1 Infinite Sequences

An infinite sequence $(s_n)_{n\geq 1}$ is an infinite list of numbers,

$$s_1, s_2, s_3, \ldots, s_n, \ldots$$

Sometimes we will define a sequence by giving it a algebraic formula for the *n*th term. For example, the sequence $s_n = f(n)$ corresponds to the infinite list of numbers

$$f(1), f(2), f(3), \ldots, f(n), \ldots$$

Example 1. The sequence $(2n)_{n\geq 1}$ corresponds to the list of *even numbers*,

$$2, 4, 6, 8, \ldots$$

Example 2. The sequence $s_n = \frac{1}{n}$ corresponds to the list of harmonic numbers,

$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$$

Example 3. The recursive sequence $(s_n)_{n\geq 1}$ given by $s_0 = 0$, $s_1 = 1$, and $s_n = s_{n-1} + s_{n-2}$ for n > 1 corresponds to the *Fibonacci Sequence*,

$$1, 1, 2, 3, 5, 8, \ldots$$

Example 4. If $(a_n)_{n\geq 1}$ is a sequence of numbers, then the sequence $s_n = \sum_{i=1}^n a_i$ corresponds to the sequence of *partial sums*,

$$a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots, \sum_{i=1}^n a_i, \dots$$

Definition 1. The notation

$$\lim_{n \to \infty} s_n = L$$

means that s_n gets arbitrarily close to L when n is sufficiently large.

- 1. If the limit L exists and is finite, then we say that the sequence $(s_n)_{n>1}$ converges.
- 2. If L does not exist or is infinite, then we say that $(s_n)_{n\geq 1}$ diverges.
- 3. If $L = \pm \infty$, then we sometimes say the sequence $(s_n)_{n \ge 1}$ diverges to infinity to differentiate it from the case that L does not exist.

Figure 1: The sequence $s_n = f(n)$ can be thought of as the restriction of f(x) to $x \in \mathbb{N}$. Therefore, the same rules we used to find limits of functions also apply to sequences.

The following convergence theorem for sequences will be used many times next week,

Theorem 1 (Monotone Convergence). If $(s_n)_{n\geq 1}$ is monotone and bounded then it also converges.

Justin Ko

1.1 Example Problems

The limit laws for functions also hold for sequences s_n , so we can use the same tricks to compute the limits of sequences. If $\lim_{x\to\infty} f(x) = L$, then the sequence $s_n = f(n)$ also has limit L.

Problem 1. (*) Determine whether the sequence $s_n = \frac{1}{n}$ converges or diverges. If the sequence converges, find its limit.

Solution 1. Since $\lim_{x\to\infty} \frac{1}{x} = 0$, $\lim_{n\to\infty} \frac{1}{n} = 0$. Therefore, $(s_n)_{n\geq 1}$ converges to 0.

Problem 2. (*) Determine whether the sequence $s_n = \frac{n}{\ln n}$ converges or diverges. If the sequence converges, find its limit.

Solution 2. By L'Hôpital's rule,

$$\lim_{x \to \infty} \frac{x}{\ln x} = \lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \infty.$$

Therefore, $\lim_{n\to\infty} \frac{n}{\ln n} = \infty$, so $(s_n)_{n\geq 1}$ diverges to ∞ .

Problem 3. $(\star \star \star)$ Consider the recursively defined sequence $s_1 = 2$ and

$$s_n = \frac{1}{2}(s_{n-1}+1)$$
 for $n > 1$

Determine whether $(s_n)_{n\geq 1}$ converges or diverges. If the sequence converges, find its limit.

Solution 3. Since $s_2 = \frac{1}{2}(2+1) = \frac{3}{2}$, it is clear that $s_2 \leq s_1$. If we assume that $s_n \leq s_{n-1}$, then

$$s_n \leq s_{n-1} \implies \frac{1}{2}(s_n+1) \leq \frac{1}{2}(s_{n-1}+1) \implies s_{n+1} \leq s_n,$$

so $(s_n)_{n\geq 1}$ is decreasing by induction. Furthermore, $s_n \geq 0$ so it is bounded below and therefore convergent by the monotone convergence theorem. To compute the limit, we can assume that $\lim_{n\to\infty} s_n = \lim_{n\to\infty} s_{n-1} = L$ and take the limit as $n \to \infty$ on both sides of the recurrence relation,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1}{2} (s_{n-1} + 1) \implies L = \frac{1}{2} (L+1) \implies L = 1.$$

Problem 4. $(\star\star)$ Determine whether the sequence $s_n = \frac{n!}{n^n}$ converges or diverges. If the sequence converges, find its limit.

Solution 4. The sequence converges because

$$\frac{s_{n+1}}{s_n} = \frac{n^n}{(n+1)^{n+1}} \cdot \frac{(n+1)!}{n!} = \left(\frac{n}{n+1}\right)^n < 1$$

which implies $s_{n+1} < s_n$, so the sequence is decreasing. Furthermore, $s_n \ge 0$ so it is bounded from below and therefore convergent by the monotone convergence theorem. This limit can be computed explicitly using the squeeze theorem. Since $\frac{k}{n} \le 1$ for all $k \le n$,

$$0 \le \frac{n!}{n^n} = \frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n} = \frac{1}{n} \cdot \frac{2}{n} \cdots 1 \le \frac{1}{n} \implies 0 \le \lim_{n \to \infty} \frac{n!}{n^n} \le \lim_{n \to \infty} \frac{1}{n} = 0 \implies \lim_{n \to \infty} \frac{n!}{n^n} = 0.$$

Problem 5. (**) Find an example of a function such that the sequence $s_n = f(n)$ converges, but $\lim_{x\to\infty} f(x)$ does not exist.

Solution 5. A basic example is the function $f(x) = \sin(\pi x)$. It is easy to see that $\lim_{x\to\infty} f(x)$ does not exist because f(x) oscillates between -1 and 1. However, $f(n) = \sin(n\pi) = 0$ for all n, so $(s_n)_{n\geq 1}$ is a sequence of 0's, which obviously converges.

2 Infinite Series

An infinite series is the sum of all the terms in a sequence $(a_n)_{n>0}$,

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots + a_n + \dots$$

The infinite series is interpreted as the limit of the sequence of its *m*th partial sums, $s_m = \sum_{n=0}^m a_n$,

$$\sum_{n=0}^{\infty} a_n = \lim_{m \to \infty} \sum_{n=0}^{m} a_n = \lim_{m \to \infty} s_m.$$

The same terminology for sequences also applies to series:

- 1. If $\lim_{m\to\infty}\sum_{n=0}^{m}a_n$ exists and is finite, then we say that the series $\sum_{n=0}^{\infty}a_n$ converges.
- 2. If $\lim_{m\to\infty}\sum_{n=0}^{m}a_n$ does not exist or is infinite, then we say say that the series $\sum_{n=0}^{\infty}a_n$ diverges.

Example 5. The *geometric series* is a series of the form

$$\sum_{n=0}^{\infty} ax^n = a + ax + ax^2 + \dots$$

If |x| < 1, then the series converges and given explicitly by

$$\sum_{n=0}^{\infty} ax^n = \frac{a}{1-x}.$$

The series diverges when $|x| \ge 1$.

Example 6. The *power series* (or power series centered at a) is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 x + c_2 x^2 + \dots$$

The sequence $(c_n)_{n\geq 0}$ are called the coefficients of the power series. The radius of convergence is the largest number R such that

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

converges for all |x - a| < R. If R = 0, we mean that series converges only when x = a and if $R = \infty$, then we mean the series converges for all $x \in \mathbb{R}$. The *interval of convergence* is the interval of x values such that the power series converges.

2.1 Basic Convergence Results

Since we are adding up a lot of terms, we need the terms to eventually be small to have any hope of the infinite sum converging.

Theorem 2. If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum_{n=0}^{\infty} a_n$ diverges.

However, if $\lim_{n\to\infty} a_n = 0$, then it does not automatically guarantee that the corresponding series converges. We need the terms $a_n \to 0$ fast enough for a series to converge.

Theorem 3. If $\sum_{n=0}^{\infty} a_n$ converges, then $\lim_{N\to\infty} \sum_{n=N}^{\infty} a_n = 0$.

Justin Ko

2.2 Example Problems

We can use some algebra tricks to compute the exact value of certain infinite series.

Problem 1. (\star) Find

$$\sum_{n=1}^{\infty} 2^n \cdot 3^{1-n}.$$

Solution 1. Using algebra, we see that

$$\sum_{n=1}^{\infty} 2^n \cdot 3^{1-n} = 3\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = 3 \cdot \frac{2}{3} \cdot \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1} = 3 \cdot \frac{2}{3} \cdot \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n.$$

Therefore, the formula for the geometric series implies that

$$\sum_{n=1}^{\infty} 2^n \cdot 3^{1-n} = 3 \cdot \frac{2}{3} \cdot \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = \frac{2}{1-\frac{2}{3}} = 6.$$

Problem 2. $(\star\star)$ Find

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

Solution 2. Using partial fractions, we have

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

The mth partial sums form a telescoping series,

$$s_m = \sum_{n=1}^m \frac{1}{n(n+1)} = \sum_{n=1}^m \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} \dots - \frac{1}{m+1} = 1 - \frac{1}{m+1}.$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{m \to \infty} \sum_{n=1}^{m} \frac{1}{n(n+1)} = \lim_{m \to \infty} 1 - \frac{1}{m+1} = 1.$$

Problem 3. (\star) Find

$$\sum_{n=1}^{\infty} \sqrt[n]{n}$$

Solution 3. For all $n \ge 1$, the function $f(x) = x^{\frac{1}{n}}$ is increasing, which means that

$$n \ge 1 \implies n^{\frac{1}{n}} \ge 1^{\frac{1}{n}} = 1.$$

In particular, $n^{\frac{1}{n}} \ge 1$ for all $n \ge 1$. Therefore, the summands do not go to 0 and the series diverges,

$$\sum_{n=1}^{\infty} \sqrt[n]{n} = \infty.$$

Problem 4. $(\star \star \star)$ Let $p \in (0, 1)$. Find

$$p\sum_{k=1}^{\infty}k(1-p)^{k-1}.$$

Solution 4. Since $k = \sum_{j=1}^{k} 1$, we can write the series as a double sum and interchange the order of summation

$$p\sum_{k=1}^{\infty} k(1-p)^{k-1} = p\sum_{k=1}^{\infty} \sum_{j=1}^{k} (1-p)^{k-1} = p\sum_{j=1}^{\infty} \sum_{k=j}^{\infty} (1-p)^{k-1}.$$

The formula for the sum of a geometric series implies that

$$\sum_{k=1}^{\infty} (1-p)^k = (1-p) \sum_{k=1}^{\infty} (1-p)^{k-1} = \frac{(1-p)}{1-(1-p)} = \frac{(1-p)}{p}.$$
 (1)

Using this to compute our sum, we have

$$p \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} (1-p)^{k-1} = p \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} (1-p)^{j+k-2}$$

= $p \sum_{j=1}^{\infty} (1-p)^{j-2} \sum_{k=1}^{\infty} (1-p)^k$
= $p \sum_{j=1}^{\infty} \frac{(1-p)^{j-1}}{p}$ Geometric Series (1)
= $\frac{1}{(1-p)} \sum_{j=1}^{\infty} (1-p)^j$
= $\frac{1}{p}$. Geometric Series (1)