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1 Fourier Series

We begin by introducing the Fourier series of a function. The series representations of solutions to
PDEs on a finite interval will be expressed in the form of these series. The series coefficients are
determined by the initial conditions of the problems. The Fourier series of f is of the form

f(x) =
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
. (1)

There are 3 main types of coefficients:

1. Full Fourier Series: The coefficients of the (full) Fourier series of f : [−L,L]→ R is given by

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx and bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx. (2)

The partial sums of this Fourier series satisfies periodic boundary conditions, f(−L) = f(L) and
f ′(−L) = f ′(L).

2. Fourier Cosine Series: The coefficients of the Fourier cosine series of f : [0, L] → R is given by
the coefficients of the full Fourier series of the even extension of f :

an =
1

L

∫ L

−L
feven(x) cos

(nπx
L

)
dx =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx (3)

bn =
1

L

∫ L

−L
feven(x) sin

(nπx
L

)
dx = 0. (4)

To compute bn, we used the fact that the product of an even and odd function is odd. The
partial sums of this Fourier series satisfies Neumann boundary conditions f ′(0) = f ′(L) = 0.

3. Fourier Sine Series: The coefficients of the Fourier sine series of f : [0, L] → R is given by the
coefficients of the full Fourier series of the odd extension of f :

an =
1

L

∫ L

−L
fodd(x) cos

(nπx
L

)
dx = 0 (5)

bn =
1

L

∫ L

−L
fodd(x) sin

(nπx
L

)
dx =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx. (6)

To compute an, we used the fact that the product of an even and odd function is odd. The
partial sums of this Fourier series satisfies Dirichlet boundary conditions f(0) = f(L) = 0.

1.1 Derivation of the Fourier Series Using Orthogonality

Suppose (Xn)n≥1 is an orthogonal sequence of functions on [a, b]. The general Fourier series of f is a
series of the form

f(x) =

∞∑
n=1

cnXn(x).

To solve for the Fourier coefficient ck, we can take the inner product of both sides by Xk

〈f,Xk〉 =

〈 ∞∑
n=1

cnXn, Xk

〉
=

∞∑
n=1

cn〈Xn, Xk〉 = ck〈Xk, Xk〉 =⇒ ck =
〈f,Xk〉
〈Xk, Xk〉

. (7)

since orthogonality implies that 〈Xn, Xk〉 = 0 unless n = k.
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We can use this formula to derive the Fourier coefficients of the full Fourier series. By the product
sum identities, it is easy to check that Xn = cos(nπxL ) and Yn = sin(nπxL ) for n ≥ 1 and X0 = 1

2 for
n = 0 are orthogonal. The full Fourier series is of f : [−L,L]→ R is of the form

f(x) = a0X0(x) +

∞∑
n=1

(
anXn(x) + bnYn(x)

)
=
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
.

Its coefficients for n ≥ 1 are

an =
〈f,Xn〉
〈Xn, Xn〉

=

∫ L
−L f(x)Xn(x) dx∫ L
−LX

2
n(x) dx

=

∫ L
−L f(x) cos(nπxL ) dx∫ L
−L cos2(nπxL ) dx

=
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

bn =
〈f, Yn〉
〈Yn, Yn〉

=

∫ L
−L f(x)Yn(x) dx∫ L
−L Y

2
n (x) dx

=

∫ L
−L f(x) sin(nπxL ) dx∫ L
−L sin2(nπxL ) dx

=
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

and the coefficient for a0 is given by

an =
〈f,X0〉
〈X0, X0〉

=

∫ L
−L f(x)X0(x) dx∫ L
−LX

2
0 (x) dx

=

∫ L
−L f(x) 1

2 dx∫ L
−L

1
22 dx

=
1

L

∫ L

−L
f(x) dx

which is what we get if we naively extend the formula for an to a0.

Remark 1. The coefficients of the Fourier cosine and sine series can be derived in a similar way. We
can also use symmetry and the uniqueness of the Fourier coefficients to recover these coefficients from
the full Fourier series.

Remark 2. It turns out that the Fourier series form a orthogonal basis on the space of square
integrable functions L2([−L,L]). This means that every square integrable function can be written as
a linear combination of its orthogonal basis elements. The Fourier coefficients are an explicit formula
for the scalars in this linear combination.

1.2 Derivation of the Fourier Series Using Least-Square Approximation

Suppose (Xn)n≥1 is an orthogonal sequence of functions on [a, b]. The general Fourier series of f is a
series of the form

f(x) =

∞∑
n=1

cnXn(x).

For fixed N ≥ 1, we want to find coefficients (cn) that minimizes the mean-squared error

EN = EN (c1, . . . , cN ) =

∥∥∥∥f − N∑
n=1

cnXn

∥∥∥∥2
L2

=

∫ L

−L

∣∣∣∣f(x)−
N∑
n=1

cnXn(x)

∣∣∣∣2 dx.
We used the notation ‖ · ‖2L2 = 〈·, ·〉 to denote the inner product norm. If we expand the square terms,
then

EN =

∫ L

−L
|f(x)|2 dx− 2

N∑
n=1

cn

∫ L

−L
f(x)Xn(x) dx+

N∑
n,m=1

cncm

∫ L

−L
Xn(x)Xm(x) dx.

= 〈f, f〉 − 2

N∑
n=1

cn〈f,Xn〉+

N∑
n=1

c2n〈Xn, Xn〉
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since 〈Xn, Xm〉 = 0 if n 6= m by orthogonality. We can now differentiate with respect to c1, . . . , cN to
find critical point conditions,

∂ckEN = −2〈f,Xk〉+ 2ck〈Xk, Xk〉 = 0 =⇒ ck =
〈f,Xk〉
〈Xk, Xk〉

which agrees with the formula in (7). It is easy to see that we have a minimum at the critical point,
because the Hessian of EN is positive definite because it is a diagonal matrix with diagonal entries
〈Xk, Xk〉 = ‖Xk‖2L2 > 0.

1.3 Example Problems

Problem 1.1. Decompose the following functions into its Fourier series on the interval [−1, 1] and
sketch the graph of the sum of the first three nonzero terms of its Fourier series.

(a) f(x) = x

(b) f(x) = |x|

Solution 1.1.

(Part a) We find the Fourier coefficients defined in (2):

an: Since f(x) = x is odd, the an coefficients are zero.

bn: Using integration by parts,

bn =

∫ 1

−1
x sin(nπx) dx = 2

∫ 1

0

x sin(nπx) dx = −2(−1)n

πn
.

The corresponding Fourier series (1) of x is given by

x =

∞∑
n=1

bn sin(nπx) = −
∞∑
n=1

2(−1)n

πn
sin(nπx).

(Part b) We find the Fourier coefficients defined in (2):

a0: A simple computation shows

a0 =

∫ 1

−1
|x| dx = 2

∫ 1

0

x dx = 1.

an: For n ≥ 1, we can integration by parts,

an =

∫ 1

−1
|x| cos(nπx) dx = 2

∫ 1

0

x cos(nπx) dx =
2((−1)n − 1)

π2n2
.

We had to treat the a0 case separately, because we would’ve divided by 0 in the computation
above if n = 0.

bn: Since f(x) = |x| is even, the bn coefficients are zero.

The corresponding Fourier series (1) of |x| is given by

f(x) =
a0
2

+

∞∑
n=1

an cos(nπx) =
1

2
+

∞∑
n=1

2((−1)n − 1)

π2n2
cos(nπx).

Plots: The blue plots of the first 3 non-zero terms of the series are displayed below:
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Remark 3. The series in part (a) and part (b) are also the respective Fourier sine and cosine series
of f(x) = x on [0, 1] (shown in red).

Remark 4. It appears that the partial sums of the Fourier series give a good approximation of the
function on [−1, 1]. The blue lines seem to converge to the periodic extensions of f to R. We will show
in the next section that the Fourier series do converge to the original function f almost everywhere.

The Fourier series in part (b) appears to approximate the original solution much better than the
Fourier series in part (a). The Fourier series in part (b) actually converges uniformly, which is a
stronger form of convergence, which states that all points are close to the original function when we
take enough terms in the sum.
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2 Convergence of Fourier Series

Let (Xn)n≥1 be a sequence of orthogonal functions. Recall that its Fourier series is given by

f(x) =

∞∑
n=1

cnXn(x) where cn =
〈f,Xn〉
〈Xn, Xn〉

.

The equality here is misleading, because it might not be true that f(x) =
∑∞
n=1 anXn(x) for all points

x. In fact, it might not even be true that the sum on the right converges. In this section, we will go
over several classes of functions and orthogonal functions such that the equality is meaningful.

2.1 Modes of Convergence

Let (fn) be a sequence of functions on [a, b]. We are interested in 3 notions of convergence

1. Pointwise: We say fn converges to f pointwise on an interval I ⊆ [a, b] if for every x ∈ I,

lim
n→∞

|fn(x)− f(x)| = 0.

This says that for every point x ∈ I, fn(x) eventually gets close to f(x). How fast fn(x)
approaches f(x) might depend on the point we pick.

2. Uniform: We say fn converges to f uniformly on [a, b] if

lim
n→∞

max
x∈[a,b]

|fn(x)− f(x)| = lim
n→∞

‖fn(x)− f(x)‖∞ = 0.

This says that the maximum distance between fn(x) and f(x) get small, so fn is close to f for
all points in [a, b].

3. Mean-Square: We say fn converges to f in L2 if

lim
n→∞

∫ b

a

|fn(x)− f(x)|2 = lim
n→∞

‖fn(x)− f(x)‖2L2 = 0.

This says that on average, the squared distance between fn and f is small. It is possible that
fn(x) 6→ f(x) at some points in this notion of convergence.

It is easy to check that uniform convergence implies pointwise convergence and L2 convergence. The
Fourier series converges if its partial sums converge, i.e.

fN =

N∑
n=1

akXk(x)→ f

in one of the 3 notations of convergence above. Since this is the “best” notion of convergence is uniform
convergence, we will state a theorem that will allow us to check if an infinite series converges uniformly.

Theorem 1 (Weierstrass M-test)

If (fn) is a sequence of functions on [a, b] satisfying

max
x∈[a,b]

|fn(x)| = ‖fn‖∞ ≤Mn

and
∑∞
n=1Mn <∞ then the series

∑∞
n=1 fn(x) converges uniformly on [a, b].
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Proof. We prove convergence directly using the definition of uniform convergence. Let ε > 0.

Finding a Candidate for the Limit: Since
∑∞
n=1Mn < ∞ and Mn ≥ 0, the series converges so

there exists a Nε such that for all M > N > Nε,

M∑
n=N

Mn ≤
∞∑
n=N

Mn ≤
ε

2
.

Therefore, for all M > N > Nε, the triangle inequality implies that for any x ∈ [a, b],∣∣∣∣ M∑
n=1

fn(x)−
N∑
n=1

fn(x)

∣∣∣∣ =

∣∣∣∣ M∑
n=N

fn(x)

∣∣∣∣ ≤ M∑
n=N

|fn(x)| ≤
M∑
n=N

Mn ≤
ε

2
.

We have shown that the partial sums are a Cauchy sequence, so the partial sums converge pointwise
to some function f(x).

Uniform Convergence: We now prove that this convergence to f is uniform. For any x ∈ [a, b],∑M
n=1 fn(x) converges to f(x) so there exists a Mx,ε > Nε such that |

∑M
n=1 fn(x)− f(x)| ≤ ε

2 for all
M > Mx,ε. Therefore, for N > Nε and M > max(N,Mx,ε),∣∣∣∣f(x)−

N∑
n=1

fn(x)

∣∣∣∣ ≤ ∣∣∣∣f(x)−
M∑
n=1

fn(x)

∣∣∣∣+

∣∣∣∣ M∑
n=1

fn(x)−
N∑
n=1

fn(x)

∣∣∣∣ ≤ ε
The upperbound is independent of x, so for any N > Nε, we have

max
x∈[a,b]

∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣ ≤ ε,
so the convergence is uniform.

Uniform convergence is also a standard condition for the validity of term by term integration.

Theorem 2 (Term by Term Integration)

If
∑∞
n=1 fn(x) = f(x) uniformly on [a, b] and fn are continuous on [a, b] then the sum is continuous

on [a, b] and
∞∑
n=1

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Term by term differentiation is not as well behaved, so we need to assume a bit more. We essentially
need to ensure that the derivative converges uniformly and that the original series can be recovered
after integrating term by term.

Theorem 3 (Term by Term Differentiation)

If
∑∞
n=1 fn(c) = f(c) at some c ∈ [a, b] and

∑∞
n=1 f

′
n(x) converges uniformly on [a, b], then∑∞

n=1 fn(x) converges to some function f(x) uniformly on [a, b] and

∞∑
n=1

f ′n(x) dx = f ′(x).
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2.2 Convergence of Full Fourier Series

We now summarize some convergence results for the full Fourier series of a function f : [−L,L]→ R.
Given a function f , we denote the Nth partial sum of the Fourier series with

fN (x) =
a0
2

+

N∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where a0, (an) and (bn) are the corresponding Fourier coefficients of f defined in (2).

2.2.1 Pointwise Convergence

Let

fext(x) = f
(
x−

(⌈x+ L

2L
− 1
⌉
(2L)

))
denote the 2L periodic extension of f . Under some mild conditions on the derivatives of f , the
Fourier series converges to the function f whenever f is continuous, and to its midpoint at the jump
discontinuities.

Theorem 4 (Pointwise Convergence of Fourier Series)

Suppose f and f ′ are piecewise continuous on [−L,L]. The full Fourier series of f converges

pointwise to fext(x
+)+fext(x

−)
2 . In particular, for every x ∈ R

fN (x) = a0 +

N∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
→ fext(x

+) + fext(x
−)

2

Remark 5. This theorem implies that if f is continuous on [−L,L] and f ′ is piecewise continuous on
[−L,L], then the full Fourier series of f converges pointwise to f on (−L,L).

2.2.2 Uniform Convergence

Under some mild conditions on the derivatives of f , the Fourier series converges uniformly whenever
its periodic extension is continuous.

Theorem 5 (Uniform Convergence of Fourier Series)

If f is continuous on [−L,L] and f ′ is piecewise continuous on [−L,L] and f(−L) = f(L) then its
full Fourier series converges uniformly to f on [−L,L].

By the uniform limit theorem, the uniform limit of continuous functions are continuous. This implies
that the continuity condition on f is necessary.

Corollary 1 (Uniform Limit Theorem)

If f is discontinuous on [−L,L] then its Fourier series cannot converge uniformly to f on [−L,L].

2.2.3 L2 Convergence

We can show convergence in L2 under some very weak assumptions on f . We don’t need to anything
about the continuity of f or its derivatives, we only need the square integral of f to be finite.

Theorem 6 (L2 Convergence of Fourier Series)

If
∫ L
−L |f(x)|2 dx <∞, then its full Fourier series converges to f in L2.

A consequence of this result can be used to compute infinite series.

Page 7 of 15



August 10, 2020 APM346 – Week 8 Justin Ko

Corollary 2 (Parseval’s Identity)

If
∫ L
−L |f(x)|2 dx <∞, then

a20
2

+

∞∑
n=1

a2n + b2n =
1

L

∫ L

−L
|f(x)|2 dx.

Proof. From the mean square derivation, the optimal choice of coefficients cn = 〈f,XN 〉
〈Xn,Xn〉

0 ≤ EN (c1, . . . , cN ) = 〈f, f〉 −
N∑
n=1

〈f,Xn〉2

〈Xn, Xn〉
= 〈f, f〉 −

N∑
n=1

c2n〈Xn, Xn〉.

If f converges in L2 then EN → 0. This implies that for

N∑
n=1

c2n〈Xn, Xn〉 =

N∑
n=1

〈f,XN 〉2

〈Xn, Xn〉
→ 〈f, f〉.

Because
∫ L
−L |f(x)|2 dx < ∞, the full Fourier series converges in L2. Therefore, applying this general

result to the eigenfunctions corresponding to the full Fourier series implies

a20
2

+

∞∑
n=1

a2n + b2n =
1

L

∫ L

−L
|f(x)|2 dx

since 〈Xn, Xn〉 = 〈Yn, Yn〉 = L for n ≥ 1 and 〈X0, X0〉 = L
2 .

2.2.4 Term by Term Manipulations of Fourier Series

Fourier series are nicer than general infinite series, so we can do manipulations of the series term by
term in much more general settings. We state some easy to check sufficient conditions.

Theorem 7 (Linearity of Fourier Series)

If f1, f2 and f ′1, f
′
2 are piecewise continuous on [−L,L] then the full Fourier series of c1f1(x)+c2f2(x)

is the corresponding linear combination of the full Fourier series for f1 and f2.

Theorem 8 (Term by Term Integration of Fourier Series)

If f and f ′ are piecewise continuous on [−L,L] then its full Fourier series can be integrated term
by term to give a series that converges pointwise to the integral of f .

Remark 6. The series we get from term by term integration might not necessarily be a Fourier series
because of the a0x

2 term. We can use the Fourier series of x and linearity to write it as a Fourier series.

Theorem 9 (Term by Term Differentiation of Fourier Series)

If f is continuous on [−L,L], f ′ is piecewise continuous on [−L,L], f ′′ is piecewise continuous on
[−L,L] and f(−L) = f(L) then its full Fourier series can be differentiated term by term to give a
series that converges to f ′ pointwise where f ′′ exists.

Remark 7. The conditions on term by term differentiation imply that f ′ has a pointwise convergent
Fourier series. If we compute the Fourier coefficients of f ′, then under the continuity assumption on
f , we will see that the Fourier series of f ′ is

f ′(x) =

∞∑
n=1

nπ

L

(
− an sin

(nπx
L

)
+ bn cos

(nπx
L

))
where an and bn are the corresponding Fourier coefficients of f .
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2.3 Convergence of General Fourier Series

Consider the eigenvalue problem

−X ′′(x) = λX(x) a < x < b (8)

with symmetric boundary conditions. We will show that the eigenfunctions of (8) form an orthogonal
basis for We have the following fact about its eigenvalues and eigenfunctions.

Theorem 10 (Eigenvalues and Eigenfunctions)

1. The eigenvalues (λn) of (8) are real and they form an infinite sequence such that λn →∞.

2. The eigenfunctions (Xn) corresponding to distinct eigenvalues are orthogonal with respect to
the L2([a, b]) inner product.

This implies that we have a sequence an infinite sequence of orthogonal eigenfunctions (Xn), so we
can define the general Fourier series

f(x) =

∞∑
n=1

cn〈f,Xn〉 where cn =
〈f,Xn〉
〈Xn, Xn〉

. (9)

The general Fourier series also converge to the original function under some stronger assumptions than
the ones for full Fourier series.

Theorem 11 (Uniform Convergence of General Fourier Series)

If f ∈ C2([a, b]) and f satisfies the given symmetric boundary conditions, then the general Fourier
series (9) converges uniformly to f on [a, b].

The next result implies that the eigenfunctions form a orthogonal basis for L2 functions.

Theorem 12 (L2 Convergence of General Fourier Series)

If f ∈ L2([a, b]), then the general Fourier series (9) converges to f in L2 on [a, b].

This Theorem actually implies a stronger result. If we adapt the proof of Corollary 2 then we also
that (Xn) satisfies the general Parseval’s identity

∞∑
n=1

c2n〈Xn, Xn〉 = 〈f, f〉. (10)

This implies that the eigenfunctions form a complete orthogonal basis for L2 functions. These notions
of convergence confirms the validity of separation of variables for a large class of boundary value
problems we introduce in the Week 9 lecture summaries.

2.4 Example Problems

Problem 2.1. (?) Without computing Fourier series of the following functions on [−π, π], determine
whether the Fourier series converges pointwise to f(x) on (−π, π) or uniformly to f(x) on [−π, π].

(a) f(x) =


2 −π ≤ x < 0
3
2 x = 0

cosx 0 < x ≤ π
(b) f(x) = x2 + x

Page 9 of 15



August 10, 2020 APM346 – Week 8 Justin Ko

Solution 2.1. Recall that fN denotes the Nth partial sum of the full Fourier series of f .

Part (a)

1. Pointwise Convergence: The Fourier series clearly converges pointwise whenever f(x) is con-
tinuous by the pointwise convergence theorem. We now examine the behavior at the point of
discontinuity, x = 0. By the pointwise convergence theorem, we have

lim
N→∞

fN (0) =
fext(0

+) + fext(0
−)

2
=

2 + 1

2
=

3

2
.

In particular, since f(0) = 3
2 we have

lim
N→∞

|fN (0)− f(0)| =
∣∣∣ lim
N→∞

fN (0)− f(0)
∣∣∣ = 0,

so the Fourier series converges pointwise on (−π, π).

2. Uniform Convergence: f is continuous, f ′ is piecewise continuous, but f does not satisfy the
periodic boundary conditions f(−π) = 2 6= −1 = f(π). This is not enough to show that the
series does not uniformly converge because the statement of the uniform convergence theorem
only goes in one direction.

To see the series does not converge uniformly we first check if the series converges at the end-
points. By the pointwise convergence theorem applied at the point π,

fN (π) =
fext(π

+) + fext(π
−)

2
=
f(−π) + f(π)

2
=

2− 1

2
=

1

2

and therefore,

lim
N→∞

|fN (π)− f(π)| =
∣∣∣ lim
N→∞

fN (π)− f(π)
∣∣∣ =

1

2
≥ 0.

Since the series does not converge at one of the endpoints, we have

lim
N→∞

‖fN (x)− f(x)‖∞ := lim
N→∞

sup
x∈[−π,π]

|fN (x)− f(x)| ≥ lim
N→∞

|fN (π)− f(π)| = 3

2
6= 0,

so fN does not converge uniformly to f on [−π, π].

Part (b)

1. Pointwise Convergence: f(x) = x2 + x is continuous, so f(x+) = f(x−) for all x ∈ (−π, π). By
the pointwise convergence theorem, for all x ∈ (−π, π) we have

lim
N→∞

fN (x) =
fext(x

+) + fext(x
−)

2
= f(x).

Therefore, fN converges pointwise on (−π, π).

2. Uniform Convergence: f is continuous, f ′ is piecewise continuous, but f does not satisfy the
periodic boundary conditions f(−π) = π2 − π 6= π2 + π = f(π). This is not enough to show
that the series does not uniformly converge because the statement of the uniform convergence
theorem only goes in one direction.

To see the series does not converge uniformly we first check if the series converges at the end-
points. By the pointwise convergence theorem applied at the point π,

fN (π) =
fext(π

+) + fext(π
−)

2
=
f(−π) + f(π)

2
=
π2 + π + π2 − π

2
= π2
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and therefore,

lim
N→∞

|fN (π)− f(π)| ≥
∣∣∣ lim
N→∞

f(π)− fN (π)
∣∣∣ = π2 + π − π2 = π.

Since the series does not converge at one of the endpoints, we have

lim
N→∞

‖fN (x)− f(x)‖∞ := lim
N→∞

sup
x∈[−π,π]

|fN (x)− f(x)| ≥ lim
N→∞

|fN (π)− f(π)| ≥ π 6= 0,

so fN does not converge uniformly to f on [−π, π].

Problem 2.2. (?) Find the Fourier sine series of f(x) = x on the interval (0, π). Show that

∞∑
n=1

1

n2
=
π2

6
.

Solution 2.2. The sine series is the Fourier series of the odd extension of f(x) = x to −π ≤ x ≤ π.
We just compute the coefficients

a0: Since fext(x) = x is odd, the coefficient is given by

a0 = 0.

an: Since fext(x) cos(nx) = x cos(nx) is odd, the coefficient is given by

an = 0.

bn: Since fext(x) sin(nx) = x sin(nx) is even, the coefficient is given by

bn =
2

π

∫ π

0

f(x) sin(nx) dx =
2

π

∫ π

0

x sin(nx) dx = 2 · sin(πn)− πn cos(πn)

πn2
=

2(−1)n+1

n
.

The corresponding Fourier sine series is given by

f(x) =
a0
2

+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
=

∞∑
n=1

2(−1)n+1

n
· sin(nx).

We now apply Parseval’s identity. Notice that for the odd extension of x to [−π, π],

1

π

∫ π

−π
fext(x)2 dx =

2

π

∫ π

0

x2 dx =
2π2

3
.

Therefore, by Parseval’s identity on the sine series, we have

2π2

3
=
a20
2

+

∞∑
n=1

(a2n + b2n) =

∞∑
n=1

4

n2

which implies
∞∑
n=1

1

n2
=
π2

6
.

Problem 2.3. (??)
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(a) Find Fourier series of f(x) =

{
0 −2 ≤ x < 0

2− x 0 ≤ x ≤ 2
and plot the extension of this function to the

whole line.

(b) Determine whether the Fourier series converges pointwise to f(x) on (−2, 2) and uniformly to
f(x) on [−2, 2].

(c) Compute
∞∑
n=1

1

(2n− 1)2

Solution 2.3.

(Part a) The Fourier series is given by

a0: The coefficient is given by

a0 =
1

2

∫ 2

−2
f(x) dx =

1

2

∫ 2

0

2− x dx = 1.

an: Using integration by parts, the coefficient is given by

an =
1

2

∫ 2

−2
f(x) cos

(nπx
2

)
dx =

1

2

∫ 2

0

(2− x) cos
(nπx

2

)
dx =

2− 2 cos(πn)

π2n2
=

2− 2(−1)n

π2n2
.

bn: Using integration by parts, the coefficient is given by

an =
1

2

∫ 2

−2
f(x) sin

(nπx
2

)
dx =

1

2

∫ 2

0

(2− x) sin
(nπx

2

)
dx =

2πn− 2 sin(πn)

π2n2
=

2

πn
.

The corresponding Fourier series is given by

f(x) =
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+bn sin

(nπx
L

))
=

1

2
+

∞∑
n=1

(2− 2(−1)n

π2n2
·cos

(nπx
2

)
+

2

πn
·sin

(nπx
2

))
.

By the pointwise convergence theorem, the series converges pointwise to the average of the left and
right endpoints of the periodic extension of f(x) to R. The plot of the Fourier series is given below:

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2
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(Part b) We now examine convergence.

1. Pointwise Convergence: By the pointwise convergence theorem, we have

lim
N→∞

fN (0) =
fext(0

+) + fext(0
−)

2
=

2 + 0

2
= 1.

In particular, since f(0) = 2 we have

lim
N→∞

|fN (0)− f(0)| =
∣∣∣ lim
N→∞

fN (0)− f(2)
∣∣∣ = 1 6= 0,

so the Fourier series does not converge pointwise on (−2, 2).

2. Uniform Convergence: Uniform convergence is a stronger condition than pointwise convergence,
that is, if fN (x) converges uniformly on [−2, 2] then fN (x) converges pointwise on (−2, 2). In
particular, since fN (x) does not converge pointwise at x = 0, we have the Fourier series does not
converge uniformly on [−2, 2].

(Part c) We use the pointwise convergence theorem to compute the required series. At x = 0, we
have

lim
N→∞

fN (0) =
fext(0

+) + fext(0
−)

2
=

2 + 0

2
= 1.

Now evaluating the series at x = 0 gives

1

2
+

∞∑
n=1

(2− 2(−1)n

π2n2
· cos

(nπx
2

)
+

2

πn
· sin

(nπx
2

))∣∣∣
x=0

=
1

2
+

∞∑
n=1

2− 2(−1)n

π2n2

=
1

2
+

∞∑
n=1

4

π2(2n− 1)2
.

Therefore, by the pointwise convergence theorem at x = 0, we have

1

2
+

∞∑
n=1

4

π2(2n− 1)2
= 1 =⇒

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

Problem 2.4. (??)

(a) Find the Fourier sine and cosine series of f(x) = x(π − x) on 0 ≤ x ≤ π.

(b) Show that

1− 1

33
+

1

53
− 1

73
+ · · · = π3

32
.

(c) Show that
∞∑
n=1

1

n6
=

π6

945
.

Solution 2.4.

(Part a Cosine Series:) The cosine series is the Fourier series of the even extension of f(x) to
−π ≤ x ≤ π. We compute the coefficients
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a0: Since fext(x) is even, the coefficient is given by

a0 =
2

π

∫ π

0

f(x) dx =
2

π

∫ π

0

x(π − x) dx =
π2

3
.

an: Since fext(x) cos(nx) is even, the coefficient is given by

an =
2

π

∫ π

0

f(x) cos(nx) dx =
2

π

∫ π

0

x(π − x) cos(nx) dx = −2 · πn− 2 sin(πn) + πn cos(πn)

πn3

= −2 · 1 + (−1)n

n2

=

{
0 n is odd

− 4
n2 n is even

.

bn: Since fext(x) sin(nx) is odd, the coefficient is given by

bn = 0.

The corresponding Fourier cosine series is given by

f(x) =
a0
2

+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
=
π2

6
−
∞∑
n=1

1

n2
· cos(2nx).

(Part a Sine Series:) The sine series is the Fourier series of the odd extension of f(x) to −π ≤ x ≤ π.
We compute the coefficients

a0: Since fext(x) is odd, the coefficient is given by

a0 = 0.

an: Since fext(x) cos(nx) is odd, the coefficient is given by

an = 0.

bn: Since fext(x) sin(nx) is even, the coefficient is given by

bn =
2

π

∫ π

0

f(x) sin(nx) dx =
2

π

∫ π

0

x(π − x) sin(nx) dx = 2 · 2− πn sin(πn)− 2 cos(πn)

πn3

= 4 · 1− (−1)n

πn3

=

{
8
πn3 n is odd

0 n is even
.

The corresponding Fourier sine series is given by

f(x) =
a0
2

+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
=

∞∑
n=1

8

π(2n− 1)3
· sin((2n− 1)x).

(Part b) We use the fact sin( (2n−1)π
2 ) = (−1)n+1 to compute the series. f(x) is continuous at π

2 , so
the pointwise convergence theorem implies

f(π/2) =
π2

4
=

∞∑
n=1

8

π(2n− 1)3
· sin((2n− 1)x)

∣∣∣
x=π

2

=

∞∑
n=1

8

π(2n− 1)3
(−1)n+1.
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Rearranging terms implies

1− 1

33
+

1

53
− 1

73
+ · · · =

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

(Part c) To compute the other series, we use Parseval’s identity. Notice that for the odd extension of
x(π − x) to [−π, π],

1

π

∫ π

−π
fext(x)2 dx =

2

π

∫ π

0

(x(π − x))2 dx =
π4

15
.

Therefore, by Parseval’s identity on the sine series, we have

π4

15
=
a20
2

+

∞∑
n=1

(a2n + b2n) =

∞∑
n=1

64

π2(2n− 1)6

which implies
∞∑
n=1

1

(2n− 1)6
=

π6

960
.

To recover the series in the question, we split the sum into its odd and even components,

∞∑
n=1

1

n6
=

∞∑
n=1

1

(2n− 1)6
+

∞∑
n=1

1

(2n)6
=

∞∑
n=1

1

(2n− 1)6
+

1

64

∞∑
n=1

1

n6
.

Rearranging terms and using our formula for the sum of odd terms implies(
1− 1

64

) ∞∑
n=1

1

n6
=

∞∑
n=1

1

(2n− 1)6
=

π6

960
=⇒

∞∑
n=1

1

n6
=

π6

960
· 64

63
=

π6

945
.
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