
August 18, 2019 MAT136 – Week 12 Justin Ko

1 Taylor Series

We want to represent functions using power series. Polynomials are the easiest functions understand,
so power series expansions can be used to understand the behavior of more complicated functions.

Definition 1. The Taylor series of f(x) at a is a power series of the form

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 +

f (3)(a)

3!
(x− a)3 + . . . . (1)

The kth-degree Taylor polynomial is the partial sum up to the kth term,

Pk(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k.

The polynomial Pk(x) only has terms up to degree k. If the partial sums of the power series converge
to f(x), then we can interpret the Taylor polynomials as polynomial approximations of f(x). Notice
that P1(x) is the usual linear approximation of f(x) at x = a. The Taylor polynomials are essentially
high order approximations of f(x). The derivatives of Pk(x) agree with the derivatives of f(x) at x = a
up to order k, so the behavior near x = a is closely approximated by Pk(x).

Figure 1: The Taylor polynomials P0(x) , P2(x) , P4(x) and P6(x) of cos(x) around x = 0 is displayed
above. As the degree of the Taylor polynomials increase, the approximations become more accurate.
The figure suggests that Taylor polynomials approximations are good local approximations of cos(x).

If f is analytic, then f agrees with its Taylor series on its interval of convergence. Even though the
figure might suggest that Taylor approximations are only good for x near a, the approximation can be
valid very far away from a provided we take a polynomial of high enough order. The difference Rk(x)
between the approximation Pk(x) and its exact value f(x) is called the error or remainder

Rk(x) = f(x)− Pk(x).

A function f(x) equals its Taylor series at x only when limk→∞Rk(x) = 0.
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1.1 Important Taylor Series and its Radius of Convergence

Even though we can write down the formal Taylor series, it does not necessarily mean that the infinite
series agrees with f(x) everywhere. The radius of convergence tells us that f(x) agrees with its Taylor
series whenever |x − a| < R. A collection of important Taylor series and the corresponding radius of
convergence is listed below:

1

1− x
=

∞∑
n=0

xn R = 1 (2)

ex =

∞∑
n=0

xn

n!
R =∞ (3)

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
R =∞ (4)

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
R =∞ (5)

arctan(x) =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
R = 1 (6)

ln(1 + x) =

∞∑
n=0

(−1)n
xn+1

n+ 1
R = 1 (7)

(1 + x)p =

∞∑
n=0

(
p

n

)
xn R = 1 (8)

Remark: Formulas (2), (3), (4), (5) are the important ones to memorize for this course.

1.2 Calculations with Power Series

Using the formula for the Taylor series can be very cumbersome. We can use existing power series to
derive the formula for other power series. Suppose

f(x) =

∞∑
n=0

cn(x− a)n

has radius of convergence R. On the interval (a − R, a + R) we can manipulate infinite polynomials
the same we manipulate finite polynomials:

1. Term by term differentiation: For |x− a| < R

f ′(x) =

∞∑
n=0

ncn(x− a)n−1.

2. Term by term integration: For |x− a| < R,∫
f(x) dx = C +

∞∑
n=0

cn
n+ 1

(x− a)n+1.

3. Composition: For |h(x)− a| < R,

f(h(x)) =

∞∑
n=0

cn(h(x)− a)n.

4. Addition, Multiplication, Division: Identical to how we manipulate polynomials.
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1.3 Approximation Errors

Infinite series are somewhat cumbersome to work with, so it will be nice if we can approximate f with
the first few terms of the infinite sum. The resulting error approximating f(x) with the kth order
Taylor polynomial Pk(x) is called the remainder term Rk(x),

Rk(x) = f(x)− Pk(x) ⇐⇒ f(x) = Pk(x) +Rk(x)

Taylor’s Theorem gives an explicit formula for this remainder term. Taylor’s Theorem can also be
used to determine if the Taylor series converges to the function we are interested in.

Theorem 1 (Taylor’s Theorem). Suppose that fk+1 is continuous in an open interval I containing a.

1. Lagrange Form: For every x ∈ I, there exists a some c between x and a such that

f(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n +

f (k+1)(c)

(k + 1)!
(x− a)k+1. (9)

2. Integral Form: For every x ∈ I, we have

f(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n +

∫ x

a

f (k+1)(t)

k!
(x− t)k dt. (10)

Proof. We will use integration by parts and the fundamental theorem of calculus to prove (10). If
fk+1 is continuous in an open interval I containing a, then the fundamental theorem of calculus and
integration by parts applies to f (n)(x) on the region between x and a for all 0 ≤ n ≤ k + 1.

(a) The fundamental theorem of calculus implies∫ x

a

f ′(t) dt = f(x)− f(a) =⇒ f(x) = f(a) +

∫ x

a

f ′(t) dt,

verifying (10) when k = 0.

(b) Starting from the case k = 0 and integrating by parts (we differentiate f ′(t) and choose t − x
to be the antideriative of 1 in the integration by parts formula), we see that

f(x) = f(a) +

∫ x

a

f ′(t) dt

= f(a) + (t− x)f ′(t)
∣∣∣t=x
t=a
−
∫ x

a

f ′′(t)(t− x) dt

= f(a) + (x− a)f ′(t) +

∫ x

a

f ′′(t)(x− t) dt

verifying (10) when k = 1.

(c) In general, we can use integration by parts to conclude that∫ x

a

f (k)(t)

(k − 1)!
(x− t)k−1 dt = −f

(k)(t)

k!
(x− t)k

∣∣∣t=x
t=a

+

∫ x

a

f (k+1)(t)

k!
(x− t)k dt

=
f (k)(t)

k!
(x− a)k +

∫ x

a

f (k+1)(t)

k!
(x− t)k dt.

The formula in (10) follows immediately by induction.

Remark: If k = 0, then (9) is the mean value theorem and (10) is the fundamental theorem of
calculus. Therefore, we can think of Taylor’s Theorem as an extension of the mean value theorem or
the fundamental theorem of calculus to higher derivatives. Equation (9) is proved in an exercise.
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1.3.1 Special Case: Alternating Series

Sometimes the Taylor series form an alternating series with increments decreasing to 0. If this is the
case, then we can estimate the error with the next term in the series,

Theorem 2 (Error Estimation for Alternating Series). If (an)n≥1 is a sequence of positive numbers
such that (an)n≥m is decreasing and limn→∞ an = 0, then∣∣∣∣ ∞∑

k=m

(−1)kak

∣∣∣∣ ≤ am and

∣∣∣∣ ∞∑
k=m

(−1)k+1ak

∣∣∣∣ ≤ am.
1.4 Example Problems

1.4.1 Taylor Series Formula

Problem 1. (?) Find the Taylor series for ex at x = 0.

Solution 1. Let f(x) = ex. Since f (n) = ex for all n, the formula for the Taylor series (1) at x = 0
implies that

ex =

∞∑
n=0

f (n)(0)

n!
(x− 0)n =

∞∑
n=0

e0

n!
xn =

∞∑
n=0

xn

n!
.

Problem 2. (?) Find the Taylor series for ln(1 + x) at x = 0.

Solution 2. Let f(x) = ln(1 + x). We have

f(0) = 0, f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f (3)(x) =

2

(1 + x)3
, . . . , f (n)(x) =

(−1)n−1(n− 1)!

(1 + x)n
.

The formula for the Taylor series (1) at x = 0 implies that

ln(1 + x) =

∞∑
n=0

f (n)(0)

n!
(x− 0)n =

∞∑
n=1

(−1)n−1(n− 1)!

n!
xn =

∞∑
n=1

(−1)n−1
xn

n
.

1.4.2 Power Series Calculations

Problem 1. (?) Find the Taylor series for

cosh(x) =
ex + e−x

2

at x = 0. What is the radius of convergence?

Solution 1. Since cosh(x) = ex+e−x

2 = 1
2 (ex+e−x), we can use (3), the Taylor series of ex, to conclude

cosh(x) =
1

2
(ex + e−x)

=
1

2

( ∞∑
n=0

xn

n!
+

∞∑
n=0

(−x)n

n!

)
ex =

∞∑
n=0

xn

n!

=
1

2

( ∞∑
n=0

(1 + (−1)n) · xn

n!

)

=

∞∑
n=0

x2n

(2n)!
(1 + (−1)n) =

{
0 if n is odd

2 if n is even.

Since ex has radius of convergence R =∞, so does cosh(x).
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Problem 2. (??) Find the Taylor series for arctan(x) at x = 0. What is the radius of convergence?

Solution 2. Since d
dx arctan(x) = 1

1+x2 , it suffices to find the Taylor series of 1
1+x2 and integrate term

by term. We can use (2), the Taylor series of 1
1−x , with x replaced with −x2 to conclude

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n

Integrating this term by term implies that

arctan(x) =

∫
1

1 + x2
dx =

∞∑
n=0

(−1)n
∫
x2n dx = C +

∞∑
n=0

(−1)n

2n+ 1
x2n+1.

Since arctan(0) = 0, we can evaluate both sides at x = 0 to conclude that C = 0, which implies that

arctan(x) =

∞∑
n=0

(−1)n

2n+ 1
x2n+1.

Since the Taylor series of 1
1−(−x2) holds for |−x2| < 1, the Taylor series for arctan(x) holds for |x| < 1.

Problem 3. (?) Find the Taylor series for 1
(1−x)2 at x = 0. What is the radius of convergence?

Solution 3. Since d
dx

1
1−x = 1

(1−x)2 , it suffices to find the Taylor series of 1
1−x differentiate term by

term. From (2), we know that

1

1− x
=

∞∑
n=0

xn.

Differentiating this term by term implies that

1

(1− x)2
=

d

dx

1

1− x
=

∞∑
n=0

d

dx
xn =

∞∑
n=0

nxn−1.

Since (2) holds for |x| < 1, we can conclude that our formula holds for |x| < 1.

Problem 4. (?) Let p ∈ (0, 1). Find

p

∞∑
k=1

k(1− p)k−1.

Solution 4. Since |1− p| < 1, we can use the formula in Problem 3 evaluated at x = (1− p) to see

p

∞∑
k=1

k(1− p)k−1 = p

∞∑
k=0

k(1− p)k−1 = p · 1

(1− (1− p))2
=

1

p
.

Remark: The power series approach is much easier than the direct computation using double sums
in Week 10 Problem 4 on page 5. The sum we computed in this problem is the expected value of a
geometric random variable. If we take p = 0.5, then it says that on average, we need to flip a coin
1
p = 1

1
2

= 2 times before we see the first heads.
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Problem 5. (? ? ?)

1. Find the first three non-zero terms of the Taylor series of tan(x) at x = 0.

2. Find the first three non-zero terms of the Taylor series of ln(cos(x)) at x = 0.

Solution 5.

(a) Since tan(x) = sin(x)
cos(x) , we can use (4) and (5), the Taylor series of sin(x) and cos(x), and polynomial

long division to find the coefficients of tan(x). By polynomial long division,

x− x3

6 + x5

120 + . . .

1− x2

2 + x4

24 + . . .
= x+

x3

3
+

2x5

15
+ . . . .

The coefficients are equal to − 1
6 + 1

2 = 1
3 and 1

120 −
1
24 + 1

6 = 2
15 . Notice that tan(x) is odd, so only

odd powers appear in its Taylor series. Therefore,

tan(x) ≈ x+
x3

3
+

2x5

15
.

(b) Since ln(cos(x)) =
∫
− tan(x) dx we can integrate the first three terms of tan(x) in part (a) to

conclude that ∫
−x− x3

3
+

2x5

15
dx = −x

2

2
− x4

12
− x6

45
+ C.

Since ln(cos(0)) = 0, we can evaluate both sides at x = 0 to conclude that C = 0. Therefore,

ln(cos(x)) ≈ −x
2

2
− x4

12
− x6

45
.

1.4.3 Error Approximations

Problem 1. (??) Find a polynomial approximation for sin(x) such that the maximum approximation
error is less than 0.001 for values of x in [−π/2, π/2].

Solution 1. We will use two methods to find a bound on the error.

Lagrange Bound: Consider the kth degree Taylor polynomial approximation of sin(x) at x = 0,

P2k+1(x) =

k∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Recall that the Lagrange form of the remainder (at a = 0) is given by

Rk(x) =
f (k+1)(c)

(k + 1)!
xk+1.

We want to find a k such that ∣∣∣∣f (k+1)(c)

(k + 1)!
xk+1

∣∣∣∣ ≤ 0.001

We will find a rough bound for k. Since the derivatives of sin(x) are bounded by 1, if |x| ≤ π
2 ,∣∣∣∣f (k+1)(c)

(k + 1)!
xk+1

∣∣∣∣ ≤ ∣∣∣∣ 1

(k + 1)!
·
(π

2

)k+1
∣∣∣∣.
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If we take k = 7, then

|R7(x)| =
∣∣∣∣ 1

8!
·
(π

2

)8∣∣∣∣ ≈ 0.00092 < 0.001.

This means that
| sin(x)− P7(x)| = |R7(x)| < 0.001,

so

P7(x) =

3∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
− x7

5040

accurately approximates sin(x) to within ±0.001 for x ∈ [−π/2, π/2].

Alternating Series Bound: If x ∈ [−π/2, π/2], the Taylor series

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

is an alternating series with increments decreasing to 0, so the error is bounded by the next term in
the approximation. If we consider a 7th order polynomial, then for x ∈ [−π/2, π/2],

|R7(x)| =
∣∣∣∣ ∞∑
n=4

(−1)n
x2n+1

(2n+ 1)!

∣∣∣∣ ≤ |x|2n+1

(2n+ 1)!

∣∣∣∣
n=4

=
|x|9

9!
≤ π9

29 · 9!
≈ 0.0002 < 0.001.

This means that P7(x) =
∑3
n=0(−1)n x2n+1

(2n+1)! accurately approximates sin(x) to within ±0.001 for

x ∈ [−π/2, π/2]. Notice that this bound gave a slightly better bound on the error.

Problem 2. (? ? ?) Find the Taylor series approximation of

f(x) =

{
e−

1
x2 x 6= 0

0 x = 0

at x = 0. How accurate is the kth degree Taylor approximation?

Solution 2. It turns out that f(x) is infinitely differentiable at x = 0. For x 6= 0, we can use the
chain rule to compute its derivative explicitly,

f ′(x) =
2

x3
· e−

1
x2 , f ′′(x) =

4− 6x2

x6
· e−

1
x2 , f ′′′(x) =

24x4 − 36x2 + 8

x9
· e−

1
x2 , . . .

In general, the nth derivative will be a rational functions up to order x−3n times e−
1
x2 . If we take the

limit as x→ 0 in each of the terms above, the e−
1
x2 goes to 0 faster than x−3n for all n > 0, so

f (n)(0) = 0 for all n ≥ 0.

This means that the Taylor series for f(x) is the constant function 0. For any k > 0, the kth degree
Taylor polynomial Pk(x) = 0, which implies that

Rk(x) = f(x)− Pk(x) = f(x) 6= 0

unless x = 0. Therefore, the Taylor polynomial approximation is completely useless for computing f(x).

Remark: The Taylor series for f exists at x = 0, because f(x) is infinitely differentiable there.
Unfortunately, the Taylor series does not equal to f(x) at any point except x = 0. This problem
demonstrates that the Taylor series of a function might exist and converge everywhere, but it might
not converge to the original function we wanted approximate.
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1.4.4 Proofs of Error Approximation Theorems

Problem 1. (? ? ?) Derive the Lagrange form of the remainder (9) assuming that the integral form
(10) holds. In particular, if fk+1 is continuous in an open interval I containing a, find a c ∈ I such
that ∫ x

a

f (k+1)(t)

k!
(x− t)k dt =

f (k+1)(c)

(k + 1)!
(x− a)k+1.

Solution 1. If g is continuous and h does not change sign on [a, b], then a generalization of the mean
value theorem for integration states that there exists a c ∈ [a, b] such that∫ b

a

g(x)h(x) dx = g(c)

∫ b

a

h(x) dx.

Since fk+1 is continuous in an open interval I containing a, and (x − t)k does not change sign for
t between a and x, the generalized mean value theorem for integration states that there exists a c
between a and x contained in I such that∫ x

a

f (k+1)(t)

k!
(x− t)k dt = f (k+1)(c)

∫ x

a

1

k!
(x− t)k dt =

f (k+1)(c)

(k + 1)!
(x− a)k+1.

Remark: Since fk+1 is continuous in an open interval I containing a, the usual mean value theorem
for integration implies there exists a c ∈ I such that

1

x− a

∫ x

a

f (k+1)(t)

k!
(x− t)k dt =

f (k+1)(c)

k!
(x− c)k.

Rearranging gives us the Cauchy form of the remainder,∫ x

a

f (k+1)(t)

k!
(x− t)k dt =

f (k+1)(c)

k!
(x− c)k(x− a).

Problem 2. (? ? ?) Derive the error estimate for alternating series. That is, if (an)n≥1 is a sequence
of positive numbers such that (an)n≥m is decreasing and limn→∞ an = 0, show that∣∣∣∣ ∞∑

k=m

(−1)kak

∣∣∣∣ ≤ am and

∣∣∣∣ ∞∑
k=m

(−1)k+1ak

∣∣∣∣ ≤ am.
Solution 2. We can factor out a (−1) to conclude that |

∑∞
k=m(−1)kak| = |

∑∞
k=m(−1)k+1ak|. There-

fore, without loss of generality, we may assume that the coefficient of the am term in the sum is positive.
Since (an)n≥m is decreasing, for all k ≥ m we can conclude

ak+1 ≥ ak+2 =⇒ ak − ak+2 ≥ ak − ak+1 ≥ 0 =⇒ ak ≥ ak − ak+1 + ak+2 ≥ 0.

We can apply this bound repeatedly, first to am then to am+2 then to am+4, etc to conclude

am ≥ am − am+1 + am+2 ≥ am − am+1 + am+2 − am+3 + am+4 ≥ · · · ≥ am − am+1 + · · ·+ am+2k.

This holds for all k ≥ 0, so taking k →∞ implies that

am ≥
∣∣∣∣ ∞∑
k=m

(−1)kak

∣∣∣∣ =

∣∣∣∣ ∞∑
k=m

(−1)k+1ak

∣∣∣∣.
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