August 5, 2020 APM346 — Week 9 Justin Ko

1 Separation of Variables I

Our goal is to develop a technique to solve IBVPs on the finite interval. This method is called separa-
tion of variables and it reduces the IBVP into a system of ODEs. This approach will give us a series
representation of the solution, that will converge to the true solution of the IBVP.

We first explain how one would do separation of variables in the easiest case when we have a ho-
mogeneous PDE with homogeneous boundary conditions.

1. Assume the solution u(z,t) is of the form u(z,t) = X (x)T'(t).

2. Use linearity to write the general solution as an infinite linear combination of general solutions
that satisfy the PDE and boundary conditions:

(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Solve the system of homogeneous time ODEs using the eigenvalues from
the spatial problem.

3. Use the initial conditions to solve for the particular solution from the general solution using the

appropriate Fourier coefficients.

1.1 Example Problems
Problem 1.1. (x) Solve

Upp — CUgy =0 O<x<m t>0
Ulg=o =0 O<zx<m
Utlt—o = O<z<m

Ua:|w=0 = IU‘:I;‘(E:TI' =0 t>0.

Solution 1.1. This is a homogeneous PDE with homogeneous Neumann boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(z,t) = X (x)T'(t) to our IBVP.
Plugging this into the BVP implies
T//(t) X//(:L,)

ATty X(x)

') X (x) — AT X"(2) =0 =
This gives the following ODEs (see Remark 1 and Remark 2)
X"(x) + XX (x) = 0 and T"(t) + A\T(t) = 0,
with boundary conditions
THX'(0)=THX' (r) =0 = X'(0)=X'(7r)=0
since we can assume T'(t) Z 0 otherwise we will have a trivial solution.
Step 2 — Spatial Problem: We begin by solving the eigenvalue problem

—X"=)X O<zr<m
X'(0) = X' () = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.2) is
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Eigenvalues: )\, =n? forn=0,1,2,...
Eigenfunctions: X,, = cos(nz) and X, = 1.
Step 8 — Time Problem: When n = 0, the time problem is
Ty (t) =0

which has solution

To(t) = Ag + Bot.
The time problem related to the eigenvalues A\, for n > 1 is

T/ (t) + *n*T,(t) =0 forn = 1,2,...
which has solution
T, (t) = A, cos(ent) + By, sin(cent).

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

u(x,t) = i T,(t) X, (x) = Ag + Bot + i <An cos(cnt) + By, sin(cnt)> cos(nx).
n=0

n=1

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants A,, and B,,. The initial conditions imply

(oo}
u(z,0) =0 = Ag+ Z A, cos(nz) =0
n=1
and -
ut(x,0) =2 = By + Z Bycencos(nx) = x.
n=1
Clearly the first initial condition implies that A,, = 0 for all n > 0. To find the B, coefficients, we

decompose z into its Fourier cosine series (or equivalently, decomposing |z| into its full Fourier series
on [—m,7|)

T =2((-1)"-1)
z=g + nzz:l — cos(nx)

and equate coefficients to conclude

2((—1)" —
Bo=T,  Bun— 2D D - D
2 ™

2((-1)" 1)

—— Bn = 3
CcTn

Therefore, our particular solution is

u(zx,t) = Bot + Z B, sin(cnt) cos(nx)

n=1

2A(-)" 1)

CTTN*

where By = 5 and B, =

Remark 1. In general, if

fx) = g(t)
for all x and ¢, then there must exist a C' such that f(z) = g(t) = C. To see why, we can take the
partial derivatives to conclude that

Oy f(z) = 0z9(t) =0 and Org(t) = Oif (z) =0,
so both f and g must be constant by the mean value theorem. Since f(x) = g(t), this implies the

constant must be the same.
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Remark 2. We will explain how one can rigorously justify the fact that
T")X(z) = ATH)X"(2) =0 = X"(z) +A\X(z) =0 and T"(t)+\T(t) =0

for some A. Since we are interested in non-trivial solutions, there exists a g such that X (z¢) # 0.
This implies that

XI/
T" ()X (z0) — AT X" (20) =0 = T"(t) — < ((xo))T(t) =0 = T'(t)+AN\T(t) =0
Zo
where A\ := 7%. Similarly, for a non-trivial solution to exist, there must be a t; such that
T(to) # 0, which will imply
" 2 1 1 T”(to) "
T"(t0) X (x) — c*T(t9) X" () =0 = X"(z) — ATt )X(x) =0 = X"(x)+XX(x)=0
0
where Ay := —%(&)). To see why A1 = Ag, we can evaluate our original equation at (z,to) and use

the fact —\1 X (x9) = X" (m9) and —c2X\oT'(to) = T"(to) to see that
T//(tQ)X(Iﬂo) - CQT(tQ)X”(fEQ) = 0 — C2T(t0)X(I0)(>\1 - Ag) = O — Al = )\2

since ¢>T'(tg) X (zo) # 0. A similar procedure can be done to rigorously justify “dividing by zero” in all
separation of variables problems. It also provides another proof of the appearance of the the constant
in Remark 1.

Problem 1.2. (xx) Solve

“tt_CQUa:w:O O<x<L,t>0
Ulp—o = g(x) 0<z<L
Utlt=0 = h(x) 0<z<L

ugjlwzo = u|a::L =0 t>0.

Solution 1.2. This is a homogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(z,t) = X (z)T'(t) to our IBVP.
Plugging this into the BVP implies

T )X (x) —kTH)X"(2) =0 = = =\
This gives the following ODEs
X"(x) + XX (x) = 0 and T"(t) + A\T(t) = 0,
with boundary conditions
THX'(0)=0=T#*)X(L) = X'(0)=X(L)=0
since we can assume T'(t) Z 0 otherwise we will have a trivial solution.
Step 2 — Spatial Problem: We begin by solving the eigenvalue problem

X" =AX 0O<z<L
X'(0) = X(L) = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.5) is
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Eigenvalues:

Ap = (W)Z formn=1,2,3,....

Eigenfunctions:
(2n — 1)m
X, (0) = cos (2207,
(z) = cos T

Step 3 — Time Problem: The time problem related to the eigenvalues A, is

2n — )m

7 2 ( 2 _ —
Tn(t)+c< ) Ta(®) =0 forn=1,2,...

which has solution

T,.(t) = A, cos (Wt) + B,, sin (Wt)

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

i <An cos (W?ﬁ) + B, sin (Wt)) cos (%3’)

n=1

u(z,t) = ZTn(t)Xn(JU) =
n=1

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants A,, and B,,. The initial conditions imply

(2n—1)w

u(z,0) = g(z) = Z A, cos ( 5T

n=1

z) = g(a) (1)

and

ug(xz,0) = h(z) = ZB”

n=1

c(2n — D) cos ((Zn -

I8k
2L oL x) = h(z).

The eigenfunction corresponding to symmetric boundary conditions are orthogonal so the coefficients
are given by

) X0 [ ot (G0 ) g L

A, — {9@), Xn(@)) Jy g(@)eos (P55 ma) dw ./OL /@) cos((2n7 1)7rz> o

and

2L
fOL cos? (WI) dx

1 fOL h(x) cos ((27’_1)7%) dx

B, — (c(Qn — 1)7r>—1 <<h(x),)§?(m)> (c(2n - 1)7r)

2L X, (2), Xn(z)) 2L

Remark 3. It is easy to check that these mixed boundary conditions satisfy the symmetry condition.
For example, if X; and X, satisfy the boundary conditions X{(0) = 0, X;(L) = 0 and X4(0) = 0,
X2(L) = 0 then they satisfy the symmetric condition
L
X1(2)Xa(2) = Xu(2)Xp(w)| = X1 (D) Xa(L) = X2 (L) X5(L) = X1(0)X2(0) + X1(0)X5(0) =0,

so the eigenfunctions of distinct eigenvalues are orthogonal and form a basis in L?([0, L]).

Page 4 of 16



August 5, 2020 APM346 — Week 9 Justin Ko

Problem 1.3. (xx) Solve

U — kgy =0 0<z<l1 t>0
uli=o = g(x) 0<z<l1
uz'm:O = (Ux +U)‘x:1 =0 t>0

Solution 1.3. This is a homogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(z,t) = X (x)T(t) to our PDE.
Plugging this into our PDE gives

T'(O)X () — kT(OX (@) = 0 — D X0

This gives the following ODEs
X"(z) + XX (z) =0 and T'(t) + kAT (t) = 0,
with boundary conditions
TH)X'(0)=0and T(H)X'(1)+T(t)X(1) =0 = X'(0)=X'(1)+X(1)=0

since we can assume T'(t) Z 0 otherwise we will have a trivial solution.

Step 2 — Spatial Problem: We begin by solving the eigenvalue problem

X" =)X 0<a<l
X'(0)=X'"(1)+ X(1)=0.
We consider the 3 cases corresponding to the different forms of the ODE:
1. A= 2 > 0: The solution is of the form
X (x) = Acos(Bx) + Bsin(fx).
From the boundary conditions we get

BB =0
—BAsin(B) + BB cos(B) + Acos() + Bsin(s) = 0.

We can write this system of equations in matrix form

0 15} Al |0
cos(B) — Bsin(B) PBcos(B) +sin(B)| |B| (0]’
which has a non-trivial solution when

0 B
cos(B) — Bsin(B) Bcos(B) + sin

If 3, is chosen such that cos(53,) = 0, then 8, # 0 and sin(53,) # 0 which means there are no
solutions such that cos(8,) = 0. Therefore, we can rearrange terms to recover the condition

= cos — B%sin =0.
)| =0 = Feos(d) - #sin(s) o

Bcos(B) — f?sin(B) = tan(B) = %

The eigenvalues (3,, are the positive roots of tan(s) = % for which there are infinitely many
of them. The first boundary condition also implies B = 0, which means the corresponding
eigenfunction of the eigenvalue \,, = 32 is X,, = cos (ﬁnx)
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2. X = 0: The solution is of the form

X(z) = A+ Ba.
From the boundary conditions we get
B=0
A+2B=0.

We can write this system of equations in matrix form

JH-1

which has has no non-trivial solutions because the first matrix is invertible. Therefore, there are
no 0 eigenvalues.

3. A = —f% < 0: The solution is of the form
X (x) = Acosh(Bz) + Bsinh(fx).
From the boundary conditions we get

BB =0
BAsinh(B) 4+ 8B cosh(8) + A cosh(8) + Bsinh(5) = 0.

We can write this system of equations in matrix form

[cosh(ﬁ) +05sinh(5) 6cosh(ﬁ)6—|— sinh(ﬁ)] [g} = m )

which has a non-trivial solution when

0 B _ : _
cosh(B) + Bsinh(8) Bcosh(B) + Sinh(ﬁ)' =0 = Boosh(B) + 5 sinh(5) = 0.

Since cosh(8) > 0 and 8 > 0, we can write the above as

tanh(8) = —%

which has no positive roots. Therefore, there are no negative eigenvalues.
Therefore, the solution to the eigenvalue problem is

Eigenvalues: )\, = 32 for n = 1,2,... where 3, are the ordered positive roots of tan(3) =

|~

Eigenfunctions: X,, = cos (ﬁnx)
Step 8 — Time Problem: The time problem related to the eigenvalues A, is
T)(t) + k(Bn)*Tn(t) =0 for n =1,2,...

which has solution ,
T.(t) = A, e kBt

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

u(z,t) = iTn(t)Xn(m) = i Ape kPt cos(fBpx).
n=1 n=1
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Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants A,,. The initial conditions imply

u(x,0) = g(x) = Y Ay, cos(Bnz) = g(x).

The eigenfunction corresponding to Robin boundary conditions are also symmetric boundary condi-
tions, so the eigenfunctions are orthogonal. Therefore, the coefficients are given by

(9(a). Xn()) _ Jo 9(a) cos(Byz) du

An = =
(Xn(2), Xn(z)) fol cos?(Bpz) dx
()
3 3 ) 3
1 ! ! V4 . : y
1 1 P B2 1 1 0

Figure 1. The values of 3, for n = 1,...,5. Numerically, 51 ~ 0.86, 82 =~ 3.462, 3 ~ 6.437, etc.
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2 Separation of Variables II

We now explain how one would do separation of variables in the slightly harder case when we have a in-
homogeneous PDE with homogeneous boundary conditions. We deal with the inhomogeneous
PDE using the method of eigenfunction erpansions

1. Assume the solution u(z,t) is of the form u(z,t) = X (x)T(t).

2. Use linearity to write the general solution of the homogeneous PDE as an infinite linear combi-
nation of general solutions that satisfy the PDE and boundary conditions:
(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Decompose the inhomogeneous term into the Fourier series corresponding
to the eigenfunctions from the spatial problem. Then solve the infinite system of inhomo-
geneous time ODEs using the eigenvalues from the spatial problem.

3. Use the initial conditions to solve for the particular solution from the general solution using the

appropriate Fourier coefficients.

2.1 Example Problems
Problem 2.1. (x) Solve

Ut — Uge + U =1 —Tmr<r<m t>0
ult=o = g(x) —T<T<T
U|pe e = U|per t>0

ulL"szﬂ' = uaclw:ﬂ' t>0

Solution 2.1. This is an inhomogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We first find a solution to the homogeneous equation.

T+ TEH)  X(x)
T  X(x)

T' ()X (z) — T(t)X" () + X (2)T(t) = 0 => Y

This gives the following ODEs
X"(x) +AX(x) =0 and T'(t) + T(t) + NT'(t) = 0,
with boundary conditions
THOX (—m)=TH)X'(m) =0, TH)X(—7)-TH)X(1) =0 = X'(—7m)—X'(7) = X(—7)—X(7) =0
since we can assume T'(f) # 0 otherwise we will have a trivial solution.
Step 2 — Spatial Problem: We begin by solving the eigenvalue problem

{—X”:AX O<z<l1
X/(—7) = X'(1) = X(—7) — X(x) = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.3) is

Eigenvalues: )\, =n?forn=0,1,2,...
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Eigenfunctions: X,, = cos (nx) and Y,, = sin (ms) and Xy =1.

Step 8 — General Homogeneous Solution: By the principle of superposition, our general solution is of
the form

u(a,t) = To(t) Xo(2) + Y (Tn(t)Xn(x) + Sn(t)Yn(;v)) =To(t) + > (Tn(t) cos(nz) + Sp(t) sin(nx)).

Step 4 — General Inhomogeneous Solution: Our goal is to now solve for T, (¢) and S, (t) using the fact
Up — Ugy +u = 1.

Differentiating our general solution (term by term differentiation is valid because u satisfies the periodic
boundary conditions), we have

(Tg+To) + Y ((TZL +0°T, + T,,) cos(nx) + (S;, +n*S, + Sn) Sm(m‘")) =1
n=1

To compute T}, and S, notice that these functions play the role of the Fourier coefficients. That is,
ao(t) = (T4 + To), an(t) = (T} + n?T, + T,,) and b,(t) = (S}, + n2S, + S,). If we compute the
Fourier series of 1 we get only the constant term remains that is ag = 1, a,, = 0 and b,, = 0. Equating
coeflicients implies

To+To=1, (T,+n*T,+T,)=0, (S,+nS,+S,)=0.
Notice that the first ODE is a linear first order equation, so its solution is
To =1+ Age™?
and the other ODES are separable with solutions
T, = Ane_("2+1)t, S, = Bne_("2+1)t.
Putting this all together, we have our solution general solution to the inhomogeneous PDE is given by

u(z,t) =1+ Age™" + Z (Ane_("2+1)t cos(nz) + Bpe~ (Wt sin(nx)).

n=1

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution.
The initial conditions imply

u(z,0) =g(z) = 1+ Ap+ Z (An cos(nz) + By, sin(nm)) = g(x).
n=1

Writing g(z) in terms of its full Fourier series and equating coefficients implies

1 ™
Ag=-1+ o 77Tg(x) dz,

A, =— /7r g(z) cos(nz) dz,

-7

B, = 1 /7T g(z) sin(nz) dx.

—T
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3 Separation of Variables II1

We now explain how one would do separation of variables in the hardest case when we have an inho-
mogeneous PDE with inhomogeneous boundary conditions. We deal with the inhomogenous
boundary conditions by subtracting the inhomogenous terms away via a change of variables.

1. We define
u(z,t) = v(z, t) + w(z,t)
where w(z,t) is chosen to satisfy the inhomogeneous boundary conditions. For second order
PDEs, we can choose w(z,t) to be a polynomial in x of the form

w(z,t) = (Az® + Bx + O)p(t) + (Dx® + Ex + F)q(t),

for some constants A, B, ... F where p(t) and ¢(t) are the inhomogeneous boundary conditions.
We choose the constants A, B, ..., F so that w(z,t) solves the boundary conditions, which will
imply that v(x,t) solves a inhomogeneous PDE with homogeneous boundary conditions,
so we can proceed as before (Separation of Variables II).

2. Assume the solution v(z,t) is of the form v(z,t) = X (2)T(¢).

3. Use linearity to write the general solution as an infinite linear combination of general solutions
that satisfy the PDE and boundary conditions:
(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Decompose the inhomogeneous term into the Fourier series corresponding
to the eigenfunctions from the spatial problem. Then solve the infinite system of inhomo-
geneous time ODEs using the eigenvalues from the spatial problem.

4. Use the initial conditions to solve for the particular solution from the general solution using the
appropriate Fourier coefficients.

Remark 4. The approach in this section also applies to the cases in Section 1 and Section 2. In
particular, it works with homogeneous PDEs with inhomogeneous boundary conditions.

3.1 Example Problems

Problem 3.1. (%) Solve
Ut — Uz =0 O0<z <1l t>0
uli=0 = g(x) O<z<l1
Utli—o = h(z) O0<zx<1
U|p—o =0 t>0
ux\gE:l = % t>0

Solution 3.1. This is an homogeneous PDE with inhomogeneous mixed boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(z, t) = v(z,t) + w(z,t)

where w(z,t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(z) to be a polynomial in x of the form

w(z,t) = Ax? + Bx + C,
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for some constants A, B, C. Substituting w(x) into the boundary conditions gives

By inspection it is clear that B = %, A =0, and C = 0 works. Therefore,
w(z) = -

Step 2 — Separation of Variables: For this choice of w(z), the function v(z, t) = u(x,t) —w(x) satisfies
the following homogeneous PDE with homogeneous boundary conditions

Vet — Qze = 0 O<x<l t>0
V)i=o = g(z) — iz 0<z<1
Velt=0 = h(z) 0<zr<l1

U‘QJZQ:O, U$|w:1 =0 t>0
We look for a solution of the form v(z,t) = X (z)T'(t). For such a solution, the PDE implies

T// X//
Iy " _ s 2
T"X -kTX"=0 = T - X A
This results in the ODEs
X"(x)+AX(x) =0, T"(t)+3°\T(t) =0
with boundary conditions
Tt)X(0)=0=T(t)X'(1).
For non-trivial solutions, we can require T'(¢) #Z 0, X(0) = X’(1) = 0.

Step 8 — Figenvalue Problem: We solve the spatial eigenvalue problem

—X"=)X O<z<m
X(0)=X'(1)=0.

The eigenvalues and corresponding eigenfunctions (Week 7 Lecture Summary 1.1.4) are

A = ((271%1)77)2, Xn(z) = sin(wx), n=123,...

Step 4 — Time Problem: The time problem related to the eigenvalues A, is
2n—1 2
T'(t) + 3%%) T,(t)=0forn=12,...

which has solution

(Wt) + B, sin (Mt)

where A, and B,, are yet to be determined constants. Taking the linear combination of 7T,, with the
eigenfunctions imply our general solution is of the form,

oo 1) = i (wcos (CZZ070) 1 i (22007 ) g (22207,

T,.(t) = A, cos
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Step 5 — Particular Solution: The initial conditions imply

o, 0) = gla) — 2 = 3 Apsin (B 1T0) = g 2

n=1

and

ve(x,0) = h(zx) = Z B 2n = D sin <(2n2_Ll)7Tx> = h(zx).

The eigenfunction corresponding to symmetric boundary conditions are orthogonal so the coefficients
are given by

(@)~ 3. Xalw)) o (960~ §) sin (45272 ) do
(Xn(2), Xn(2)) [Tsin (zn 1)%) I

=2- /01 (g(:z:) - g) sin (wm) dx

A, =

and

B, — (3(2n — 1)7r>— <<h( x), Xp(x)) (3(2n —Dr >—1 fo ) sin (@x) dx

; Xu@) X)) L2 f01 s (@205

= ﬁ ~/0 h(z) sin (Mm) dz.

Step 6 — Final Answer: We now summarize our solution. Recalling that u = v 4+ w, we have

)= 3 (Aneon (L2071 g (A2 DT ) g (2007

n=1

where the coefficients are given by

A, =2- /0 (g(:v) - g) sin (@x) dx, B,= ﬁ . /0 h(z) sin (Mm) dx.

Problem 3.2. (xx) Solve

—kug, =€ O<zx<m t>0

ult—o = g(x) O<z<m
Ug|e=o = 1 t>0
Um|$:7r =0 t> 0.

Solution 3.2. This is an inhomogeneous PDE with inhomogeneous Neumann boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(z, t) = v(z,t) + w(z,t)

where w(x,t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(z) to be a polynomial in x of the form

w(z,t) = Ax® + Bx + C,
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for some constants A, B, C. Substituting w(x) into the boundary conditions gives

B =1=w(0,t)
2rA+ B =0=w(m,1).
By inspection it is clear that B =1, C' = —%, and C' = 0 works. Therefore,
1
w(z) = —%xz + .

Step 2 — Separation of Variables: For this choice of w(x), the function v(z,t) = u(x,t) —w(z) satisfies
the following inhomogeneous PDE with homogeneous boundary conditions

futfkvm:e*xfk% O<z<m t>0
Vo =g(x)+ £z —2 O<z<m

Vp|z=0 = Vg|z=r =0 t>0.
We look for a solution of the form v(z,t) = X («)T(t). For such a solution, the PDE implies

Tl X//
T'X —kTX"=0 = — = =\
kKT X

This results in the ODEs
X"(z) + AX (z) =0,

with boundary conditions
Tt)X'(0)=0=T)X'(r).

For non-trivial solutions, we can require T'(¢) #Z 0, X'(0) = X'(7) = 0.
Step 8 — Figenvalue Problem: We solve the spatial eigenvalue problem

—X"=)X O<z<m
X'(0)=X'(m)=0.
This is a standard eigenvalue problem and the eigenvalues and corresponding eigenfunctions are
M=0 Xo=1 X\, =n? X,(x)=cos(nz), n=123,...

Step 4 — Time Problem: We now use the method of eigenfunction expansion to find T,,(¢) that
satisfies the inhomogeneous equation. By the principle of superposition, the general solution to the
homogeneous PDE is of the form

v(z,t) =T+ Z T, (t) cos(nx).

Differentiating term by term (valid since the boundary conditions are homogeneous) and plugging this
into our inhomogeneous PDE gives

o0 [e ] 1
vy — kvg, = Th + Z T! (t) cos(nz) + k Z T, (t)n? cos(nz) = e~ — k—.
T

n=1 n=1

We write the right hand side of the above equation as the Fourier cosine series

1
-T _ k— = n
e — = ao + E ay, cos(nz)

n=1
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where

2 [T 1 2
ap = 7/ (e*"” — k7> cos(nz)de = — -
T Jo T T

I 1
aoz—/ (efm—k—)dl’:
™ Jo ™

and

Equating coefficients, we have for n > 1,

(—1)"He ™ 41
n?+1

—k + 1 + sinh(7) — cosh(n)

™

Ty(t) =ag T.(t) + kn®T,(t) = ay.

kn?t

This is a first order linear ODE. Its solution can be found using an integrating factor of the form e"™**,

leading to the general solution

2 ¢ 2 2 a ane~kn’t
To(t) = apt + Ag, Tn(t) = A ekt —|—/0 ane P9 go = A e Rt 4 kT:Q — nan

where Ag, A,, are yet to be determined constants.

Step 5 — Particular Solution: We now use the initial conditions to determine Ay, and A,. The
initial conditions imply

A S A _ L o
v(z,0) = Ao+ ;::1 ncos(nz) = g(x) + 7. T

The coefficients Ay, A,, are the coefficients of the Fourier cosine series of g(z) + %IZ — x, which is

given explicitly by

1" 1,
Ao—;/o (g(x)—l—ﬂx —x)dm

An

= 72r/07r (g(x) + %xQ - x) cos(nx) dz.

Step 6 — Final Answer: We now summarize our solution. Recalling that u = v + w, we have

— 1 inh(7) — cosh
(s t) = k+ 1+ sinh(w) — cosh(m)

™

2 (=1)Hle 41

-t 4+ Ag

a:2—|—x

o
An . —kn’t A
where Ag and A,, are given by

Aozl/ﬂ(g(x)—f—zixz—x)dﬂc A
0

™ ™

Problem 3.3. (xx*) Solve

U — ktgy =0
umg =

U|z—o = sin(t)
(g +u)|z=1 =2

n2+1

(1- e—’mzt)) cos(nz) — %

n = 2 /07T (g(fﬂ) + i962 - x) cos(nz) dz.

s 2

O<zx<l1 t>0
0<z<l1
t>0

t>0.
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Solution 3.3. This is an homogeneous PDE with time dependent boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(z,t) = v(z,t) + w(z,t)

where w(z,t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(x,t) to be a polynomial in z of the form

w(z,t) = (Az? + Bz + C)sin(t) + (Dz? + Ex + F)2,
for some constants A, B, ... F. Substituting w(z,t) into the boundary conditions gives

Csin(t) + 2F =sin(t) = w(0,?)
(3A+ 2B+ C)sin(t) + (3D + 2E + F)2 =2 = wo(1,1) + w(l, 1),

By inspection it is clear that C =1, B = _71, and F = % with the rest of the coefficients zero works.

Therefore,

2 — sin(t)
2

Step 2 — Separation of Variables: Since v(x,t) = u(x,t) — w(x,t), our choice of w(x,t) implies

w(z,t) = (=27 2z + 1) sin(t) + (2712)2 = x + sin(t).

Ut—kvm:%(t)x—cos(t) O<x<l t>0

V|t=o =0 0<z<1
V|g=o = (Vg + V)|3=1 =0 t>0.

This is an inhomogeneous PDE with homogeneous boundary conditions. We begin by using separation
of variables to solve the homoegenous PDE. We look for a solution of the form v(x,t) = T'(t)X (x).
For such a solution, the PDE implies

T/ X//
Iy "_ Il - _
TX - kTX 0 — T X A
This results in the ODE
X"(x) + X (x) =0,

with boundary conditions
THOX0)=THX' (1) +T#)X(1)=0

For non-trivial solutions, we can require T'(¢t) Z 0, X(0) = X’(1) + X(1) = 0.
Step 3 — Figenvalue Problem: We solve the spatial eigenvalue problem

X" =XX O<z<l1
X0)=X'1)+X@1)=0.

This eigenvalue problem can be solved similarly to the one in Problem 1.3. The eigenvalues and
corresponding eigenfunctions are given by
A\p = 2 Xn(z) =sin(Bpz), n=1,2,3,...

no

where (3,, are the ordered positive roots of

tan(B) = —p.
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Since the boundary conditions are symmetric, we have that the eigenfunctions sin(/3,z) are orthogonal.

Step 4 — Time Problem: We now use the method of eigenfunction expansion to find T, (t) that
satisfies the inhomogeneous equation. By the principle of superposition, the general solution to the
homogeneous PDE is of the form

i ) sin(Brx).

Differentiating term by term (valid since the boundary conditions are homogeneous) and plugging this
into our inhomogeneous PDE gives

_ cos(?)
2

Vp — kUgy = Z T! (t)sin(Bpz) + k Z T, (t)B2 sin(Bnz) = x + cos(t).

n=1

We fix t and write the right hand side of the above equation as the generalized Fourier series

t
_ COZ( x + cos(t Z by, (t) sin(B,x)

where

fol (‘:0527(“36 - cOS(t)) sin(Bnx) da

bn(t) =
© fol sin?(B,z) dx

Equating coefficients, we have for n > 1,

Tr/z (t) + kﬂiTn(t) = by, (t)
This is a first order linear ODE. Its solution can be found using an integrating factor of the form eknzt,
leading to the general solution

t
To(t) = Coe ™t 4 / ba(s) exp(~kA2(t — 5)) ds
0
where C), is a yet to be determined constant.

Step 5 — Particular Solution: We now use the initial conditions to determine C),. The initial condi-
tions imply

= Z Cysin(B,x) = 0.

n=1

Clearly we must have C,, = 0 for all n.

Step 6 — Final Answer: We now summarize our solution. Recalling that v = v + w, we have

> ¢ 9 . 2 — sin(t) .
u(z,t) = Z by, (s) exp(—kpB;(t — s)) ds | sin(Bnx) + — 7 + sin(t),
n=1 0
where ,, are the ordered positive roots of tan(f) = —f and

fo (COZ(S T — cos(s)) sin(B,x) dx

b, (s
(5) = fo sin?(Bnz) dx
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