
August 5, 2020 APM346 – Week 9 Justin Ko

1 Separation of Variables I

Our goal is to develop a technique to solve IBVPs on the finite interval. This method is called separa-
tion of variables and it reduces the IBVP into a system of ODEs. This approach will give us a series
representation of the solution, that will converge to the true solution of the IBVP.

We first explain how one would do separation of variables in the easiest case when we have a ho-
mogeneous PDE with homogeneous boundary conditions.

1. Assume the solution u(x, t) is of the form u(x, t) = X(x)T (t).

2. Use linearity to write the general solution as an infinite linear combination of general solutions
that satisfy the PDE and boundary conditions:

(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Solve the system of homogeneous time ODEs using the eigenvalues from
the spatial problem.

3. Use the initial conditions to solve for the particular solution from the general solution using the
appropriate Fourier coefficients.

1.1 Example Problems

Problem 1.1. (?) Solve 
utt − c2uxx = 0 0 < x < π, t > 0

u|t=0 = 0 0 < x < π

ut|t=0 = x 0 < x < π

ux|x=0 = ux|x=π = 0 t > 0.

Solution 1.1. This is a homogeneous PDE with homogeneous Neumann boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(x, t) = X(x)T (t) to our IBVP.
Plugging this into the BVP implies

T ′′(t)X(x)− c2T (t)X ′′(x) = 0 =⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ.

This gives the following ODEs (see Remark 1 and Remark 2)

X ′′(x) + λX(x) = 0 and T ′′(t) + c2λT (t) = 0,

with boundary conditions

T (t)X ′(0) = T (t)X ′(π) = 0 =⇒ X ′(0) = X ′(π) = 0

since we can assume T (t) 6≡ 0 otherwise we will have a trivial solution.

Step 2 — Spatial Problem: We begin by solving the eigenvalue problem{
−X ′′ = λX 0 < x < π

X ′(0) = X ′(π) = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.2) is
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Eigenvalues: λn = n2 for n = 0, 1, 2, . . .

Eigenfunctions: Xn = cos(nx) and X0 = 1.

Step 3 — Time Problem: When n = 0, the time problem is

T ′′0 (t) = 0

which has solution
T0(t) = A0 +B0t.

The time problem related to the eigenvalues λn for n ≥ 1 is

T ′′n (t) + c2n2Tn(t) = 0 for n = 1, 2, . . .

which has solution
Tn(t) = An cos(cnt) +Bn sin(cnt).

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

u(x, t) =

∞∑
n=0

Tn(t)Xn(x) = A0 +B0t+

∞∑
n=1

(
An cos(cnt) +Bn sin(cnt)

)
cos(nx).

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants An and Bn. The initial conditions imply

u(x, 0) = 0 =⇒ A0 +

∞∑
n=1

An cos(nx) = 0

and

ut(x, 0) = x =⇒ B0 +

∞∑
n=1

Bncn cos(nx) = x.

Clearly the first initial condition implies that An = 0 for all n ≥ 0. To find the Bn coefficients, we
decompose x into its Fourier cosine series (or equivalently, decomposing |x| into its full Fourier series
on [−π, π])

x =
π

2
+

∞∑
n=1

2((−1)n − 1)

πn2
cos(nx)

and equate coefficients to conclude

B0 =
π

2
, Bncn =

2((−1)n − 1)

πn2
=⇒ Bn =

2((−1)n − 1)

cπn3
.

Therefore, our particular solution is

u(x, t) = B0t+

∞∑
n=1

Bn sin(cnt) cos(nx)

where B0 = π
2 and Bn = 2((−1)n−1)

cπn3 .

Remark 1. In general, if
f(x) = g(t)

for all x and t, then there must exist a C such that f(x) = g(t) = C. To see why, we can take the
partial derivatives to conclude that

∂xf(x) = ∂xg(t) = 0 and ∂tg(t) = ∂tf(x) = 0,

so both f and g must be constant by the mean value theorem. Since f(x) = g(t), this implies the
constant must be the same.
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Remark 2. We will explain how one can rigorously justify the fact that

T ′′(t)X(x)− c2T (t)X ′′(x) = 0 =⇒ X ′′(x) + λX(x) = 0 and T ′′(t) + c2λT (t) = 0

for some λ. Since we are interested in non-trivial solutions, there exists a x0 such that X(x0) 6= 0.
This implies that

T ′′(t)X(x0)− c2T (t)X ′′(x0) = 0 =⇒ T ′′(t)− c2X
′′(x0)

X(x0)
T (t) = 0 =⇒ T ′′(t) + c2λT (t) = 0

where λ1 := −X
′′(x0)
X(x0)

. Similarly, for a non-trivial solution to exist, there must be a t0 such that

T (t0) 6= 0, which will imply

T ′′(t0)X(x)− c2T (t0)X ′′(x) = 0 =⇒ X ′′(x)− T ′′(t0)

c2T (t0)
X(x) = 0 =⇒ X ′′(x) + λ2X(x) = 0

where λ2 := − T ′′(t0)
c2T (t0)

. To see why λ1 = λ2, we can evaluate our original equation at (x0, t0) and use

the fact −λ1X(x0) = X ′′(x0) and −c2λ2T (t0) = T ′′(t0) to see that

T ′′(t0)X(x0)− c2T (t0)X ′′(x0) = 0 =⇒ c2T (t0)X(x0)(λ1 − λ2) = 0 =⇒ λ1 = λ2

since c2T (t0)X(x0) 6= 0. A similar procedure can be done to rigorously justify “dividing by zero” in all
separation of variables problems. It also provides another proof of the appearance of the the constant
in Remark 1.

Problem 1.2. (??) Solve 
utt − c2uxx = 0 0 < x < L, t > 0

u|t=0 = g(x) 0 < x < L

ut|t=0 = h(x) 0 < x < L

ux|x=0 = u|x=L = 0 t > 0.

Solution 1.2. This is a homogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(x, t) = X(x)T (t) to our IBVP.
Plugging this into the BVP implies

T ′′(t)X(x)− kT (t)X ′′(x) = 0 =⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ.

This gives the following ODEs

X ′′(x) + λX(x) = 0 and T ′′(t) + c2λT (t) = 0,

with boundary conditions

T (t)X ′(0) = 0 = T (t)X(L) =⇒ X ′(0) = X(L) = 0

since we can assume T (t) 6≡ 0 otherwise we will have a trivial solution.

Step 2 — Spatial Problem: We begin by solving the eigenvalue problem{
−X ′′ = λX 0 < x < L

X ′(0) = X(L) = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.5) is
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Eigenvalues:

λn =
( (2n− 1)π

2L

)2
for n = 1, 2, 3, . . . .

Eigenfunctions:

Xn(x) = cos
( (2n− 1)π

2L
x
)
.

Step 3 — Time Problem: The time problem related to the eigenvalues λn is

T ′′n (t) + c2
( (2n− 1)π

2L

)2
Tn(t) = 0 for n = 1, 2, . . .

which has solution

Tn(t) = An cos
(c(2n− 1)π

2L
t
)

+Bn sin
(c(2n− 1)π

2L
t
)
.

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

u(x, t) =

∞∑
n=1

Tn(t)Xn(x) =

∞∑
n=1

(
An cos

(c(2n− 1)π

2L
t
)

+Bn sin
(c(2n− 1)π

2L
t
))

cos
( (2n− 1)π

2L
x
)
.

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants An and Bn. The initial conditions imply

u(x, 0) = g(x) =⇒
∞∑
n=1

An cos
( (2n− 1)π

2L
x
)

= g(x) (1)

and

ut(x, 0) = h(x) =⇒
∞∑
n=1

Bn
c(2n− 1)π

2L
cos
( (2n− 1)π

2L
x
)

= h(x).

The eigenfunction corresponding to symmetric boundary conditions are orthogonal so the coefficients
are given by

An =
〈g(x), Xn(x)〉
〈Xn(x), Xn(x)〉

=

∫ L
0
g(x) cos

(
(2n−1)π

2L x
)
dx∫ L

0
cos2

(
(2n−1)π

2L x
)
dx

=
2

L
·
∫ L

0

g(x) cos
( (2n− 1)π

2L
x
)
dx

and

Bn =
(c(2n− 1)π

2L

)−1 〈h(x), Xn(x)〉
〈Xn(x), Xn(x)〉

=
(c(2n− 1)π

2L

)−1
·

∫ L
0
h(x) cos

(
(2n−1)π

2L x
)
dx∫ L

0
cos2

(
(2n−1)π

2L x
)
dx

=
(c(2n− 1)π

2L

)−1
· 2

L
·
∫ L

0

h(x) cos
( (2n− 1)π

2L
x
)
dx.

Remark 3. It is easy to check that these mixed boundary conditions satisfy the symmetry condition.
For example, if X1 and X2 satisfy the boundary conditions X ′1(0) = 0, X1(L) = 0 and X ′2(0) = 0,
X2(L) = 0 then they satisfy the symmetric condition

X ′1(x)X2(x)−X1(x)X ′2(x)
∣∣∣L
0

= X ′1(L)X2(L)−X1(L)X ′2(L)−X ′1(0)X2(0) +X1(0)X ′2(0) = 0,

so the eigenfunctions of distinct eigenvalues are orthogonal and form a basis in L2([0, L]).
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Problem 1.3. (??) Solve
ut − kuxx = 0 0 < x < 1 t > 0

u|t=0 = g(x) 0 < x < 1

ux|x=0 = (ux + u)|x=1 = 0 t > 0

.

Solution 1.3. This is a homogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We look for a separated solution u(x, t) = X(x)T (t) to our PDE.
Plugging this into our PDE gives

T ′(t)X(x)− kT (t)X ′′(x) = 0 =⇒ T ′(t)

kT (t)
=
X ′′(x)

X(x)
= −λ.

This gives the following ODEs

X ′′(x) + λX(x) = 0 and T ′(t) + kλT (t) = 0,

with boundary conditions

T (t)X ′(0) = 0 and T (t)X ′(1) + T (t)X(1) = 0 =⇒ X ′(0) = X ′(1) +X(1) = 0

since we can assume T (t) 6≡ 0 otherwise we will have a trivial solution.

Step 2 — Spatial Problem: We begin by solving the eigenvalue problem{
−X ′′ = λX 0 < x < 1

X ′(0) = X ′(1) +X(1) = 0.

We consider the 3 cases corresponding to the different forms of the ODE:

1. λ = β2 > 0: The solution is of the form

X(x) = A cos(βx) +B sin(βx).

From the boundary conditions we get

βB = 0

−βA sin(β) + βB cos(β) +A cos(β) +B sin(β) = 0.

We can write this system of equations in matrix form[
0 β

cos(β)− β sin(β) β cos(β) + sin(β)

] [
A
B

]
=

[
0
0

]
,

which has a non-trivial solution when∣∣∣∣ 0 β
cos(β)− β sin(β) β cos(β) + sin(β)

∣∣∣∣ = 0 =⇒ β cos(β)− β2 sin(β) = 0.

If βn is chosen such that cos(βn) = 0, then βn 6= 0 and sin(βn) 6= 0 which means there are no
solutions such that cos(βn) = 0. Therefore, we can rearrange terms to recover the condition

β cos(β)− β2 sin(β) =⇒ tan(β) =
1

β
.

The eigenvalues βn are the positive roots of tan(β) = 1
β for which there are infinitely many

of them. The first boundary condition also implies B = 0, which means the corresponding
eigenfunction of the eigenvalue λn = β2

n is Xn = cos
(
βnx

)
.
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2. λ = 0: The solution is of the form
X(x) = A+Bx.

From the boundary conditions we get

B = 0

A+ 2B = 0.

We can write this system of equations in matrix form[
0 1
1 2

] [
A
B

]
=

[
0
0

]
,

which has has no non-trivial solutions because the first matrix is invertible. Therefore, there are
no 0 eigenvalues.

3. λ = −β2 < 0: The solution is of the form

X(x) = A cosh(βx) +B sinh(βx).

From the boundary conditions we get

βB = 0

βA sinh(β) + βB cosh(β) +A cosh(β) +B sinh(β) = 0.

We can write this system of equations in matrix form[
0 β

cosh(β) + β sinh(β) β cosh(β) + sinh(β)

] [
A
B

]
=

[
0
0

]
,

which has a non-trivial solution when∣∣∣∣ 0 β
cosh(β) + β sinh(β) β cosh(β) + sinh(β)

∣∣∣∣ = 0 =⇒ β cosh(β) + β2 sinh(β) = 0.

Since cosh(β) > 0 and β > 0, we can write the above as

tanh(β) = − 1

β

which has no positive roots. Therefore, there are no negative eigenvalues.

Therefore, the solution to the eigenvalue problem is

Eigenvalues: λn = β2
n for n = 1, 2, . . . where βn are the ordered positive roots of tan(β) = 1

β

Eigenfunctions: Xn = cos
(
βnx

)
.

Step 3 — Time Problem: The time problem related to the eigenvalues λn is

T ′n(t) + k(βn)2Tn(t) = 0 for n = 1, 2, . . .

which has solution
Tn(t) = Ane

−kβ2
nt.

Step 4 — General Solution: By the principle of superposition, the general form of our solution is

u(x, t) =

∞∑
n=1

Tn(t)Xn(x) =

∞∑
n=1

Ane
−kβ2

nt cos(βnx).
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Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution by
solving for the constants An. The initial conditions imply

u(x, 0) = g(x) =⇒
∞∑
n=1

An cos(βnx) = g(x).

The eigenfunction corresponding to Robin boundary conditions are also symmetric boundary condi-
tions, so the eigenfunctions are orthogonal. Therefore, the coefficients are given by

An =
〈g(x), Xn(x)〉
〈Xn(x), Xn(x)〉

=

∫ 1

0
g(x) cos(βnx) dx∫ 1

0
cos2(βnx) dx

.

β

y

β1 β2 β3 β4 β5

y = tan(β)

y = 1
β

Figure 1. The values of βn for n = 1, . . . , 5. Numerically, β1 ≈ 0.86, β2 ≈ 3.462, β3 ≈ 6.437, etc.
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2 Separation of Variables II

We now explain how one would do separation of variables in the slightly harder case when we have a in-
homogeneous PDE with homogeneous boundary conditions. We deal with the inhomogeneous
PDE using the method of eigenfunction expansions

1. Assume the solution u(x, t) is of the form u(x, t) = X(x)T (t).

2. Use linearity to write the general solution of the homogeneous PDE as an infinite linear combi-
nation of general solutions that satisfy the PDE and boundary conditions:

(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Decompose the inhomogeneous term into the Fourier series corresponding
to the eigenfunctions from the spatial problem. Then solve the infinite system of inhomo-
geneous time ODEs using the eigenvalues from the spatial problem.

3. Use the initial conditions to solve for the particular solution from the general solution using the
appropriate Fourier coefficients.

2.1 Example Problems

Problem 2.1. (?) Solve 
ut − uxx + u = 1 −π < x < π t > 0

u|t=0 = g(x) −π < x < π

u|x=−π = u|x=π t > 0

ux|x=−π = ux|x=π t > 0

Solution 2.1. This is an inhomogeneous problem with homogeneous boundary conditions.

Step 1 — Separation of Variables: We first find a solution to the homogeneous equation.

T ′(t)X(x)− T (t)X ′′(x) +X(x)T (t) = 0 =⇒ T ′(t) + T (t)

T (t)
=
X ′′(x)

X(x)
= −λ.

This gives the following ODEs

X ′′(x) + λX(x) = 0 and T ′(t) + T (t) + λT (t) = 0,

with boundary conditions

T (t)X ′(−π)−T (t)X ′(π) = 0, T (t)X(−π)−T (t)X(π) = 0 =⇒ X ′(−π)−X ′(π) = X(−π)−X(π) = 0

since we can assume T (t) 6≡ 0 otherwise we will have a trivial solution.

Step 2 — Spatial Problem: We begin by solving the eigenvalue problem{
−X ′′ = λX 0 < x < 1

X ′(−π)−X ′(π) = X(−π)−X(π) = 0.

The solution to the eigenvalue problem (Week 7 Lecture Summary 1.1.3) is

Eigenvalues: λn = n2 for n = 0, 1, 2, . . .
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Eigenfunctions: Xn = cos
(
nx
)

and Yn = sin
(
nx
)

and X0 = 1.

Step 3 — General Homogeneous Solution: By the principle of superposition, our general solution is of
the form

u(x, t) = T0(t)X0(x) +

∞∑
n=1

(
Tn(t)Xn(x) + Sn(t)Yn(x)

)
= T0(t) +

∞∑
n=1

(
Tn(t) cos(nx) + Sn(t) sin(nx)

)
.

Step 4 — General Inhomogeneous Solution: Our goal is to now solve for Tn(t) and Sn(t) using the fact

ut − uxx + u = 1.

Differentiating our general solution (term by term differentiation is valid because u satisfies the periodic
boundary conditions), we have

(T ′0 + T0) +

∞∑
n=1

(
(T ′n + n2Tn + Tn) cos(nx) + (S′n + n2Sn + Sn) sin(nx)

)
= 1.

To compute Tn and Sn notice that these functions play the role of the Fourier coefficients. That is,
a0(t) = (T ′0 + T0), an(t) = (T ′n + n2Tn + Tn) and bn(t) = (S′n + n2Sn + Sn). If we compute the
Fourier series of 1 we get only the constant term remains that is a0 = 1, an = 0 and bn = 0. Equating
coefficients implies

T ′0 + T0 = 1, (T ′n + n2Tn + Tn) = 0, (S′n + n2Sn + Sn) = 0.

Notice that the first ODE is a linear first order equation, so its solution is

T0 = 1 +A0e
−t

and the other ODES are separable with solutions

Tn = Ane
−(n2+1)t, Sn = Bne

−(n2+1)t.

Putting this all together, we have our solution general solution to the inhomogeneous PDE is given by

u(x, t) = 1 +A0e
−t +

∞∑
n=1

(
Ane

−(n2+1)t cos(nx) +Bne
−(n2+1)t sin(nx)

)
.

Step 5 — Particular Solution: We now use the initial conditions to recover the particular solution.
The initial conditions imply

u(x, 0) = g(x) =⇒ 1 +A0 +

∞∑
n=1

(
An cos(nx) +Bn sin(nx)

)
= g(x).

Writing g(x) in terms of its full Fourier series and equating coefficients implies

A0 = −1 +
1

2π

∫ π

−π
g(x) dx,

An =
1

π

∫ π

−π
g(x) cos(nx) dx,

Bn =
1

π

∫ π

−π
g(x) sin(nx) dx.
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3 Separation of Variables III

We now explain how one would do separation of variables in the hardest case when we have an inho-
mogeneous PDE with inhomogeneous boundary conditions. We deal with the inhomogenous
boundary conditions by subtracting the inhomogenous terms away via a change of variables.

1. We define
u(x, t) = v(x, t) + w(x, t)

where w(x, t) is chosen to satisfy the inhomogeneous boundary conditions. For second order
PDEs, we can choose w(x, t) to be a polynomial in x of the form

w(x, t) = (Ax2 +Bx+ C)p(t) + (Dx2 + Ex+ F )q(t),

for some constants A,B, . . . F where p(t) and q(t) are the inhomogeneous boundary conditions.
We choose the constants A,B, . . . , F so that w(x, t) solves the boundary conditions, which will
imply that v(x, t) solves a inhomogeneous PDE with homogeneous boundary conditions,
so we can proceed as before (Separation of Variables II).

2. Assume the solution v(x, t) is of the form v(x, t) = X(x)T (t).

3. Use linearity to write the general solution as an infinite linear combination of general solutions
that satisfy the PDE and boundary conditions:

(a) Spatial Problem: Solve the spatial eigenvalue problem.

(b) Time Problem: Decompose the inhomogeneous term into the Fourier series corresponding
to the eigenfunctions from the spatial problem. Then solve the infinite system of inhomo-
geneous time ODEs using the eigenvalues from the spatial problem.

4. Use the initial conditions to solve for the particular solution from the general solution using the
appropriate Fourier coefficients.

Remark 4. The approach in this section also applies to the cases in Section 1 and Section 2. In
particular, it works with homogeneous PDEs with inhomogeneous boundary conditions.

3.1 Example Problems

Problem 3.1. (??) Solve 

utt − 9uxx = 0 0 < x < 1 t > 0

u|t=0 = g(x) 0 < x < 1

ut|t=0 = h(x) 0 < x < 1

u|x=0 = 0 t > 0

ux|x=1 = 1
2 t > 0

Solution 3.1. This is an homogeneous PDE with inhomogeneous mixed boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(x, t) = v(x, t) + w(x, t)

where w(x, t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(x) to be a polynomial in x of the form

w(x, t) = Ax2 +Bx+ C,
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for some constants A,B,C. Substituting w(x) into the boundary conditions gives

C = 0 = w(0)

2A+B =
1

2
= w(1).

By inspection it is clear that B = 1
2 , A = 0, and C = 0 works. Therefore,

w(x) =
1

2
x.

Step 2 — Separation of Variables: For this choice of w(x), the function v(x, t) = u(x, t)−w(x) satisfies
the following homogeneous PDE with homogeneous boundary conditions

vtt − 9vxx = 0 0 < x < 1 t > 0

v|t=0 = g(x)− 1
2x 0 < x < 1

vt|t=0 = h(x) 0 < x < 1

v|x=0 = 0, vx|x=1 = 0 t > 0

We look for a solution of the form v(x, t) = X(x)T (t). For such a solution, the PDE implies

T ′X − kTX ′′ = 0 =⇒ T ′′

32T
=
X ′′

X
= −λ.

This results in the ODEs

X ′′(x) + λX(x) = 0, T ′′(t) + 32λT (t) = 0

with boundary conditions
T (t)X(0) = 0 = T (t)X ′(1).

For non-trivial solutions, we can require T (t) 6≡ 0, X(0) = X ′(1) = 0.

Step 3 — Eigenvalue Problem: We solve the spatial eigenvalue problem{
−X ′′ = λX 0 < x < π

X(0) = X ′(1) = 0.

The eigenvalues and corresponding eigenfunctions (Week 7 Lecture Summary 1.1.4) are

λn =
( (2n− 1)π

2

)2
, Xn(x) = sin

( (2n− 1)π

2
x
)
, n = 1, 2, 3, . . .

Step 4 — Time Problem: The time problem related to the eigenvalues λn is

T ′′n (t) + 32
( (2n− 1)π

2

)2
Tn(t) = 0 for n = 1, 2, . . .

which has solution

Tn(t) = An cos
(3(2n− 1)π

2
t
)

+Bn sin
(3(2n− 1)π

2
t
)
.

where An and Bn are yet to be determined constants. Taking the linear combination of Tn with the
eigenfunctions imply our general solution is of the form,

v(x, t) =

∞∑
n=1

(
An cos

(3(2n− 1)π

2
t
)

+Bn sin
(3(2n− 1)π

2
t
))

sin
( (2n− 1)π

2
x
)
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Step 5 — Particular Solution: The initial conditions imply

v(x, 0) = g(x)− x

2
=⇒

∞∑
n=1

An sin
( (2n− 1)π

2
x
)

= g(x)− x

2

and

vt(x, 0) = h(x) =⇒
∞∑
n=1

Bn
3(2n− 1)π

2
sin
( (2n− 1)π

2L
x
)

= h(x).

The eigenfunction corresponding to symmetric boundary conditions are orthogonal so the coefficients
are given by

An =
〈g(x)− x

2 , Xn(x)〉
〈Xn(x), Xn(x)〉

=

∫ 1

0

(
g(x)− x

2

)
sin
(

(2n−1)π
2 x

)
dx∫ 1

0
sin2

(
(2n−1)π

2 x
)
dx

= 2 ·
∫ 1

0

(
g(x)− x

2

)
sin
( (2n− 1)π

2
x
)
dx

and

Bn =
(3(2n− 1)π

2

)−1 〈h(x), Xn(x)〉
〈Xn(x), Xn(x)〉

=
(3(2n− 1)π

2

)−1
·

∫ 1

0
h(x) sin

(
(2n−1)π

2 x
)
dx∫ 1

0
sin2

(
(2n−1)π

2 x
)
dx

=
4

3(2n− 1)π
·
∫ 1

0

h(x) sin
( (2n− 1)π

2
x
)
dx.

Step 6 — Final Answer: We now summarize our solution. Recalling that u = v + w, we have

u(x, t) =

∞∑
n=1

(
An cos

(3(2n− 1)π

2
t
)

+Bn sin
(3(2n− 1)π

2
t
))

sin
( (2n− 1)π

2
x
)

+
1

2
x

where the coefficients are given by

An = 2 ·
∫ 1

0

(
g(x)− x

2

)
sin
( (2n− 1)π

2
x
)
dx, Bn =

4

3(2n− 1)π
·
∫ 1

0

h(x) sin
( (2n− 1)π

2
x
)
dx.

Problem 3.2. (??) Solve 
ut − kuxx = e−x 0 < x < π t > 0

u|t=0 = g(x) 0 < x < π

ux|x=0 = 1 t > 0

ux|x=π = 0 t > 0.

Solution 3.2. This is an inhomogeneous PDE with inhomogeneous Neumann boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(x, t) = v(x, t) + w(x, t)

where w(x, t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(x) to be a polynomial in x of the form

w(x, t) = Ax2 +Bx+ C,
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for some constants A,B,C. Substituting w(x) into the boundary conditions gives

B = 1 = w(0, t)

2πA+B = 0 = w(π, t).

By inspection it is clear that B = 1, C = − 1
2π , and C = 0 works. Therefore,

w(x) = − 1

2π
x2 + x.

Step 2 — Separation of Variables: For this choice of w(x), the function v(x, t) = u(x, t)−w(x) satisfies
the following inhomogeneous PDE with homogeneous boundary conditions

vt − kvxx = e−x − k 1
π 0 < x < π t > 0

v|t=0 = g(x) + 1
2πx

2 − x 0 < x < π

vx|x=0 = vx|x=π = 0 t > 0.

We look for a solution of the form v(x, t) = X(x)T (t). For such a solution, the PDE implies

T ′X − kTX ′′ = 0 =⇒ T ′

kT
=
X ′′

X
= −λ.

This results in the ODEs
X ′′(x) + λX(x) = 0,

with boundary conditions
T (t)X ′(0) = 0 = T (t)X ′(π).

For non-trivial solutions, we can require T (t) 6≡ 0, X ′(0) = X ′(π) = 0.

Step 3 — Eigenvalue Problem: We solve the spatial eigenvalue problem{
−X ′′ = λX 0 < x < π

X ′(0) = X ′(π) = 0.

This is a standard eigenvalue problem and the eigenvalues and corresponding eigenfunctions are

λ0 = 0, X0 = 1 λn = n2, Xn(x) = cos(nx), n = 1, 2, 3, . . .

Step 4 — Time Problem: We now use the method of eigenfunction expansion to find Tn(t) that
satisfies the inhomogeneous equation. By the principle of superposition, the general solution to the
homogeneous PDE is of the form

v(x, t) = T0 +

∞∑
n=1

Tn(t) cos(nx).

Differentiating term by term (valid since the boundary conditions are homogeneous) and plugging this
into our inhomogeneous PDE gives

vt − kvxx = T ′0 +

∞∑
n=1

T ′n(t) cos(nx) + k

∞∑
n=1

Tn(t)n2 cos(nx) = e−x − k 1

π
.

We write the right hand side of the above equation as the Fourier cosine series

e−x − k 1

π
= a0 +

∞∑
n=1

an cos(nx)
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where

an =
2

π

∫ π

0

(
e−x − k 1

π

)
cos(nx) dx =

2

π
· (−1)n+1e−π + 1

n2 + 1

and

a0 =
1

π

∫ π

0

(
e−x − k 1

π

)
dx =

−k + 1 + sinh(π)− cosh(π)

π
.

Equating coefficients, we have for n ≥ 1,

T ′0(t) = a0 T ′n(t) + kn2Tn(t) = an.

This is a first order linear ODE. Its solution can be found using an integrating factor of the form ekn
2t,

leading to the general solution

T0(t) = a0t+A0, Tn(t) = Ane
−kn2t +

∫ t

0

ane
−kn2(t−s) ds = Ane

−kn2t +
an
kn2
− ane

−kn2t

kn2
.

where A0, An are yet to be determined constants.

Step 5 — Particular Solution: We now use the initial conditions to determine A0, and An. The
initial conditions imply

v(x, 0) = A0 +

∞∑
n=1

An cos(nx) = g(x) +
1

2π
x2 − x.

The coefficients A0, An are the coefficients of the Fourier cosine series of g(x) + 1
2πx

2 − x, which is
given explicitly by

A0 =
1

π

∫ π

0

(
g(x) +

1

2π
x2 − x

)
dx An =

2

π

∫ π

0

(
g(x) +

1

2π
x2 − x

)
cos(nx) dx.

Step 6 — Final Answer: We now summarize our solution. Recalling that u = v + w, we have

u(x, t) =
−k + 1 + sinh(π)− cosh(π)

π
· t+A0

+

∞∑
n=1

(
An · e−kn

2t +
2

πkn2
· (−1)n+1e−π + 1

n2 + 1
(1− e−kn

2t)

)
cos(nx)− 1

2π
x2 + x

where A0 and An are given by

A0 =
1

π

∫ π

0

(
g(x) +

1

2π
x2 − x

)
dx An =

2

π

∫ π

0

(
g(x) +

1

2π
x2 − x

)
cos(nx) dx.

Problem 3.3. (? ? ?) Solve 
ut − kuxx = 0 0 < x < 1 t > 0

u|t=0 = x 0 < x < 1

u|x=0 = sin(t) t > 0

(ux + u)|x=1 = 2 t > 0.
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Solution 3.3. This is an homogeneous PDE with time dependent boundary conditions.

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change
of variables to reduce our problem to the case with homogeneous boundary conditions. We set

u(x, t) = v(x, t) + w(x, t)

where w(x, t) is chosen to satisfy the inhomogeneous boundary conditions. For second order PDEs,
we can choose w(x, t) to be a polynomial in x of the form

w(x, t) = (Ax2 +Bx+ C) sin(t) + (Dx2 + Ex+ F )2,

for some constants A,B, . . . F . Substituting w(x, t) into the boundary conditions gives

C sin(t) + 2F = sin(t) = w(0, t)
(3A+ 2B + C) sin(t) + (3D + 2E + F )2 = 2 = wx(1, t) + w(1, t).

By inspection it is clear that C = 1, B = −1
2 , and E = 1

2 with the rest of the coefficients zero works.
Therefore,

w(x, t) = (−2−1x+ 1) sin(t) + (2−1x)2 =
2− sin(t)

2
x+ sin(t).

Step 2 — Separation of Variables: Since v(x, t) = u(x, t)− w(x, t), our choice of w(x, t) implies
vt − kvxx = cos(t)

2 x− cos(t) 0 < x < 1 t > 0

v|t=0 = 0 0 < x < 1

v|x=0 = (vx + v)|x=1 = 0 t > 0.

This is an inhomogeneous PDE with homogeneous boundary conditions. We begin by using separation
of variables to solve the homoegenous PDE. We look for a solution of the form v(x, t) = T (t)X(x).
For such a solution, the PDE implies

T ′X − kTX ′′ = 0 =⇒ T ′

kT
=
X ′′

X
= −λ.

This results in the ODE
X ′′(x) + λX(x) = 0,

with boundary conditions
T (t)X(0) = T (t)X ′(1) + T (t)X(1) = 0

For non-trivial solutions, we can require T (t) 6≡ 0, X(0) = X ′(1) +X(1) = 0.

Step 3 — Eigenvalue Problem: We solve the spatial eigenvalue problem{
−X ′′ = λX 0 < x < 1

X(0) = X ′(1) +X(1) = 0.

This eigenvalue problem can be solved similarly to the one in Problem 1.3. The eigenvalues and
corresponding eigenfunctions are given by

λn = β2
n, Xn(x) = sin(βnx), n = 1, 2, 3, . . .

where βn are the ordered positive roots of

tan(β) = −β.
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Since the boundary conditions are symmetric, we have that the eigenfunctions sin(βnx) are orthogonal.

Step 4 — Time Problem: We now use the method of eigenfunction expansion to find Tn(t) that
satisfies the inhomogeneous equation. By the principle of superposition, the general solution to the
homogeneous PDE is of the form

v(x, t) =

∞∑
n=1

Tn(t) sin(βnx).

Differentiating term by term (valid since the boundary conditions are homogeneous) and plugging this
into our inhomogeneous PDE gives

vt − kvxx =

∞∑
n=1

T ′n(t) sin(βnx) + k

∞∑
n=1

Tn(t)β2
n sin(βnx) = −cos(t)

2
x+ cos(t).

We fix t and write the right hand side of the above equation as the generalized Fourier series

−cos(t)

2
x+ cos(t) =

∞∑
n=1

bn(t) sin(βnx)

where

bn(t) =

∫ 1

0

(
cos(t)

2 x− cos(t)
)

sin(βnx) dx∫ 1

0
sin2(βnx) dx

.

Equating coefficients, we have for n ≥ 1,

T ′n(t) + kβ2
nTn(t) = bn(t).

This is a first order linear ODE. Its solution can be found using an integrating factor of the form ekn
2t,

leading to the general solution

Tn(t) = Cne
−kβ2

nt +

∫ t

0

bn(s) exp(−kβ2
n(t− s)) ds.

where Cn is a yet to be determined constant.

Step 5 — Particular Solution: We now use the initial conditions to determine Cn. The initial condi-
tions imply

v(x, 0) =

∞∑
n=1

Cn sin(βnx) = 0.

Clearly we must have Cn = 0 for all n.

Step 6 — Final Answer: We now summarize our solution. Recalling that u = v + w, we have

u(x, t) =

∞∑
n=1

(∫ t

0

bn(s) exp(−kβ2
n(t− s)) ds

)
sin(βnx) +

2− sin(t)

2
x+ sin(t),

where βn are the ordered positive roots of tan(β) = −β and

bn(s) =

∫ 1

0

(
cos(s)

2 x− cos(s)
)

sin(βnx) dx∫ 1

0
sin2(βnx) dx

.
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