
July 16, 2020 APM346 – Week 7 Justin Ko

1 Eigenvalue Problems

We introduce a class of Sturm–Liouville eigenvalue problems. These problems will appear when we
solve PDEs on the finite interval using separation of variables. Consider the second order ODE on
[a, b] subject to some boundary conditions

−X ′′(x) = λX(x) a < x < b

a1X(a) + b1X(b) + c1X
′(a) + d1X

′(b) = 0

a2X(a) + b2X(b) + c2X
′(a) + d2X

′(b) = 0

(1)

where a1, . . . , d2 ∈ R. A non-trivial solution X to (1) is called an eigenfunction, and the corresponding
value of λ is called an eigenvalue.

Remark 1. This terminology should remind you of a concept from linear algebra. Recall that the
eigenvalues λ and eigenvectors ~v 6= 0 of a matrix A ∈ Rn×n are solutions to

A~v = λ~v.

Since we are in finite dimensions, there are at most n eigenvalues. If A is symmetric, then eigenvectors

corresponding to distinct eigenvalues are orthogonal. We can think of L = − d2

dx as a linear operator
on X. In this context, solutions to the ODE in (1) satisfy

LX = λX.

In this “infinite” dimensional case, there are infinitely many eigenvalues.

1.1 Common Eigenvalue Problems

We summarize the eigenfunctions and eigenvalues of several common eigenvalue problems.

1. Dirichlet Boundary Conditions:{
−X ′′(x) = λX(x) 0 < x < L

X(0) = X(L) = 0
(2)

Eigenvalues: λn = (nπL )2 for n ≥ 1

Eigenfunctions: Xn = sin(nπxL ) for n ≥ 1

2. Neumann Boundary Conditions:{
−X ′′(x) = λX(x) 0 < x < L

X ′(0) = X ′(L) = 0
(3)

Eigenvalues: λn = (nπL )2 for n ≥ 0

Eigenfunctions: Xn = cos(nπxL ) for n ≥ 1 and X0 = 1
2 for n = 0.

3. Periodic Boundary Conditions:{
−X ′′(x) = λX(x) −L < x < L

X(−L)−X(L) = X ′(−L)−X ′(L) = 0
(4)

Eigenvalues: λn = (nπL )2 for n ≥ 0

Eigenfunctions: Xn = cos(nπxL ) and Yn = sin(nπxL ) for n ≥ 1 and X0 = 1
2 for n = 0.
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4. Dirichlet–Neumann Mixed Boundary Conditions:{
−X ′′(x) = λX(x) 0 < x < L

X(0) = X ′(L) = 0
(5)

Eigenvalues: λn = ( (2n−1)π
2L )2 for n ≥ 1

Eigenfunctions: Xn = sin( (2n−1)πx
2L ) for n ≥ 1.

5. Neumann–Dirichlet Mixed Boundary Conditions:{
−X ′′(x) = λX(x) 0 < x < L

X ′(0) = X(L) = 0
(6)

Eigenvalues: λn = ( (2n−1)π
2L )2 for n ≥ 1

Eigenfunctions: Xn = cos( (2n−1)πx
2L ) for n ≥ 1.

Remark 2. Notice that if X is an eigenfunction of (1), then cX is also an eigenfunction for any
number c 6= 0. This means that the eigenfunctions in the table are unique up to a scaling factor.

1.2 Orthogonality of Eigenfunctions

Definition 1. Consider continuous functions f, g defined on [a, b]. The L2-inner product of these
functions are given by

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

We say that the functions f and g are orthogonal if

〈f, g〉 = 0.

Definition 2. The boundary conditions of (1) are symmetric if(
f ′(x)g(x)− f(x)g′(x)

)∣∣∣x=b
x=a

= f ′(b)g(b)− f(b)g′(b)− f ′(a)g(a) + f(a)g′(a) = 0. (7)

for functions f and g that solve (1). All the standard eigenvalue problems we encounter in this course
will have symmetric boundary conditions.

Theorem 1 (Orthogonality of Eigenfunctions)

If the eigenvalue problem (1) has symmetric boundary conditions, then the eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal.

Proof. Let X1 and X2 be distinct solutions to (1), that is for λ1 6= λ2,

−X ′′1 = λ1X1 and −X ′′2 = λ2X2.

We can check orthogonality directly,

(λ2 − λ1)〈X1, X2〉 = (λ2 − λ1)

∫ b

a

X1(x)X2(x) dx =

∫ b

a

X ′′1 (x)X2(x)−X1(x)X ′′2 (x) dx.

Integrating by parts implies∫ b

a

X ′′1 (x)X2(x)−X1(x)X ′′2 (x) dx =
(
X ′1(x)X2(x)−X1(x)X ′2(x)

)∣∣∣x=b
x=a

= 0

because X1 and X2 satisfy the symmetric boundary condition (7). Since λ1 − λ2 6= 0, 〈X1, X2〉 = 0 so
X1 and X2 are orthogonal.

Remark 3. We can have distinct eigenfunctions for repeated eigenvalue. They might not be orthog-
onal, but we can use the Gram–Schmidt process extract a orthogonal set.
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1.3 Example Problems

Constant Coefficient Second Order ODE: Recall that an ODE of the form

ay′′ + by′ + cy = 0

is a homogeneous second order constant coefficient ODE. The ODE is solved by finding the roots r1
and r2 of the characteristic polynomial

C(r) = ar2 + br + c = 0.

The general form of the solution is given by

y(x) = y(x) =


C1e

r1x + C2e
r2x r1, r2 ∈ R, r1 6= r2

C1e
rx + C2xe

rx r1 = r2 = r ∈ R
C1e

αx cos(βx) + C2e
αx sin(βx) r1 = α+ iβ, r2 = α− iβ, β 6= 0

.

Remark 4. In the case when r1 = −r2 ∈ R, it will be convenient to write the solution in the form

y(x) = C1 cosh(r1x) + C2 sinh(r1x).

We can check that this form also gives us a pair of linearly independent solutions to the ODE.

Problem 1.1. (?) Solve the eigenvalue problem{
−X ′′(x) = λX(x) 0 < x < L

X(0) = X(L) = 0

Solution 1.1. The solution to the ODE −X ′′(x) = λX(x) has different forms depending on the signs
of λ, so we must consider each case separately.

Case λ = β2 > 0: For β > 0, we define λ = β2. We first find the general solution to the ODE

−X ′′(x) = β2X(x) =⇒ X ′′(x) + β2X(x) = 0.

The corresponding characteristic polynomial roots are r = ±βi, so

X(x) = A cos(βx) +B sin(βx).

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

A = 0

A cos(βL) +B sin(βL) = 0.

We can write this system of equations in matrix form[
1 0

cos(βL) sin(βL)

] [
A
B

]
=

[
0
0

]
.

which has a non-trivial solution when

det

([
1 0

cos(βL) sin(βL)

])
= 0 =⇒ sin(βL) = 0 =⇒ β =

nπ

L
.
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Since β > 0, we must take n ≥ 1. To find the eigenfunction, we now substitute βn = nπ
L for n ≥ 1

back into the matrix [
1 0

cos
(
nπ
L L
)

sin
(
nπ
L L
)][A

B

]
=

[
1 0

(−1)n 0

] [
A
B

]
=

[
0
0

]
.

to conclude that A = 0 and B can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions
are

λn = β2
n =

(nπ
L

)2
and Xn = sin

(nπ
L
x
)
.

Case λ = 0: We first find the general solution to the ODE

−X ′′(x) = 0 =⇒ X = A+Bx.

The corresponding characteristic polynomial has repeated roots r = 0, so

X(x) = A+Bx.

Plugging the solution into the boundary conditions gives

A = 0

A+BL = 0.

We can write this system of equations in matrix form[
1 0
1 L

] [
A
B

]
=

[
0
0

]
.

which only has the trivial solution A = B = 0 because

det

([
1 0
1 L

])
= L 6= 0.

Therefore, X0(x) = 0 is the only solution to the boundary value problem, so we have no zero eigen-
values.

Case λ = −β2 < 0: For β > 0, we define λ = −β2. We first find the general solution to the ODE

−X ′′(x) = −β2X(x) =⇒ X ′′(x)− β2X(x) = 0.

The corresponding characteristic polynomial roots are r = ±β, so

X(x) = A cosh(βx) +B sinh(βx).

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

A = 0

A cosh(βL) +B sinh(βL) = 0.

We can write this system of equations in matrix form[
1 0

cosh(βL) sinh(βL)

] [
A
B

]
=

[
0
0

]
.

which has a non-trivial solution when

det

([
1 0

cosh(βL) sinh(βL)

])
= 0 =⇒ sinh(βL) = 0 =⇒ β = 0.

Since β > 0, there are no choices of β that result in a non-trivial solution for A,B. We can conclude
that there are no negative eigenvalues.
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Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Dirichlet boundary
conditions are

Eigenvalues: λn = (nπL )2 for n ≥ 1

Eigenfunctions: Xn = sin(nπxL ) for n ≥ 1

Remark 5. We could have defined Xn = B sin(nπL x) for any B 6= 0 to be an eigenfunction since all
constant multiples of an eigenfunctions are eigenfunctions. It is standard to choose B = 1.

Problem 1.2. (?) Solve the eigenvalue problem{
−X ′′(x) = λX(x) 0 < x < L

X ′(0) = X ′(L) = 0

Solution 1.2. The solution to the ODE −X ′′(x) = λX(x) has different forms depending on the signs
of λ, so we must consider each case separately.

Case λ = β2 > 0: For β > 0, we define λ = β2. We first find the general solution to the ODE

−X ′′(x) = β2X(x) =⇒ X ′′(x) + β2X(x) = 0.

The corresponding characteristic polynomial roots are r = ±βi, so

X(x) = A cos(βx) +B sin(βx).

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

βB = 0

−Aβ sin(βL) +Bβ cos(βL) = 0.

We can write this system of equations in matrix form[
0 β

−β sin(βL) β cos(βL)

] [
A
B

]
=

[
0
0

]
.

which has a non-trivial solution when

det

([
0 β

−β sin(βL) β cos(βL)

])
= 0 =⇒ β2 sin(βL) = 0 =⇒ β =

nπ

L
.

Since β > 0, we must take n ≥ 1. To find the eigenfunction, we now substitute βn = nπ
L for n ≥ 1

back into the matrix[
0 nπ

L

−nπL sin
(
nπ
L L
)

nπ
L cos

(
nπ
L L
)][A

B

]
=

[
0 nπ

L
0 nπ

L (−1)n

] [
A
B

]
=

[
0
0

]
.

to conclude that B = 0 and A can be arbitrary. Therefore, the positive eigenvalues and eigenfunctions
are

λn = β2
n =

(nπ
L

)2
and Xn = cos

(nπ
L
x
)
.

Case λ = 0: We first find the general solution to the ODE

−X ′′(x) = 0 =⇒ X = A+Bx.
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The corresponding characteristic polynomial has repeated roots r = 0, so

X(x) = A+Bx.

Plugging the solution into the boundary conditions gives

B = 0

B = 0.

We can write this system of equations in matrix form[
0 1
0 1

] [
A
B

]
=

[
0
0

]
.

to conclude that B = 0 and A can be arbitrary. Therefore, X0(x) = 1
2 is the eigenfunction correspond-

ing to the zero eigenvalue.

Case λ = −β2 < 0: For β > 0, we define λ = −β2. We first find the general solution to the ODE

−X ′′(x) = −β2X(x) =⇒ X ′′(x)− β2X(x) = 0.

The corresponding characteristic polynomial roots are r = ±β, so

X(x) = A cosh(βx) +B sinh(βx).

We now solve for the values of β that give nontrivial solutions to the boundary conditions. Plugging
the solution into the boundary conditions gives

Bβ = 0

Aβ sinh(βL) +Bβ cosh(βL) = 0.

We can write this system of equations in matrix form[
0 β

β sinh(βL) β cosh(βL)

] [
A
B

]
=

[
0
0

]
.

which has a non-trivial solution when

det

([
0 β

β sinh(βL) β cosh(βL)

])
= 0 =⇒ −β2 sinh(βL) = 0 =⇒ β = 0.

Since β > 0, there are no choices of β that result in a non-trivial solution for A,B. We can conclude
that there are no negative eigenvalues.

Summary: We have shown that the eigenvalues and eigenfunctions corresponding to Neumann bound-
ary conditions are

Eigenvalues: λn = (nπL )2 for n ≥ 0

Eigenfunctions: Xn = cos(nπxL ) for n ≥ 1 and X0 = 1
2 for n = 0.

Remark 6. We chose the zero eigenfunction to be X0 = 1
2 because it matches the convention used

for coefficients of the Fourier cosine series.
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Problem 1.3. (??) Find the positive eigenvalues and eigenfunctions of{
X(4) = λX 0 < x < L

X(0) = X(L) = X ′′(0) = X ′′(L) = 0

Solution 1.3. We want to find non-trivial solutions corresponding to λ > 0.

General Solution: We are interested in positive eigenvalues, so we can set λ = β4 > 0, where β > 0.
We first find the general solution to the ODE

X(4) = β4X 0 < x < L.

This is a fourth order constant coefficient ODE with characteristic polynomial roots r = ±β,±βi,
which corresponds to the solution

X(x) = A cos(βx) +B sin(βx) + C cosh(βx) +D sinh(βx).

Particular Solution: We now solve for the values of β that give nontrivial solutions to the boundary
conditions. Plugging the solution into the boundary conditions gives

A+ C = 0

A cos(βL) +B sin(βL) + C cosh(βL) +D sinh(βL) = 0

−β2A+ β2C = 0

−Aβ2 cos(βL)−Bβ2 sin(βL) + Cβ2 cosh(βL) +Dβ2 sinh(βL) = 0.

Since β > 0, the first and third equation implies A+ C = 0 and −A+ C = 0 which can only happen
when A = C = 0. We now have to solve the system

B sin(βL) +D sinh(βL) = 0

−Bβ2 sin(βL) +Dβ2 sinh(βL) = 0.

We can write this system of equations in matrix form[
sin(βL) sinh(βL)

−β2 sin(βL) β2 sinh(βL)

] [
B
D

]
=

[
0
0

]
.

which has a non-trivial solution when

det

([
sin(βL) sinh(βL)

−β2 sin(βL) β2 sinh(βL)

])
= 0 =⇒ 2β2 sinh(βL) sin(βL) = 0.

Since β > 0 and sinh(βL) > 0, this simplifies to sin(βL) = 0, which occurs precisely when

βn =
nπ

L
, n ≥ 1.

Therefore, the corresponding eigenvalues are λn = n4π4

L4 . Furthermore, notice that from the equation

B sin(βnL) +D sinh(βnL) = 0,

we must have D = 0 since sinh(βnL) > 0 and sin(βnL) = 0. Finally, for n ≥ 1, the corresponding
eigenfunction (taking B = 1) for the eigenvalue λn = (nπL )4 is

Xn(x) = sin
(nπx
L

)
.

Remark 7. It turns out that Xn(x) form a basis of the continuous functions on [0, L], so these are
all the eigenfunctions.
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