July 16, 2020 APM346 — Week 7 Justin Ko

1 Eigenvalue Problems

We introduce a class of Sturm—Liouville eigenvalue problems. These problems will appear when we
solve PDEs on the finite interval using separation of variables. Consider the second order ODE on
[a, b] subject to some boundary conditions

—X"(z) = 2X(z) a<z<b
alX(a)—l—le(b)—I—ch'(a) —l—le/(b) =0 (1)
agX(a) =+ bzX(b) =+ CQX/(CL) =+ de/(b) =0

where ay,...,ds € R. A non-trivial solution X to (1) is called an eigenfunction, and the corresponding
value of A is called an eigenvalue.

Remark 1. This terminology should remind you of a concept from linear algebra. Recall that the
eigenvalues A and eigenvectors ¥ # 0 of a matrix A € R™*" are solutions to

AT =\
Since we are in finite dimensions, there are at most n eigenvalues. If A is symmetric, then eigenvectors
. . . . . 2 .
corresponding to distinct eigenvalues are orthogonal. We can think of L = —g—x as a linear operator

on X. In this context, solutions to the ODE in (1) satisfy
LX = )\X.

In this “infinite” dimensional case, there are infinitely many eigenvalues.

1.1 Common Eigenvalue Problems

We summarize the eigenfunctions and eigenvalues of several common eigenvalue problems.

1. Dirichlet Boundary Conditions:

~X"(z)=AX(z) 0<z<L
X(0)=X(L)=0

Eigenvalues: \, = (%%)% for n > 1
Eigenfunctions: X,, = sin(“7*) forn > 1

2. Neumann Boundary Conditions:

{—X%) AX () O<z<L
X'(0)=X'(L) =

Eigenvalues: A, = (2Z)% for n >0

Eigenfunctions: X,, = cos(*F%) for n > 1 and X, = 3 for n = 0.

3. Periodic Boundary Conditions:

—X"(x) =X (z —-L<z<L
X(-L)-X(L)=X'(-L)-X'(L)=0

Eigenvalues: A, = (%) for n > 0

Eigenfunctions: X,, = cos(“F%) and Y,, = sin(“2%) for n > 1 and Xy = % for n = 0.
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4. Dirichlet-Neumann Mixed Boundary Conditions:
—X"(x)=XX(zx) O0<zx<L
X(0)=X'(L)=0
Eigenvalues: )\, = ((2"7;) forn>1
Eigenfunctions: X,, = sm(%) for n > 1.
5. Neumann—Dirichlet Mixed Boundary Conditions:
—X"(z)=2X(z) O<z<lL
X'(0)=X(L)=0

Eigenvalues: )\, = (%) forn >1
Eigenfunctions: X, = cos((%%) for n > 1.

Remark 2. Notice that if X is an eigenfunction of (1), then ¢X is also an eigenfunction for any
number ¢ # 0. This means that the eigenfunctions in the table are unique up to a scaling factor.

1.2 Orthogonality of Eigenfunctions

Definition 1. Consider continuous functions f,g defined on [a,b]. The L?-inner product of these

functions are given by
b
~ [ f@y(w) iz

We say that the functions f and g are orthogonal if

{f,9)=0.
Definition 2. The boundary conditions of (1) are symmetric if
(f @)~ 1@)g @)[ = F®)a) ~ F0)g 6 ~ F@gla) + fla)g'(@)=0. (7

for functions f and g that solve (1). All the standard eigenvalue problems we encounter in this course
will have symmetric boundary conditions.

Theorem 1 (Orthogonality of Eigenfunctions)

If the eigenvalue problem (1) has symmetric boundary conditions, then the eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal.

Proof. Let X; and X, be distinct solutions to (1), that is for A\; # Ag,

X! =MX; and — XY = XX,
We can check orthogonality directly,
(Ao — M) (X7, X)) = (A2 — 1) / X1 (z)Xo(z dx—/ x7( — X1 ()XY (z) dx.
Integrating by parts implies
[ K@)~ X X5 @ e = () %000) X0 X3@)| ) =0

because X; and Xy satisfy the symmetric boundary condition (7). Since Ay — A2 # 0, (X1, X3) =0 so
X, and X5 are orthogonal. O

Remark 3. We can have distinct eigenfunctions for repeated eigenvalue. They might not be orthog-
onal, but we can use the Gram—Schmidt process extract a orthogonal set.
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1.3 Example Problems
Constant Coefficient Second Order ODE: Recall that an ODE of the form

ay” +by +cy=0

is a homogeneous second order constant coefficient ODE. The ODE is solved by finding the roots 7;
and ro of the characteristic polynomial

C(r)y=ar’4+br+c=0.
The general form of the solution is given by

Cle”m + C2€T2w r1,T9 € R,T‘l 7é T2
y(ac) = y(x) = Cie™ + Coxe™ rn=ro=reR .
C1e** cos(Bx) + Cae*sin(fz) r =a+if,ro=a—if,5#0

Remark 4. In the case when r; = —ry € R, it will be convenient to write the solution in the form
y(x) = Cy cosh(riz) + Cy sinh(rz).

We can check that this form also gives us a pair of linearly independent solutions to the ODE.

Problem 1.1. (x) Solve the eigenvalue problem
—X"(z)=XX(z) O<z<L
X(0)=X(L)=0
Solution 1.1. The solution to the ODE —X"(z) = AX (x) has different forms depending on the signs

of A, so we must consider each case separately.

Case A = 82 > 0: For 8 > 0, we define A = $2. We first find the general solution to the ODE

~X"(z) = B2X(z) = X"(z)+p*X(x) =0.
The corresponding characteristic polynomial roots are » = 4, so
X(z) = Acos(Bx) + Bsin(fx).

We now solve for the values of g that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

A=0
Acos(BL) 4+ Bsin(BL) = 0.

We can write this system of equations in matrix form

[cos(lﬁL) sin(OﬂL)} [g] - {8] '

which has a non-trivial solution when

det ([cos(lﬁL) n(5L)

D_o — sin(BL) =0 = 5:%.
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Since B > 0, we must take n > 1. To find the eigenfunction, we now substitute 8, = %= forn > 1

back into the matrix
) )] 3] = S][5]=F5)

to conclude that A = 0 and B can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions
are

An = 52 = (%)2 and X, =sin (%x)
Case A = 0: We first find the general solution to the ODE
—X"(z)=0 = X = A+ Bux.
The corresponding characteristic polynomial has repeated roots r = 0, so
X(x) = A+ Bu.
Plugging the solution into the boundary conditions gives
A=0
A+ BL =0.
We can write this system of equations in matrix form
b2 [a]= Do)
1 L||B 0"

which only has the trivial solution A = B = 0 because

([} -0

Therefore, Xo(z) = 0 is the only solution to the boundary value problem, so we have no zero eigen-
values.

Case A = —3%2 < 0: For B8 > 0, we define A\ = —32. We first find the general solution to the ODE

-X"(z) = -B*X(z) = X"(z) - B*X(z) =0.
The corresponding characteristic polynomial roots are r = £4, so
X (z) = Acosh(fBz) + Bsinh(fzx).

We now solve for the values of S that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

A=0
Acosh(BL) + Bsinh(8L) = 0.

We can write this system of equations in matrix form

Loshl(ﬂL) sinh(()ﬁL)] [g] - m '

which has a non-trivial solution when

det ([coshl(ﬂL) sinh(()ﬂL)D =0 = sinh(BL) =0 = B=0.

Since 8 > 0, there are no choices of 8 that result in a non-trivial solution for A, B. We can conclude
that there are no negative eigenvalues.
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Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Dirichlet boundary
conditions are

Eigenvalues: \, = (%%)% for n > 1
Eigenfunctions: X, = sin("7*) forn > 1

Remark 5. We could have defined X,, = Bsin(“*x) for any B # 0 to be an eigenfunction since all
constant multiples of an eigenfunctions are eigenfunctions. It is standard to choose B = 1.

Problem 1.2. (x) Solve the eigenvalue problem

{X”() AX () O<z<L
X'(0) = X(L) =

Solution 1.2. The solution to the ODE —X"(z) = AX (x) has different forms depending on the signs
of A\, so we must consider each case separately.

Case A = 32 > 0: For > 0, we define A = 32. We first find the general solution to the ODE

-X"(z2) = p*X(z) = X"(z)+ B*X(z) =0.
The corresponding characteristic polynomial roots are » = %, so
X(z) = Acos(fzx) + Bsin(fz).

We now solve for the values of S that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

8B =0
—Apsin(BL) + BB cos(SL) = 0.

We can write this system of equations in matrix form

[—/m(r)x(ﬁm 5cosiﬁL)} {jé] B [3} '

which has a non-trivial solution when

0 h : nm
det ([—BSin(ﬂL) Bcos(ﬂL)}) =0 = 5 sin(BL) =0 = B = -

Since B > 0, we must take n > 1. To find the eigenfunction, we now substitute 8, = = forn > 1
L

back into the matrix
Al |0 7 Al |0
—zsin (£L) mEeos (L) | [B] T o (-] [B] T o)

to conclude that B = 0 and A can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions

are )
ﬁz (nl?/r) and X,, = cos (n%x)
Case A = 0: We first find the general solution to the ODE

0 nm

—X"(r)=0 = X = A+ Bux.
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The corresponding characteristic polynomial has repeated roots r = 0, so
X(x) = A+ Bu.
Plugging the solution into the boundary conditions gives

B=0
B =0.

We can write this system of equations in matrix form
0 1] (Al |0
0 1| |B| |0]"

to conclude that B = 0 and A can be arbitrary. Therefore, Xo(z) = % is the eigenfunction correspond-
ing to the zero eigenvalue.

Case A = —3%2 < 0: For B8 > 0, we define A\ = —32. We first find the general solution to the ODE

~X"(x) = -p2X(2) = X"(2) - B*X(x) =0.
The corresponding characteristic polynomial roots are r = £4, so
X (x) = Acosh(Bz) + Bsinh(fx).

We now solve for the values of S that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

Bg=0
Apsinh(BL) + BB cosh(SL) = 0.

We can write this system of equations in matrix form

[B sing(ﬁL) ﬁcosﬁ(ﬂL)} [lﬂ B [3} '

which has a non-trivial solution when

0 B _ 2 _ _
det ([ﬂsinh(ﬂL) Bcosh(ﬂL)}) =0 = —f°sinh(fL)=0 = S =0.
Since 8 > 0, there are no choices of 8 that result in a non-trivial solution for A, B. We can conclude
that there are no negative eigenvalues.

Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Neumann bound-
ary conditions are

Eigenvalues: A, = (2Z)% for n > 0

nmT

Eigenfunctions: X,, = cos(7%) for n > 1 and X = 3 for n = 0.

Remark 6. We chose the zero eigenfunction to be Xy = % because it matches the convention used
for coefficients of the Fourier cosine series.
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Problem 1.3. (xx) Find the positive eigenvalues and eigenfunctions of

X®W = \X 0<z<L
X(0)=X(L)=X"(0)=X"(L) =0

Solution 1.3. We want to find non-trivial solutions corresponding to A > 0.

General Solution: We are interested in positive eigenvalues, so we can set A = 8% > 0, where 8 > 0.
We first find the general solution to the ODE

XW=p'x O0<z<L.

This is a fourth order constant coefficient ODE with characteristic polynomial roots r = £3,+041,
which corresponds to the solution

X (x) = Acos(Bz) + Bsin(Bz) + C cosh(Bz) + D sinh(Bx).

Particular Solution: We now solve for the values of 8 that give nontrivial solutions to the boundary
conditions. Plugging the solution into the boundary conditions gives

A+C=0
Acos(BL) + Bsin(BL) 4+ C cosh(SL) + Dsinh(8L) =0
—-B2A+B°C =0

—AB? cos(BL) — BB%sin(BL) + CB? cosh(BL) 4+ DB? sinh(BL) = 0.

Since 8 > 0, the first and third equation implies A + C = 0 and —A 4+ C = 0 which can only happen
when A = C = 0. We now have to solve the system

Bsin(SL) + Dsinh(BL) =0
—Bp?sin(BL) + DB? sinh(BL) = 0.
We can write this system of equations in matrix form

[—;ns(iﬁfﬁ)m ﬂgi;}ﬁ%)m} ﬂ - [3} |

which has a non-trivial solution when

sin(8L) sinh(BL) _ 2 . . _
det ([52 sin(BL) @ sinh(ﬂL)}) =0 = 25°sinh(8L)sin(BL) = 0.

Since § > 0 and sinh(SL) > 0, this simplifies to sin(SL) = 0, which occurs precisely when

nw
Bn = I n > 1
Therefore, the corresponding eigenvalues are A, = % Furthermore, notice that from the equation

Bsin(B,L) + Dsinh(5,L) =0,

we must have D = 0 since sinh(8,L) > 0 and sin(5,L) = 0. Finally, for n > 1, the corresponding

eigenfunction (taking B = 1) for the eigenvalue A, = (%F)* is
nwT
Xo(2) = si (—)
(z) = sin 7
Remark 7. It turns out that X, (z) form a basis of the continuous functions on [0, L], so these are

all the eigenfunctions.
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