1 Eigenvalue Problems

We introduce a class of Sturm-Liouville eigenvalue problems. These problems will appear when we solve PDEs on the finite interval using separation of variables. Consider the second order ODE on $[a, b]$ subject to some boundary conditions

$$
\begin{cases}-X^{\prime \prime}(x)=\lambda X(x) & a<x<b \tag{1}\\ a_{1} X(a)+b_{1} X(b)+c_{1} X^{\prime}(a)+d_{1} X^{\prime}(b)=0 & \\ a_{2} X(a)+b_{2} X(b)+c_{2} X^{\prime}(a)+d_{2} X^{\prime}(b)=0 & \end{cases}
$$

where $a_{1}, \ldots, d_{2} \in \mathbb{R}$. A non-trivial solution X to (1) is called an eigenfunction, and the corresponding value of λ is called an eigenvalue.

Remark 1. This terminology should remind you of a concept from linear algebra. Recall that the eigenvalues λ and eigenvectors $\vec{v} \neq 0$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ are solutions to

$$
\boldsymbol{A} \vec{v}=\lambda \vec{v}
$$

Since we are in finite dimensions, there are at most n eigenvalues. If \boldsymbol{A} is symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal. We can think of $L=-\frac{d^{2}}{d x}$ as a linear operator on X. In this context, solutions to the ODE in (1) satisfy

$$
L X=\lambda X
$$

In this "infinite" dimensional case, there are infinitely many eigenvalues.

1.1 Common Eigenvalue Problems

We summarize the eigenfunctions and eigenvalues of several common eigenvalue problems.

1. Dirichlet Boundary Conditions:

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \tag{2}\\
X(0)=X(L)=0
\end{array}\right.
$$

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n \geq 1$
Eigenfunctions: $X_{n}=\sin \left(\frac{n \pi x}{L}\right)$ for $n \geq 1$
2. Neumann Boundary Conditions:

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \tag{3}\\
X^{\prime}(0)=X^{\prime}(L)=0
\end{array}\right.
$$

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n \geq 0$
Eigenfunctions: $X_{n}=\cos \left(\frac{n \pi x}{L}\right)$ for $n \geq 1$ and $X_{0}=\frac{1}{2}$ for $n=0$.
3. Periodic Boundary Conditions:

$$
\left\{\begin{array}{lc}
-X^{\prime \prime}(x)=\lambda X(x) & -L<x<L \tag{4}\\
X(-L)-X(L)=X^{\prime}(-L)-X^{\prime}(L)=0 &
\end{array}\right.
$$

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n \geq 0$
Eigenfunctions: $X_{n}=\cos \left(\frac{n \pi x}{L}\right)$ and $Y_{n}=\sin \left(\frac{n \pi x}{L}\right)$ for $n \geq 1$ and $X_{0}=\frac{1}{2}$ for $n=0$.
4. Dirichlet-Neumann Mixed Boundary Conditions:

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \tag{5}\\
X(0)=X^{\prime}(L)=0
\end{array}\right.
$$

Eigenvalues: $\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}$ for $n \geq 1$
Eigenfunctions: $X_{n}=\sin \left(\frac{(2 n-1) \pi x}{2 L}\right)$ for $n \geq 1$.
5. Neumann-Dirichlet Mixed Boundary Conditions:

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \tag{6}\\
X^{\prime}(0)=X(L)=0
\end{array}\right.
$$

Eigenvalues: $\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}$ for $n \geq 1$
Eigenfunctions: $X_{n}=\cos \left(\frac{(2 n-1) \pi x}{2 L}\right)$ for $n \geq 1$.
Remark 2. Notice that if X is an eigenfunction of (1), then $c X$ is also an eigenfunction for any number $c \neq 0$. This means that the eigenfunctions in the table are unique up to a scaling factor.

1.2 Orthogonality of Eigenfunctions

Definition 1. Consider continuous functions f, g defined on $[a, b]$. The L^{2}-inner product of these functions are given by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

We say that the functions f and g are orthogonal if

$$
\langle f, g\rangle=0
$$

Definition 2. The boundary conditions of (1) are symmetric if

$$
\begin{equation*}
\left.\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right)\right|_{x=a} ^{x=b}=f^{\prime}(b) g(b)-f(b) g^{\prime}(b)-f^{\prime}(a) g(a)+f(a) g^{\prime}(a)=0 \tag{7}
\end{equation*}
$$

for functions f and g that solve (1). All the standard eigenvalue problems we encounter in this course will have symmetric boundary conditions.

Theorem 1 (Orthogonality of Eigenfunctions)

If the eigenvalue problem (1) has symmetric boundary conditions, then the eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof. Let X_{1} and X_{2} be distinct solutions to (1), that is for $\lambda_{1} \neq \lambda_{2}$,

$$
-X_{1}^{\prime \prime}=\lambda_{1} X_{1} \quad \text { and } \quad-X_{2}^{\prime \prime}=\lambda_{2} X_{2}
$$

We can check orthogonality directly,

$$
\left(\lambda_{2}-\lambda_{1}\right)\left\langle X_{1}, X_{2}\right\rangle=\left(\lambda_{2}-\lambda_{1}\right) \int_{a}^{b} X_{1}(x) X_{2}(x) d x=\int_{a}^{b} X_{1}^{\prime \prime}(x) X_{2}(x)-X_{1}(x) X_{2}^{\prime \prime}(x) d x
$$

Integrating by parts implies

$$
\int_{a}^{b} X_{1}^{\prime \prime}(x) X_{2}(x)-X_{1}(x) X_{2}^{\prime \prime}(x) d x=\left.\left(X_{1}^{\prime}(x) X_{2}(x)-X_{1}(x) X_{2}^{\prime}(x)\right)\right|_{x=a} ^{x=b}=0
$$

because X_{1} and X_{2} satisfy the symmetric boundary condition (7). Since $\lambda_{1}-\lambda_{2} \neq 0,\left\langle X_{1}, X_{2}\right\rangle=0$ so X_{1} and X_{2} are orthogonal.

Remark 3. We can have distinct eigenfunctions for repeated eigenvalue. They might not be orthogonal, but we can use the Gram-Schmidt process extract a orthogonal set.

1.3 Example Problems

Constant Coefficient Second Order ODE: Recall that an ODE of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

is a homogeneous second order constant coefficient ODE. The ODE is solved by finding the roots r_{1} and r_{2} of the characteristic polynomial

$$
C(r)=a r^{2}+b r+c=0
$$

The general form of the solution is given by

$$
y(x)=y(x)= \begin{cases}C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x} & r_{1}, r_{2} \in \mathbb{R}, r_{1} \neq r_{2} \\ C_{1} e^{r x}+C_{2} x e^{r x} & r_{1}=r_{2}=r \in \mathbb{R} \\ C_{1} e^{\alpha x} \cos (\beta x)+C_{2} e^{\alpha x} \sin (\beta x) & r_{1}=\alpha+i \beta, r_{2}=\alpha-i \beta, \beta \neq 0\end{cases}
$$

Remark 4. In the case when $r_{1}=-r_{2} \in \mathbb{R}$, it will be convenient to write the solution in the form

$$
y(x)=C_{1} \cosh \left(r_{1} x\right)+C_{2} \sinh \left(r_{1} x\right)
$$

We can check that this form also gives us a pair of linearly independent solutions to the ODE.

Problem 1.1. (\star) Solve the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \\
X(0)=X(L)=0
\end{array}\right.
$$

Solution 1.1. The solution to the $\mathrm{ODE}-X^{\prime \prime}(x)=\lambda X(x)$ has different forms depending on the signs of λ, so we must consider each case separately.

Case $\lambda=\beta^{2}>0$: For $\beta>0$, we define $\lambda=\beta^{2}$. We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=\beta^{2} X(x) \Longrightarrow X^{\prime \prime}(x)+\beta^{2} X(x)=0
$$

The corresponding characteristic polynomial roots are $r= \pm \beta i$, so

$$
X(x)=A \cos (\beta x)+B \sin (\beta x)
$$

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
A & =0 \\
A \cos (\beta L)+B \sin (\beta L) & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{cc}
1 & 0 \\
\cos (\beta L) & \sin (\beta L)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which has a non-trivial solution when

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
\cos (\beta L) & \sin (\beta L)
\end{array}\right]\right)=0 \Longrightarrow \sin (\beta L)=0 \Longrightarrow \beta=\frac{n \pi}{L}
$$

Since $\beta>0$, we must take $n \geq 1$. To find the eigenfunction, we now substitute $\beta_{n}=\frac{n \pi}{L}$ for $n \geq 1$ back into the matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
\cos \left(\frac{n \pi}{L} L\right) & \sin \left(\frac{n \pi}{L} L\right)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
(-1)^{n} & 0
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

to conclude that $A=0$ and B can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions are

$$
\lambda_{n}=\beta_{n}^{2}=\left(\frac{n \pi}{L}\right)^{2} \quad \text { and } \quad X_{n}=\sin \left(\frac{n \pi}{L} x\right)
$$

Case $\lambda=0$: We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=0 \Longrightarrow X=A+B x
$$

The corresponding characteristic polynomial has repeated roots $r=0$, so

$$
X(x)=A+B x
$$

Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
A & =0 \\
A+B L & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & L
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which only has the trivial solution $A=B=0$ because

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
1 & L
\end{array}\right]\right)=L \neq 0
$$

Therefore, $X_{0}(x)=0$ is the only solution to the boundary value problem, so we have no zero eigenvalues.

Case $\lambda=-\beta^{2}<0$: For $\beta>0$, we define $\lambda=-\beta^{2}$. We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=-\beta^{2} X(x) \Longrightarrow X^{\prime \prime}(x)-\beta^{2} X(x)=0
$$

The corresponding characteristic polynomial roots are $r= \pm \beta$, so

$$
X(x)=A \cosh (\beta x)+B \sinh (\beta x)
$$

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
A & =0 \\
A \cosh (\beta L)+B \sinh (\beta L) & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{cc}
1 & 0 \\
\cosh (\beta L) & \sinh (\beta L)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

which has a non-trivial solution when

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
\cosh (\beta L) & \sinh (\beta L)
\end{array}\right]\right)=0 \Longrightarrow \sinh (\beta L)=0 \Longrightarrow \beta=0
$$

Since $\beta>0$, there are no choices of β that result in a non-trivial solution for A, B. We can conclude that there are no negative eigenvalues.

Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Dirichlet boundary conditions are

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n \geq 1$
Eigenfunctions: $X_{n}=\sin \left(\frac{n \pi x}{L}\right)$ for $n \geq 1$
Remark 5. We could have defined $X_{n}=B \sin \left(\frac{n \pi}{L} x\right)$ for any $B \neq 0$ to be an eigenfunction since all constant multiples of an eigenfunctions are eigenfunctions. It is standard to choose $B=1$.

Problem 1.2. (\star) Solve the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x) \quad 0<x<L \\
X^{\prime}(0)=X^{\prime}(L)=0
\end{array}\right.
$$

Solution 1.2. The solution to the $\mathrm{ODE}-X^{\prime \prime}(x)=\lambda X(x)$ has different forms depending on the signs of λ, so we must consider each case separately.

Case $\lambda=\beta^{2}>0$: For $\beta>0$, we define $\lambda=\beta^{2}$. We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=\beta^{2} X(x) \Longrightarrow X^{\prime \prime}(x)+\beta^{2} X(x)=0
$$

The corresponding characteristic polynomial roots are $r= \pm \beta i$, so

$$
X(x)=A \cos (\beta x)+B \sin (\beta x) .
$$

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
\beta B & =0 \\
-A \beta \sin (\beta L)+B \beta \cos (\beta L) & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{cc}
0 & \beta \\
-\beta \sin (\beta L) & \beta \cos (\beta L)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

which has a non-trivial solution when

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & \beta \\
-\beta \sin (\beta L) & \beta \cos (\beta L)
\end{array}\right]\right)=0 \Longrightarrow \beta^{2} \sin (\beta L)=0 \Longrightarrow \beta=\frac{n \pi}{L}
$$

Since $\beta>0$, we must take $n \geq 1$. To find the eigenfunction, we now substitute $\beta_{n}=\frac{n \pi}{L}$ for $n \geq 1$ back into the matrix

$$
\left[\begin{array}{cc}
0 & \frac{n \pi}{L} \\
-\frac{n \pi}{L} \sin \left(\frac{n \pi}{L} L\right) & \frac{n \pi}{L} \cos \left(\frac{n \pi}{L} L\right)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{n \pi}{L} \\
0 & \frac{n \pi}{L}(-1)^{n}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

to conclude that $B=0$ and A can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions are

$$
\lambda_{n}=\beta_{n}^{2}=\left(\frac{n \pi}{L}\right)^{2} \quad \text { and } \quad X_{n}=\cos \left(\frac{n \pi}{L} x\right)
$$

Case $\lambda=0$: We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=0 \Longrightarrow X=A+B x .
$$

The corresponding characteristic polynomial has repeated roots $r=0$, so

$$
X(x)=A+B x
$$

Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
& B=0 \\
& B=0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

to conclude that $B=0$ and A can be arbitrary. Therefore, $X_{0}(x)=\frac{1}{2}$ is the eigenfunction corresponding to the zero eigenvalue.

Case $\lambda=-\beta^{2}<0$: For $\beta>0$, we define $\lambda=-\beta^{2}$. We first find the general solution to the ODE

$$
-X^{\prime \prime}(x)=-\beta^{2} X(x) \Longrightarrow X^{\prime \prime}(x)-\beta^{2} X(x)=0
$$

The corresponding characteristic polynomial roots are $r= \pm \beta$, so

$$
X(x)=A \cosh (\beta x)+B \sinh (\beta x)
$$

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
B \beta & =0 \\
A \beta \sinh (\beta L)+B \beta \cosh (\beta L) & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{cc}
0 & \beta \\
\beta \sinh (\beta L) & \beta \cosh (\beta L)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

which has a non-trivial solution when

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & \beta \\
\beta \sinh (\beta L) & \beta \cosh (\beta L)
\end{array}\right]\right)=0 \Longrightarrow-\beta^{2} \sinh (\beta L)=0 \Longrightarrow \beta=0
$$

Since $\beta>0$, there are no choices of β that result in a non-trivial solution for A, B. We can conclude that there are no negative eigenvalues.

Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Neumann boundary conditions are

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n \geq 0$
Eigenfunctions: $X_{n}=\cos \left(\frac{n \pi x}{L}\right)$ for $n \geq 1$ and $X_{0}=\frac{1}{2}$ for $n=0$.
Remark 6. We chose the zero eigenfunction to be $X_{0}=\frac{1}{2}$ because it matches the convention used for coefficients of the Fourier cosine series.

Problem 1.3. ($\star \star$) Find the positive eigenvalues and eigenfunctions of

$$
\begin{cases}X^{(4)}=\lambda X & 0<x<L \\ X(0)=X(L)=X^{\prime \prime}(0)=X^{\prime \prime}(L)=0 & \end{cases}
$$

Solution 1.3. We want to find non-trivial solutions corresponding to $\lambda>0$.
General Solution: We are interested in positive eigenvalues, so we can set $\lambda=\beta^{4}>0$, where $\beta>0$. We first find the general solution to the ODE

$$
X^{(4)}=\beta^{4} X \quad 0<x<L
$$

This is a fourth order constant coefficient ODE with characteristic polynomial roots $r= \pm \beta, \pm \beta i$, which corresponds to the solution

$$
X(x)=A \cos (\beta x)+B \sin (\beta x)+C \cosh (\beta x)+D \sinh (\beta x)
$$

Particular Solution: We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging the solution into the boundary conditions gives

$$
\begin{aligned}
A+C & =0 \\
A \cos (\beta L)+B \sin (\beta L)+C \cosh (\beta L)+D \sinh (\beta L) & =0 \\
-\beta^{2} A+\beta^{2} C & =0 \\
-A \beta^{2} \cos (\beta L)-B \beta^{2} \sin (\beta L)+C \beta^{2} \cosh (\beta L)+D \beta^{2} \sinh (\beta L) & =0
\end{aligned}
$$

Since $\beta>0$, the first and third equation implies $A+C=0$ and $-A+C=0$ which can only happen when $A=C=0$. We now have to solve the system

$$
\begin{aligned}
B \sin (\beta L)+D \sinh (\beta L) & =0 \\
-B \beta^{2} \sin (\beta L)+D \beta^{2} \sinh (\beta L) & =0
\end{aligned}
$$

We can write this system of equations in matrix form

$$
\left[\begin{array}{cc}
\sin (\beta L) & \sinh (\beta L) \\
-\beta^{2} \sin (\beta L) & \beta^{2} \sinh (\beta L)
\end{array}\right]\left[\begin{array}{l}
B \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which has a non-trivial solution when

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\sin (\beta L) & \sinh (\beta L) \\
-\beta^{2} \sin (\beta L) & \beta^{2} \sinh (\beta L)
\end{array}\right]\right)=0 \Longrightarrow 2 \beta^{2} \sinh (\beta L) \sin (\beta L)=0
$$

Since $\beta>0$ and $\sinh (\beta L)>0$, this simplifies to $\sin (\beta L)=0$, which occurs precisely when

$$
\beta_{n}=\frac{n \pi}{L}, \quad n \geq 1
$$

Therefore, the corresponding eigenvalues are $\lambda_{n}=\frac{n^{4} \pi^{4}}{L^{4}}$. Furthermore, notice that from the equation

$$
B \sin \left(\beta_{n} L\right)+D \sinh \left(\beta_{n} L\right)=0
$$

we must have $D=0$ since $\sinh \left(\beta_{n} L\right)>0$ and $\sin \left(\beta_{n} L\right)=0$. Finally, for $n \geq 1$, the corresponding eigenfunction (taking $B=1$) for the eigenvalue $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{4}$ is

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

Remark 7. It turns out that $X_{n}(x)$ form a basis of the continuous functions on $[0, L]$, so these are all the eigenfunctions.

