1 Infinite Sequences

An infinite sequence $\left(s_{n}\right)_{n \geq 1}$ is an infinite list of numbers,

$$
s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots
$$

Sometimes we will define a sequence by giving it a algebraic formula for the nth term. For example, the sequence $s_{n}=f(n)$ corresponds to the infinite list of numbers

$$
f(1), f(2), f(3), \ldots, f(n), \ldots
$$

Example 1. The sequence $(2 n)_{n \geq 1}$ corresponds to the list of even numbers,

$$
2,4,6,8, \ldots
$$

Example 2. The sequence $s_{n}=\frac{1}{n}$ corresponds to the list of harmonic numbers,

$$
1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots
$$

Example 3. The recursive sequence $\left(s_{n}\right)_{n \geq 1}$ given by $s_{0}=0, s_{1}=1$, and $s_{n}=s_{n-1}+s_{n-2}$ for $n>1$ corresponds to the Fibonacci Sequence,

$$
1,1,2,3,5,8, \ldots
$$

Example 4. If $\left(a_{n}\right)_{n \geq 1}$ is a sequence of numbers, then the sequence $s_{n}=\sum_{i=1}^{n} a_{i}$ corresponds to the sequence of partial sums,

$$
a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}, \ldots, \sum_{i=1}^{n} a_{i}, \ldots
$$

Definition 1. The notation

$$
\lim _{n \rightarrow \infty} s_{n}=L
$$

means that s_{n} gets arbitrarily close to L when n is sufficiently large.

1. If the limit L exists and is finite, then we say that the sequence $\left(s_{n}\right)_{n \geq 1}$ converges.
2. If L does not exist or is infinite, then we say that $\left(s_{n}\right)_{n \geq 1}$ diverges.
3. If $L= \pm \infty$, then we sometimes say the sequence $\left(s_{n}\right)_{n \geq 1}$ diverges to infinity to differentiate it from the case that L does not exist.

Figure 1: The sequence $s_{n}=f(n)$ can be thought of as the restriction of $f(x)$ to $x \in \mathbb{N}$. Therefore, the same rules we used to find limits of functions also apply to sequences.
The following convergence theorem for sequences will be used many times next week,
Theorem 1 (Monotone Convergence). If $\left(s_{n}\right)_{n \geq 1}$ is monotone and bounded then it also converges.

1.1 Example Problems

The limit laws for functions also hold for sequences s_{n}, so we can use the same tricks to compute the limits of sequences. If $\lim _{x \rightarrow \infty} f(x)=L$, then the sequence $s_{n}=f(n)$ also has limit L.
Problem 1. (\star) Determine whether the sequence $s_{n}=\frac{1}{n}$ converges or diverges. If the sequence converges, find its limit.

Solution 1. Since $\lim _{x \rightarrow \infty} \frac{1}{x}=0, \lim _{n \rightarrow \infty} \frac{1}{n}=0$. Therefore, $\left(s_{n}\right)_{n \geq 1}$ converges to 0 .
Problem 2. (\star) Determine whether the sequence $s_{n}=\frac{n}{\ln n}$ converges or diverges. If the sequence converges, find its limit.

Solution 2. By L'Hôpital's rule,

$$
\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x}}=\infty
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{n}{\ln n}=\infty$, so $\left(s_{n}\right)_{n \geq 1}$ diverges to ∞.
Problem 3. $(\star \star \star)$ Consider the recursively defined sequence $s_{1}=2$ and

$$
s_{n}=\frac{1}{2}\left(s_{n-1}+1\right) \quad \text { for } n>1
$$

Determine whether $\left(s_{n}\right)_{n \geq 1}$ converges or diverges. If the sequence converges, find its limit.
Solution 3. Since $s_{2}=\frac{1}{2}(2+1)=\frac{3}{2}$, it is clear that $s_{2} \leq s_{1}$. If we assume that $s_{n} \leq s_{n-1}$, then

$$
s_{n} \leq s_{n-1} \Longrightarrow \frac{1}{2}\left(s_{n}+1\right) \leq \frac{1}{2}\left(s_{n-1}+1\right) \Longrightarrow s_{n+1} \leq s_{n}
$$

so $\left(s_{n}\right)_{n \geq 1}$ is decreasing by induction. Furthermore, $s_{n} \geq 0$ so it is bounded below and therefore convergent by the monotone convergence theorem. To compute the limit, we can assume that $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} s_{n-1}=L$ and take the limit as $n \rightarrow \infty$ on both sides of the recurrence relation,

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(s_{n-1}+1\right) \Longrightarrow L=\frac{1}{2}(L+1) \Longrightarrow L=1
$$

Problem 4. ($\star \star$) Determine whether the sequence $s_{n}=\frac{n!}{n^{n}}$ converges or diverges. If the sequence converges, find its limit.

Solution 4. The sequence converges because

$$
\frac{s_{n+1}}{s_{n}}=\frac{n^{n}}{(n+1)^{n+1}} \cdot \frac{(n+1)!}{n!}=\left(\frac{n}{n+1}\right)^{n}<1
$$

which implies $s_{n+1}<s_{n}$, so the sequence is decreasing. Furthermore, $s_{n} \geq 0$ so it is bounded from below and therefore convergent by the monotone convergence theorem. This limit can be computed explicitly using the squeeze theorem. Since $\frac{k}{n} \leq 1$ for all $k \leq n$,

$$
0 \leq \frac{n!}{n^{n}}=\frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n}=\frac{1}{n} \cdot \frac{2}{n} \cdots 1 \leq \frac{1}{n} \Longrightarrow 0 \leq \lim _{n \rightarrow \infty} \frac{n!}{n^{n}} \leq \lim _{n \rightarrow \infty} \frac{1}{n}=0 \Longrightarrow \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

Problem 5. ($\star \star$) Find an example of a function such that the sequence $s_{n}=f(n)$ converges, but $\lim _{x \rightarrow \infty} f(x)$ does not exist.

Solution 5. A basic example is the function $f(x)=\sin (\pi x)$. It is easy to see that $\lim _{x \rightarrow \infty} f(x)$ does not exist because $f(x)$ oscillates between -1 and 1. However, $f(n)=\sin (n \pi)=0$ for all n, so $\left(s_{n}\right)_{n \geq 1}$ is a sequence of 0 's, which obviously converges.

2 Infinite Series

An infinite series is the sum of all the terms in a sequence $\left(a_{n}\right)_{n \geq 0}$,

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\ldots
$$

The infinite series is interpreted as the limit of the sequence of its m th partial sums, $s_{m}=\sum_{n=0}^{m} a_{n}$,

$$
\sum_{n=0}^{\infty} a_{n}=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}=\lim _{m \rightarrow \infty} s_{m}
$$

The same terminology for sequences also applies to series:

1. If $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}$ exists and is finite, then we say that the series $\sum_{n=0}^{\infty} a_{n}$ converges.
2. If $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}$ does not exist or is infinite, then we say say that the series $\sum_{n=0}^{\infty} a_{n}$ diverges.

Example 5. The geometric series is a series of the form

$$
\sum_{n=0}^{\infty} a x^{n}=a+a x+a x^{2}+\ldots
$$

If $|x|<1$, then the series converges and given explicitly by

$$
\sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x}
$$

The series diverges when $|x| \geq 1$.
Example 6. The power series (or power series centered at a) is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots
$$

The sequence $\left(c_{n}\right)_{n \geq 0}$ are called the coefficients of the power series. The radius of convergence is the largest number R such that

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

converges for all $|x-a|<R$. If $R=0$, we mean that series converges only when $x=a$ and if $R=\infty$, then we mean the series converges for all $x \in \mathbb{R}$. The interval of convergence is the interval of x values such that the power series converges.

2.1 Basic Convergence Results

Since we are adding up a lot of terms, we need the terms to eventually be small to have any hope of the infinite sum converging.
Theorem 2. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum_{n=0}^{\infty} a_{n}$ diverges.
However, if $\lim _{n \rightarrow \infty} a_{n}=0$, then it does not automatically guarantee that the corresponding series converges. We need the terms $a_{n} \rightarrow 0$ fast enough for a series to converge.
Theorem 3. If $\sum_{n=0}^{\infty} a_{n}$ converges, then $\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} a_{n}=0$.

2.2 Example Problems

We can use some algebra tricks to compute the exact value of certain infinite series.
Problem 1. (\star) Find

$$
\sum_{n=1}^{\infty} 2^{n} \cdot 3^{1-n}
$$

Solution 1. Using algebra, we see that

$$
\sum_{n=1}^{\infty} 2^{n} \cdot 3^{1-n}=3 \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=3 \cdot \frac{2}{3} \cdot \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}=3 \cdot \frac{2}{3} \cdot \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}
$$

Therefore, the formula for the geometric series implies that

$$
\sum_{n=1}^{\infty} 2^{n} \cdot 3^{1-n}=3 \cdot \frac{2}{3} \cdot \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{2}{1-\frac{2}{3}}=6
$$

Problem 2. ($\star \star$) Find

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

Solution 2. Using partial fractions, we have

$$
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

The m th partial sums form a telescoping series,

$$
s_{m}=\sum_{n=1}^{m} \frac{1}{n(n+1)}=\sum_{n=1}^{m} \frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4} \cdots-\frac{1}{m+1}=1-\frac{1}{m+1}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \frac{1}{n(n+1)}=\lim _{m \rightarrow \infty} 1-\frac{1}{m+1}=1
$$

Problem 3. (\star) Find

$$
\sum_{n=1}^{\infty} \sqrt[n]{n}
$$

Solution 3. For all $n \geq 1$, the function $f(x)=x^{\frac{1}{n}}$ is increasing, which means that

$$
n \geq 1 \Longrightarrow n^{\frac{1}{n}} \geq 1^{\frac{1}{n}}=1
$$

In particular, $n^{\frac{1}{n}} \geq 1$ for all $n \geq 1$. Therefore, the summands do not go to 0 and the series diverges,

$$
\sum_{n=1}^{\infty} \sqrt[n]{n}=\infty
$$

Problem 4. $(\star \star \star)$ Let $p \in(0,1)$. Find

$$
p \sum_{k=1}^{\infty} k(1-p)^{k-1}
$$

Solution 4. Since $k=\sum_{j=1}^{k} 1$, we can write the series as a double sum and interchange the order of summation

$$
p \sum_{k=1}^{\infty} k(1-p)^{k-1}=p \sum_{k=1}^{\infty} \sum_{j=1}^{k}(1-p)^{k-1}=p \sum_{j=1}^{\infty} \sum_{k=j}^{\infty}(1-p)^{k-1}
$$

The formula for the sum of a geometric series implies that

$$
\begin{equation*}
\sum_{k=1}^{\infty}(1-p)^{k}=(1-p) \sum_{k=1}^{\infty}(1-p)^{k-1}=\frac{(1-p)}{1-(1-p)}=\frac{(1-p)}{p} \tag{1}
\end{equation*}
$$

Using this to compute our sum, we have

$$
\begin{array}{rlrl}
p \sum_{j=1}^{\infty} \sum_{k=j}^{\infty}(1-p)^{k-1} & =p \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}(1-p)^{j+k-2} & \\
& =p \sum_{j=1}^{\infty}(1-p)^{j-2} \sum_{k=1}^{\infty}(1-p)^{k} & \\
& =p \sum_{j=1}^{\infty} \frac{(1-p)^{j-1}}{p} & & \\
& =\frac{1}{(1-p)} \sum_{j=1}^{\infty}(1-p)^{j} & \text { Geometric Series (1) } \\
& =\frac{1}{p} & &
\end{array}
$$

