=

A

(x− 1)2
+

B

x− 1
+

C

x+ 3
.

Example 2. The partial fraction decomposition implies there exists constants such that

x

(x− 1)(x− 3)2(x2 + 1)
=

A

x− 1
+

B

(x− 3)2
+

C

x− 3
+
Dx+ E

x2 + 1
.

1.2 Example Problems

1.2.1 Partial Fraction Decompositions Problems

Heaviside cover-up Method: We will use limits to find the constants in the partial fraction de-
composition. If the denominator only contains degree 1 or repeated degree 1 factors, then we can
take limits at the singularities to recover the coefficients belonging to the highest power terms. Taking
limits to ±∞ can then be used to recover the coefficients belonging to lower power terms.

The limits in the first 4 example problems are done in full detail to demonstrate the reasoning behind
the method. Problem 5 explains how one will apply these methods to essentially do the partial frac-
tions step in our head. The cover-up method works best if there at most one repeated degree 1 factor
and no irreducible degree 2 factors.

Remark: The other way to solve for the coefficients involves multiplying by the least common de-
nominator and equating coefficients. We will not demonstrate this method in these notes.
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Problem 1. (?) Decompose x−7
(x−1)(x+2) into partial fractions.

Solution 1.

Step 1: The partial fraction decomposition is of the form

x− 7

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2

for some yet to be determined coefficients A and B.

Step 2: We now find the coefficients.

A: To find A, we study the asymptotics as (x− 1)→ 0. We multiply both sides by (x− 1) and notice

A = lim
x→1

(
A+

B(x− 1)

x+ 2

)
= lim

x→1

x− 7

(x+ 2)
= −2.

B: To find B, we study the asymptotics as (x+ 2)→ 0. We multiply both sides by (x+ 2) and notice

B = lim
x→−2

(
A(x+ 2)

x− 1
+B

)
= lim

x→−2

x− 7

(x− 1)
= 3.

Step 3: Therefore, we have
x− 7

(x− 1)(x+ 2)
= − 2

x− 1
+

3

x+ 2
.

Problem 2. (??) Decompose 4x2

(x−1)(x−2)2 into partial fractions.

Solution 2.

Step 1: The partial fraction decomposition is of the form

4x2

(x− 1)(x− 2)2
=

A

x− 1
+

B

(x− 2)2
+

C

x− 2

for some yet to be determined coefficients A, B, and C.

Step 2: We now find the coefficients.

A: To find A, we study the asymptotics as (x − 1) → 0. We multiply both sides by (x − 1) and
notice

A = lim
x→1

(
A+

B(x− 1)

(x− 2)2
+
C(x− 1)

x− 2

)
= lim

x→1

4x2

(x− 2)2
= 4.

B: To find B, we study the asymptotics as (x − 2)2 → 0. We multiply both sides by (x − 2)2 and
notice

B = lim
x→2

(
A(x− 2)2

x− 1
+B +

C(x− 2)2

x− 2

)
= lim

x→2

4x2

x− 1
= 16.

C: To find C, we study the asymptotics as x→∞. We multiply both sides by (x− 2) and notice

A+ C = lim
x→∞

(
A(x− 2)

x− 1
+

B

(x− 2)
+ C

)
= lim

x→∞

4x2

(x− 1)(x− 2)
= 4,

and since A = 4 we have
C = 4−A = 0.
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Step 3: Therefore, we have
4x2

(x− 1)(x− 2)2
=

4

x− 1
+

16

(x− 2)2
.

Problem 3. (??) Decompose 9x+25
(x+3)2 into partial fractions.

Solution 3.

Step 1: The partial fraction decomposition is of the form

9x+ 25

(x+ 3)2
=

A

(x+ 3)2
+

B

(x+ 3)

for some yet to be determined coefficients A and B.

Step 2: We now find the coefficients.

A: To find A, we study the asymptotics as (x + 3)2 → 0. We multiply both sides by (x + 3)2 and
notice

A = lim
x→−3

(
A+

B(x+ 3)2

(x+ 3)

)
= lim

x→−3

(9x+ 25)(x+ 3)2

(x+ 3)2
= −2.

B: To find B, we study the asymptotics as x→∞. We multiply both sides by (x+ 3) and notice

B = lim
x→∞

(
A(x+ 3)

(x+ 3)2
+
B(x+ 3)

(x+ 3)

)
= lim

x→∞

(9x+ 25)(x+ 3)

(x+ 3)2
= 9.

Step 3: Therefore, we have
9x+ 25

(x+ 3)2
= − 2

(x+ 3)2
+

9

(x+ 3)
.

Problem 4. (??) Decompose x+7
x2(x+2) into partial fractions.

Solution 4.

Step 1: The partial fraction decomposition is of the form

x+ 7

x2(x+ 2)
=

A

(x+ 2)
+
B

x2
+
C

x

for some yet to be determined coefficients A, B and C.

Step 2: We now find the coefficients (skipping some details).

A: To find A, we study the asymptotics as (x + 2) → 0. We multiply both sides by (x + 2) and
notice

A = lim
x→−2

x+ 7

x2
=

5

4
.

B: To find B, we study the asymptotics as x2 → 0. We multiply both sides by x2 and notice

B = lim
x→0

x+ 7

x+ 2
=

7

2
.
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C: To find C, we study the asymptotics as x→∞. We multiply both sides by x and notice

C +A = lim
x→∞

(
C +A · x

x+ 2

)
= lim

x→∞

x+ 7

x(x+ 2)
= 0 =⇒ C = −A = −5

4
.

Step 3: Therefore, we have
x+ 7

x2(x+ 2)
=

5

4(x+ 2)
+

7

2x2
− 5

4x
.

Problem 5. (?) Decompose the following functions into partial fractions

1.
7x− 6

(x− 2)(x+ 3)

2.
x2 + x− 1

x(2x− 1)(x+ 3)

3.
10x2 − 2x

(x− 1)2(x+ 3)

Solution 5. We can do the computations in the above examples in our head. This method is called
the Heaviside cover-up method. We demonstrate this with a few examples:

1. Since
7x− 6

x+ 3

∣∣∣∣
x=2

=
8

5
,

7x− 6

x− 2

∣∣∣∣
x=−3

=
27

5

we can conclude
7x− 6

(x− 2)(x+ 3)
=

8

5
· 1

x− 2
+

27

5
· 1

x+ 3
.

2. Since
x2 + x− 1

(2x− 1)(x+ 3)

∣∣∣∣
x=0

=
1

3
,

x2 + x− 1

x(x+ 3)

∣∣∣∣
x= 1

2

= −1

7
,

x2 + x− 1

x(2x− 1)

∣∣∣∣
x=−3

=
5

21

we can conclude
x2 + x− 1

x(2x− 1)(x+ 3)
=

1

3
· 1

x
− 1

7
· 1

2x− 1
+

5

21
· 1

x+ 3
.

3. We solve for the highest power terms first. Since

10x2 − 2x

x+ 3

∣∣∣∣
x=1

= 2,
10x2 − 2x

(x− 1)2

∣∣∣∣
x=−3

= 6

we can conclude
10x2 − 2x

(x− 1)2(x+ 3)
=

2

(x− 1)2
+

B

x− 1
+

6

x+ 3
.

Taking the limit as x→∞ (or looking at the order 1
x terms), we can conclude

10 = B + 6 =⇒ B = 4.

Therefore,
10x2 − 2x

(x− 1)2(x+ 3)
=

2

(x− 1)2
+

4

x− 1
+

6

x+ 3
.

Extra Practice: Redo Problems 1 – 4 using the shortcut described in Problem 5.
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1.2.2 Integrating Rational Functions

Strategy: We want to use algebra to simplify our integral to a form that is easier to integrate.

1. If the degree of the numerator is bigger than or equal to the denominator, use long division first
to simplify the integral.

2. If there is a term with bigger degree in the denominator, use partial fraction decompositions to
split the rational function into more manageable parts.

3. Use linearity of integration to compute the integral.

Problem 1. (?) Evaluate the integral ∫
x4

x− 1
dx.

Solution 1. The degree of the numerator is bigger, so we first use long division,∫
x4

x− 1
dx =

∫
x3 + x2 + x+ 1 +

1

x− 1
dx long division

=
x4

4
+
x3

3
+
x2

2
+ x+ ln |x− 1|+ C.

Details of the long division step: By polynomial long division,

x3 + x2 + x+ 1

x− 1
)

x4

− x4 + x3

x3

− x3 + x2

x2

− x2 + x

x
− x+ 1

1

Problem 2. (?) Evaluate the integral ∫
x2 + x+ 1

(x+ 1)2(x+ 2)
dx.

Solution 2. The degree of the denominator is bigger, so we can use partial fractions,∫
x2 + x+ 1

(x+ 1)2(x+ 2)
dx =

∫
1

(x+ 1)2
− 2

x+ 1
+

3

x+ 2
dx partial fractions

= − 1

x+ 1
− 2 ln |x+ 1|+ 3 ln |x+ 2|+ C.

Details of the partial fractions step: Since

x2 + x+ 1

(x+ 2)

∣∣∣∣
x=−1

= 1 and
x2 + x+ 1

(x+ 1)2

∣∣∣∣
x=−2

= 3,
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the cover-up method implies that

x2 + x+ 1

(x+ 1)2(x+ 2)
=

1

(x+ 1)2
+

B

x+ 1
+

3

x+ 2
.

Taking the limit as x→∞ and looking at the coefficients of the 1
x terms implies that

1 = 0 +B + 3 =⇒ B = −2.

Problem 3. (??) Evaluate the integral∫
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.

Solution 3. The degree of the numerator is bigger, so we first use long division followed by partial
fractions,∫

x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx =

∫
x+ 1 +

4x

x3 − x2 − x+ 1
dx long division

=

∫
x+ 1 +

4x

(x− 1)2(x+ 1)
dx factoring

=

∫
x+ 1 +

2

(x− 1)2
+

1

x− 1
− 1

x+ 1
dx partial fractions

=
x2

2
+ x− 2

x− 1
+ ln |x− 1| − ln |x+ 1|+ C.

Details of the long division step: By polynomial long division,

x+ 1

x3 − x2 − x+ 1
)

x4 − 2x2 + 4x+ 1
− x4 + x3 + x2 − x

x3 − x2 + 3x+ 1
− x3 + x2 + x− 1

4x

Details of the partial fractions step: Since

4x

(x+ 1)

∣∣∣∣
x=1

= 2 and
4x

(x− 1)2

∣∣∣∣
x=−1

= −1,

the cover-up method implies that

4x

(x− 1)2(x+ 1)
=

2

(x− 1)2
+

B

x− 1
− 1

x+ 1
.

Taking the limit as x→∞ and looking at the coefficients of the 1
x terms implies that

0 = 0 +B − 1 =⇒ B = 1.

Problem 4. (??) Evaluate the integral ∫
e2x

e2x + 3ex + 2
dx.
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Solution 4. We first use a change of variables to simplify our integral then use partial fractions to
compute the resulting rational function,∫

e2x

e2x + 3ex + 2
dx =

∫
ex · ex

(ex)2 + 3ex + 2
dx

=

∫
u

u2 + 3u+ 2
du u = ex, du = exdx

=

∫
u

(u+ 1)(u+ 2)
du factoring

=

∫
− 1

u+ 1
+

2

u+ 2
du partial fractions

= − ln |u+ 1|+ 2 ln |u+ 2|+ C

= − ln |ex + 1|+ 2 ln |ex + 2|+ C u = ex.

Details of the partial fractions step: Since

u

(u+ 2)

∣∣∣∣
u=−1

= −1 and
u

(u+ 1)

∣∣∣∣
u=−2

= 2,

the cover-up method implies that

u

(u+ 1)(u+ 2)
= − 1

u+ 1
+

2

u+ 2
.

Page 7 of 10



June 20, 2019 MAT136 – Week 4 Justin Ko

2 Integrating Trigonometric Functions

The following trigonometric identities will be useful when integrating trigonometric functions.

1. Pythagorean Formulas:
sin2(θ) + cos2(θ) = 1 (1)

tan2(θ) + 1 = sec2(θ) (2)

2. Half Angle Formulas:

sin2(θ) =
1− cos(2θ)

2
(3)

cos2(θ) =
1 + cos(2θ)

2
(4)

3. Product to Sum Formulas:

cos(θ) cos(ϕ) =
1

2
(cos(θ + ϕ) + cos(θ − ϕ)) (5)

sin(θ) sin(ϕ) =
1

2
(cos(θ − ϕ)− cos(θ + ϕ)) (6)

sin(θ) cos(ϕ) =
1

2
(sin(θ + ϕ) + sin(θ − ϕ)) (7)

2.1 Example Problems

Strategy: Use trigonometric identities to simplify our integral. In most cases, our goal will be to
simplify the function until we have exactly one sin(x) or cos(x) term appearing. This will put our
integral in a form that we can use a substitution to compute.

Problem 1. (?) Evaluate the integral ∫
sin(5x) cos(2x) dx.

Solution 1. We simplify the integral using the product to sum formulas,∫
sin(5x) cos(2x) dx =

1

2

∫
sin(7x) + sin(3x) dx = − 1

14
cos(7x)− 1

6
cos(3x) + C.

Problem 2. (??) Evaluate the integral ∫
cos4(x) dx.

Solution 2. Using trigonometric identities to simplify the integral,∫
cos4(x) dx =

∫
(cos2(x))2 dx =

∫ (
1 + cos 2θ

2

)2

dx Half Angle

=
1

4

∫
1 + 2 cos(2x) + cos2(2x) dx

=
1

4

∫
1 + 2 cos(2x) +

1

2

(
1 + cos(4x)

)
dx Half Angle

=
1

4

∫
3

2
+ 2 cos(2x) +

1

2
cos(4x) dx

=
3

8
x+

1

4
sin(2x) +

1

32
sin(4x) + C.
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Problem 3. (??) Evaluate the integral ∫
cos3(x) sin4(x) dx.

Solution 3. Using trigonometric identities to simplify the integral,∫
cos3(x) sin4(x) dx =

∫
(1− sin2(x)) sin4(x) cos(x) dx Pythagorean Formula

=

∫
sin4(x) cos(x) dx−

∫
sin6(x) cos(x) dx

=

∫
u4 du−

∫
u6 du u = sin(x), du = cos(x) dx

=
u5

5
− u7

7
+ C

=
sin5(x)

5
− sin7(x)

7
+ C. u = sin(x)

Problem 4. (??) Evaluate the integral ∫
sec(x) dx.

Solution 4. We will present a derivation using partial fractions,∫
sec(x) dx =

∫
cos(x)

cos2(x)
dx Multiply and Divide by cos(x)

=

∫
cos(x)

1− sin2(x)
dx Pythagorean Formula

=

∫
1

1− u2
du u = sin(x), du = cos(x) dx

=

∫
1

(1− u)(1 + u)
du Factoring

=

∫
1

2
· 1

1− u
+

1

2
· 1

1 + u
du Partial fractions

= −1

2
ln |1− u|+ 1

2
ln |1 + u|+ C

=
1

2
ln

∣∣∣∣1 + sin(x)

1− sin(x)

∣∣∣∣+ C. u = sin(x)

Remark: This solution may appear to give us a different answer than Problem 6 in Week 3,∫
sec(x) dx = ln | sec(x) + tan(x)|+ C.

Our answers are equivalent, and we can use algebra to reduce from one to another,

1

2
ln

∣∣∣∣1 + sin(x)

1− sin(x)

∣∣∣∣+ C =
1

2
ln

∣∣∣∣ (1 + sin(x))2

1− sin2(x)

∣∣∣∣+ C Multiply and Divide by 1 + sin(x)

= ln

∣∣∣∣ (1 + sin(x))2

cos2(x)

∣∣∣∣1/2 + C Pythagorean Formula

= ln

∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣+ C

= ln | sec(x) + tan(x)|+ C.
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Problem 5. (??) Evaluate the integral ∫
sec3(x) dx.

Solution 5. We need to find the integral of a trigonometric function.

Step 1: We can integrate by parts first. From the table

± D I

+ sec(x) sec2(x)

−
∫

sec(x) tan(x) tan(x)

we see that∫
sec3(x) dx = sec(x) tan(x)−

∫
sec(x) tan2(x) dx

= sec(x) tan(x)−
∫

sec(x)(sec2(x)− 1) dx Pythagorean Formula

= sec(x) tan(x)−
∫

sec3(x) dx+

∫
sec(x) dx

= sec(x) tan(x)−
∫

sec3(x) dx+ ln | sec(x) + tan(x)| Problem 4.

Step 2: Rearranging terms and remembering to include the integrating constant, we see that

2

∫
sec3(x) dx = sec(x) tan(x) + ln | sec(x) + tan(x)|+ C

and therefore, ∫
sec3(x) dx =

1

2

(
sec(x) tan(x) + ln | sec(x) + tan(x)|+ C

)
.
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