
August 23, 2019 MAT136 – Week 10 Justin Ko

1 Infinite Sequences

An infinite sequence (sn)n≥1 is an infinite list of numbers,

s1, s2, s3, . . . , sn, . . .

Sometimes we will define a sequence by giving it a algebraic formula for the nth term. For example,
the sequence sn = f(n) corresponds to the infinite list of numbers

f(1), f(2), f(3), . . . , f(n), . . .

Example 1. The sequence (2n)n≥1 corresponds to the list of even numbers,

2, 4, 6, 8, . . .

Example 2. The sequence sn = 1
n corresponds to the list of harmonic numbers,

1,
1

2
,

1

3
, . . . ,

1

n
, . . .

Example 3. The recursive sequence (sn)n≥1 given by s0 = 0, s1 = 1, and sn = sn−1 + sn−2 for n > 1
corresponds to the Fibonacci Sequence,

1, 1, 2, 3, 5, 8, . . .

Example 4. If (an)n≥1 is a sequence of numbers, then the sequence sn =
∑n

i=1 ai corresponds to the
sequence of partial sums,

a1, a1 + a2, a1 + a2 + a3, . . . ,

n∑
i=1

ai, . . .

Definition 1. The notation
lim
n→∞

sn = L

means that sn gets arbitrarily close to L when n is sufficiently large.

1. If the limit L exists and is finite, then we say that the sequence (sn)n≥1 converges.

2. If L does not exist or is infinite, then we say that (sn)n≥1 diverges.

3. If L = ±∞, then we sometimes say the sequence (sn)n≥1 diverges to infinity to differentiate it
from the case that L does not exist.
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Figure 1: The sequence sn = f(n) can be thought of as the restriction of f(x) to x ∈ N. Therefore,
the same rules we used to find limits of functions also apply to sequences.

The following convergence theorem for sequences will be used many times next week,

Theorem 1 (Monotone Convergence). If (sn)n≥1 is monotone and bounded then it also converges.
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1.1 Example Problems

The limit laws for functions also hold for sequences sn, so we can use the same tricks to compute the
limits of sequences. If limx→∞ f(x) = L, then the sequence sn = f(n) also has limit L.

Problem 1. (?) Determine whether the sequence sn = 1
n converges or diverges. If the sequence

converges, find its limit.

Solution 1. Since limx→∞
1
x = 0, limn→∞

1
n = 0. Therefore, (sn)n≥1 converges to 0.

Problem 2. (?) Determine whether the sequence sn = n
lnn converges or diverges. If the sequence

converges, find its limit.

Solution 2. By L’Hôpital’s rule,

lim
x→∞

x

lnx
= lim

x→∞

1
1
x

=∞.

Therefore, limn→∞
n

lnn =∞, so (sn)n≥1 diverges to ∞.

Problem 3. (? ? ?) Consider the recursively defined sequence s1 = 2 and

sn =
1

2
(sn−1 + 1) for n > 1.

Determine whether (sn)n≥1 converges or diverges. If the sequence converges, find its limit.

Solution 3. Since s2 = 1
2 (2 + 1) = 3

2 , it is clear that s2 ≤ s1. If we assume that sn ≤ sn−1, then

sn ≤ sn−1 =⇒ 1

2
(sn + 1) ≤ 1

2
(sn−1 + 1) =⇒ sn+1 ≤ sn,

so (sn)n≥1 is decreasing by induction. Furthermore, sn ≥ 0 so it is bounded below and there-
fore convergent by the monotone convergence theorem. To compute the limit, we can assume that
limn→∞ sn = limn→∞ sn−1 = L and take the limit as n→∞ on both sides of the recurrence relation,

lim
n→∞

sn = lim
n→∞

1

2
(sn−1 + 1) =⇒ L =

1

2
(L+ 1) =⇒ L = 1.

Problem 4. (??) Determine whether the sequence sn = n!
nn converges or diverges. If the sequence

converges, find its limit.

Solution 4. The sequence converges because

sn+1

sn
=

nn

(n+ 1)n+1
· (n+ 1)!

n!
=

(
n

n+ 1

)n

< 1

which implies sn+1 < sn, so the sequence is decreasing. Furthermore, sn ≥ 0 so it is bounded from
below and therefore convergent by the monotone convergence theorem. This limit can be computed
explicitly using the squeeze theorem. Since k

n ≤ 1 for all k ≤ n,

0 ≤ n!

nn
=

1 · 2 · · ·n
n · n · · ·n

=
1

n
· 2

n
· · · 1 ≤ 1

n
=⇒ 0 ≤ lim

n→∞

n!

nn
≤ lim

n→∞

1

n
= 0 =⇒ lim

n→∞

n!

nn
= 0.

Problem 5. (??) Find an example of a function such that the sequence sn = f(n) converges, but
limx→∞ f(x) does not exist.

Solution 5. A basic example is the function f(x) = sin(πx). It is easy to see that limx→∞ f(x) does
not exist because f(x) oscillates between −1 and 1. However, f(n) = sin(nπ) = 0 for all n, so (sn)n≥1
is a sequence of 0’s, which obviously converges.
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2 Infinite Series

An infinite series is the sum of all the terms in a sequence (an)n≥0,

∞∑
n=0

an = a0 + a1 + a2 + · · ·+ an + . . .

The infinite series is interpreted as the limit of the sequence of its mth partial sums, sm =
∑m

n=0 an,

∞∑
n=0

an = lim
m→∞

m∑
n=0

an = lim
m→∞

sm.

The same terminology for sequences also applies to series:

1. If limm→∞
∑m

n=0 an exists and is finite, then we say that the series
∑∞

n=0 an converges.

2. If limm→∞
∑m

n=0 an does not exist or is infinite, then we say say that the series
∑∞

n=0 an diverges.

Example 5. The geometric series is a series of the form

∞∑
n=0

axn = a+ ax+ ax2 + . . .

If |x| < 1, then the series converges and given explicitly by

∞∑
n=0

axn =
a

1− x
.

The series diverges when |x| ≥ 1.

Example 6. The power series (or power series centered at a) is a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1x+ c2x
2 + . . .

The sequence (cn)n≥0 are called the coefficients of the power series. The radius of convergence is the
largest number R such that

∞∑
n=0

cn(x− a)n

converges for all |x− a| < R. If R = 0, we mean that series converges only when x = a and if R =∞,
then we mean the series converges for all x ∈ R. The interval of convergence is the interval of x values
such that the power series converges.

2.1 Basic Convergence Results

Since we are adding up a lot of terms, we need the terms to eventually be small to have any hope of
the infinite sum converging.

Theorem 2. If limn→∞ an 6= 0 or limn→∞ an does not exist, then
∑∞

n=0 an diverges.

However, if limn→∞ an = 0, then it does not automatically guarantee that the corresponding series
converges. We need the terms an → 0 fast enough for a series to converge.

Theorem 3. If
∑∞

n=0 an converges, then limN→∞
∑∞

n=N an = 0.
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2.2 Example Problems

We can use some algebra tricks to compute the exact value of certain infinite series.

Problem 1. (?) Find
∞∑

n=1

2n · 31−n.

Solution 1. Using algebra, we see that

∞∑
n=1

2n · 31−n = 3

∞∑
n=1

(2

3

)n
= 3 · 2

3
·
∞∑

n=1

(2

3

)n−1
= 3 · 2

3
·
∞∑

n=0

(2

3

)n
.

Therefore, the formula for the geometric series implies that

∞∑
n=1

2n · 31−n = 3 · 2

3
·
∞∑

n=0

(2

3

)n
=

2

1− 2
3

= 6.

Problem 2. (??) Find
∞∑

n=1

1

n(n+ 1)
.

Solution 2. Using partial fractions, we have

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

The mth partial sums form a telescoping series,

sm =

m∑
n=1

1

n(n+ 1)
=

m∑
n=1

1

n
− 1

n+ 1
= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
· · · − 1

m+ 1
= 1− 1

m+ 1
.

Therefore,
∞∑

n=1

1

n(n+ 1)
= lim

m→∞

m∑
n=1

1

n(n+ 1)
= lim

m→∞
1− 1

m+ 1
= 1.

Problem 3. (?) Find
∞∑

n=1

n
√
n.

Solution 3. For all n ≥ 1, the function f(x) = x
1
n is increasing, which means that

n ≥ 1 =⇒ n
1
n ≥ 1

1
n = 1.

In particular, n
1
n ≥ 1 for all n ≥ 1. Therefore, the summands do not go to 0 and the series diverges,

∞∑
n=1

n
√
n =∞.
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Problem 4. (? ? ?) Let p ∈ (0, 1). Find

p

∞∑
k=1

k(1− p)k−1.

Solution 4. Since k =
∑k

j=1 1, we can write the series as a double sum and interchange the order of
summation

p

∞∑
k=1

k(1− p)k−1 = p

∞∑
k=1

k∑
j=1

(1− p)k−1 = p

∞∑
j=1

∞∑
k=j

(1− p)k−1.

The formula for the sum of a geometric series implies that

∞∑
k=1

(1− p)k = (1− p)
∞∑
k=1

(1− p)k−1 =
(1− p)

1− (1− p)
=

(1− p)
p

. (1)

Using this to compute our sum, we have

p

∞∑
j=1

∞∑
k=j

(1− p)k−1 = p

∞∑
j=1

∞∑
k=1

(1− p)j+k−2

= p

∞∑
j=1

(1− p)j−2
∞∑
k=1

(1− p)k

= p

∞∑
j=1

(1− p)j−1

p
Geometric Series (1)

=
1

(1− p)

∞∑
j=1

(1− p)j

=
1

p
. Geometric Series (1)
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