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1 The Heat Equation on R
The one dimensional heat equation models the temperature in a rod.

Definition 1. For parameter k ∈ R+, the homogeneous heat equation on R× R+ is

ut − kuxx = 0. (1)

The corresponding IVP for the inhomogeneous heat equation is{
ut − kuxx = f(x, t) x ∈ R, t > 0,

u|t=0 = g(x) x ∈ R.
(2)

The solution to this equation is derived using the method of self similar solutions.

Theorem 1 (Solution to the Heat Equation)

(a) The fundamental solution to (1) is

G(x, t) =
1√

4πkt
e−

x2

4kt . (3)

(b) The particular solution to (2) is given by,

u(x, t) =

∫ ∞
−∞

G(x− y, t)g(y) dy +

∫ t

0

∫ ∞
−∞

G(x− y, t− s)f(y, s) dyds

=
1√

4πkt

∫ ∞
−∞

e−
(x−y)2

4kt g(y) dy +

∫ t

0

∫ ∞
−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) f(y, s) dyds. (4)

Remark 1. The general solution does not have simple form in this problem. Instead, we will find the
fundamental solution which is defined as the derivative in x of the solution to the problem{

ut − kuxx = 0 x ∈ R, t > 0,

u|t=0 = 1[0,∞)(x) x ∈ R.
(5)

By linearity, the solution to (2) can be pieced together from the fundamental solution.

Remark 2. We can think of (4) as the analogue of the solution for linear odes. Consider the ODE

y′ − y = f(t), y(0) = g.

The solution when f(t) = 0 is solved by the integrating factor et, giving

y(t) = exp(t) · g +

∫ t

0

exp(t− s) · f(s) ds.

It turns out that (2) can be solved using operators on function spaces. The corresponding solution (4)
can be written in terms of convolutions as

u(x, t) = G(x, t) ∗ g(x) +

∫ t

0

G(x, t− s) ∗ f(x, s) ds.

This operator approach to PDEs and the similarity between G(x, t) and the exponential function is a
topic called semigroup theory, which appears when we treat PDEs as an ODE for Banach space valued
functions. This theory allows us to use ODEs to study stochastic differential equations.
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1.1 Derivation of the Fundamental Solution

We will reduce the heat equation into a single variable problem by looking for a self similar solution.
We will first solve (2) for a special choice of initial condition that will allow us to recover more general
initial conditions using linearity. We want to find a solution v to the IVP,{

vt − kvxx = 0 x ∈ R, t > 0,

v|t=0 = 1[0,∞)(x) x ∈ R.
(6)

Restriction to Self Similar Solutions: Our goal is to find α, β so that the solution v of the inhomoge-
neous heat equation is invariant under the dilation scaling, that is

v(x, t) = λαv(λβx, λt) (7)

for all λ > 0, x ∈ R and t > 0. To simplify notation, we define w(x, t;λ) := λαv(λβx, λt). To find such
α and β, we plug w into the left hand sides of the equations in (6) to see that

wt − kwxx = λα+1vt(λ
βx, λt)− kλα+2βvxx(λβx, λt)

where vx and vt denote the partial derivatives with respect to the first and second coordinates of v,
and

w|t=0 = λα1[0,∞)(λ
βx) = λα1[0,∞)(x)

because for λ > 0, λβx ≥ 0 if and only if x ≥ 0. If we take α = 0 and β = 1
2 , then the computations

above implies w also solves (6) for all λ. Since both v and w solve the same IVP, we can take solutions
such that v = w, which implies (7) holds for

v(x, t) = v(λ
1
2x, λt) for all λ > 0, x ∈ R, t > 0. (8)

Reduction to an ODE: Since (8) holds for all λ > 0, we can define λ = 1
t to conclude that

v(x, t) = v(t−
1
2x, 1) = V (t−

1
2x) where V (s) = v(s, 1) (9)

solves the heat equation (1). Notice that V is a single variable function, so we can now solve for V
using ODEs. Notice that

vt − kvxx = − x

2t
3
2

V ′(t−
1
2x)− k

t
V ′′(t−

1
2x) = 0 =⇒ − x

2t
1
2

V ′(t−
1
2x)− kV ′′(t− 1

2x) = 0.

If we define z = t−
1
2x, then the above equation simplifies to

kV ′′(z) +
z

2
V ′(z) = 0.

Finding the General Solution: If we define G̃(z) = V ′(z), then we have the first order equation

G̃′(z) +
z

2k
G̃(z) = 0 =⇒ G̃(z) = V ′(z) = Ce−

z2

4k

after using an integrating factor of the form I(z) = e
z2

4k . Integrating this implies that

V (z) = C

∫ z

0

e−
s2

4k ds+D =⇒ v(x, t) = V
( x√

t

)
= C

∫ x√
t

0

e−
s2

4k ds+D

for some unknown coefficients C and D.

Finding the Particular Solution: We now plug our general solution to solve for C and D. Since

lim
t→0+

x√
t

=

{
∞ x > 0

−∞ x < 0,
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and
∫∞
0
e−

s2

4k ds =
√
kπ, we see that

lim
t→0+

V
( x√

t

)
=

{
C
√
kπ +D x > 0

−C
√
kπ +D x < 0

=

{
1 x > 0

0 x < 0

provided that C = 1√
4kπ

and D = 1
2 . Therefore, the particular solution to (5) is given by

v(x, t) = V
( x√

t

)
=

1√
4kπ

∫ x√
t

0

e−
s2

4k ds+
1

2
=

1

2
erf
( x√

4kt

)
+

1

2
(10)

after a change of variables.

Finding the Fundamental Solution: The fundamental solution is defined to be the partial derivative if
v with respect to x, so

G(x, t) =
∂

∂x
V
( x√

t

)
=

1√
4πkt

e−
x2

4kt . (11)

It is easy to check that G(x, t) also solves the heat equation because if v solves the heat equation, then
vx also solves the heat equation.

1.2 Derivation of the Particular Solution to the Homogeneous IVP

Suppose that g is a smooth function that vanishes at ±∞, i.e. g(±∞) = 0. We want to use the
fundamental solution to find solve the homogeneous version of (2){

ut − kuxx = 0 x ∈ R, t > 0,

u|t=0 = g(x) x ∈ R.
(12)

Notice that we can write g(x) as an integral against the step function,

g(x) =

∫ x

−∞
g′(y) dy =

∫ ∞
−∞

1(−∞,x](y)g′(y) dy =

∫ ∞
−∞

1[0,∞)(x− y)g′(y) dy (13)

since y ≤ x if and only if x − y ≥ 0. Because of this fact, we can use the fact that v defined in (10)
solves (6) to derive a solution for general initial conditions. We will show

u(x, t) =

∫ ∞
−∞

v(x− y, t)g′(y) dy = −
∫ ∞
−∞

∂yv(x− y, t)g(y) dy =

∫ ∞
−∞

G(x− y, t)g(y) dy (14)

solves (12). We integrated by parts and used the fact g vanishes at ±∞ to get the second equality,
and we used the definition of G defined in (11) to get the last equality. We now check that u solves
both the PDE and the initial condition.

1. PDE: Assuming that the integral is well defined, we can pass the derivatives inside to see that

ut − kuxx =

∫ ∞
−∞

(∂tG(x− y, t)− k∂2xG(x− y, t))︸ ︷︷ ︸
=0

g(y) dy = 0,

since G solves the heat equation and a translation of G(x− y, t) solves the heat equation for all
fixed y.

2. Initial Condition: Since v solves (6), limt→0+ v(x, t) = 1[0,∞)(x), so (13) implies

lim
t→0+

u(x, t) = lim
t→0+

∫ ∞
−∞

v(x− y, t)g′(y) dy =

∫ ∞
−∞

1[0,∞)(x− y)g′(y) dy = g(x). (15)

Therefore, (14) is a solution to (12).

Remark 3. With a bit of work, one can remove the conditions of smoothness and decay at infinity
on g. We essentially only need the integral to be finite.
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1.3 Derivation of the Particular Solution to the Inhomogeneous IVP

We will derive the solution to the inhomogeneous heat equation using the solution to the homogeneous
IVP and a general result called Duhamel’s principle. By linearity, it suffices to solve{

ut − kuxx = f(x, t) x ∈ R, t > 0,

u|t=0 = 0 x ∈ R.
(16)

Duhamel’s principle states that the solution must be of the form

u(x, t) =

∫ t

0

∫ ∞
−∞

G(x− y, t− s)f(y, s) dyds. (17)

We will verify that this solution satisfies (16) under the additional assumption that f is smooth,
bounded, and decays at ±∞. These conditions can be relaxed, but the proof becomes more technical.

1. PDE: We differentiate u with respect to t using Leibniz’s rule to see that

ut(x, t) =
∂

∂t

∫ t

0

∫ ∞
−∞

G(x− y, t− s)f(y, s) dyds

=

∫ t

0

∫ ∞
−∞

∂

∂t
G(x− y, t− s)f(y, s) dyds+ lim

s→t

∫ ∞
−∞

G(x− y, t− s)f(y, s) dy.

A limit appears because there is a singularity when s = t. The first term simplifies nicely because
G(x− y, t− s) is a solution to the heat equation, so∫ t

0

∫ ∞
−∞

∂

∂t
G(x− y, t− s)f(y, s) dyds = k

∫ t

0

∫ ∞
−∞

∂2

∂x2
G(x− y, t− s)f(y, s) dyds = kuxx. (18)

To compute the second term, we integrate by parts and use the fact f vanishes at ±∞ to see,

lim
s→t

∫ ∞
−∞

G(x− y, t− s)f(y, s) dy = lim
s→t

∫ ∞
−∞

v(x− y, t− s)fy(y, s) dy See equation (14)

=

∫ ∞
−∞

1[0,∞)(x− y)fy(y, t) dy See equation (15)

= f(x, t). See equation (13)

2. Initial Condition: The outer integral is in t and f is assumed to be bounded so

lim
t→0+

u(x, t) = lim
t→0+

∫ t

0

∫ ∞
−∞

G(x− y, t− s)f(y, s) dyds = 0,

for every x ∈ R by Hölder’s inequality.

Remark 4. The fundamental solution actually corresponds to the heat equation with a Dirac δ-
function as the initial condition. The “function” δ(x) is called a distribution, which are a class of
generalized functions in mathematics. It is the distributional derivative of the step function 1[0,∞)(x).
We define

〈f, δ〉 =

∫ ∞
−∞

f(y)δ(y) dy := f(0). (19)

If we define δa(x) = δ(x−a), then this distribution means evaluation of a function at a after integration,

〈f, δa〉 =

∫ ∞
−∞

f(y)δ(y − a) dy := f(a). (20)

Using the δ function, we could have used the fact

lim
s→t

G(x− y, t− s) = δ0(x− y) = δy(x)

to verify the particular solution without integrating by parts.
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1.4 Example Problems

Problem 1.1. (?) Solve the following IVP{
ut = kuxx x ∈ R, t > 0,

u|t=0 = 1[a,∞)(x) x ∈ R,

where a ∈ R and

1[a,∞)(x) =

{
1 x ≥ a
0 x < a.

Solution 1.1. The particular solution of this IVP is given by

u(x, t) =
1√

4πkt

∫ ∞
a

e−
(y−x)2

4kt dy.

We can use a change of variables to write this function in terms of error functions. Using the change
of variables

p =
y − x√

4kt
,

√
4kt dp = dy, y = a =⇒ p =

a− x√
4kt

, y =∞ =⇒ p =∞

we get

u(x, t) =
1√
π

∫ ∞
a−x√
4kt

e−p
2

dp =
1√
π

∫ 0

a−x√
4kt

e−p
2

dp+
1√
π

∫ ∞
0

e−p
2

dp

= − 1√
π

∫ a−x√
4kt

0

e−p
2

dp+
1√
π

∫ ∞
0

e−p
2

dp

= −1

2
erf

(
a− x√

4kt

)
+

1

2
.

Remark 5. The particular solution of this IVP is given by

u(x, t) =
1√

4πkt

∫ ∞
a

e−
(y−x)2

4kt dy.

If we set X ∼ N(x, 2kt), then we have u(x, t) = P(X ≥ a). This can be written in terms of the error
function as

u(x, t) = P(X ≥ a) =
1

2
− 1

2
erf

(
a− x√

4kt

)
.

Problem 1.2. (? ? ?) Solve the following IVP{
ut = kuxx x ∈ R, t > 0,

u|t=0 = 1[−1,1](x) x ∈ R,

where

1[−1,1](x) =

{
1 |x| ≤ 1

0 x > 1.
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Solution 1.2. We can use a change of variables to write this function in terms of error functions
like in Problem 1.1. Instead, we can use linearity and our result in the last problem to simplify this
problem. It is easy to check that

1[−1,1](x) = 1[−1,∞)(x)− 1(1,∞)(x).

In particular, if we let u1 be a solution to the heat equation with initial condition 1[−1,∞)(x) and
u2 be a solution to the heat equation with initial condition −1(1,∞)(x), then it is easy to check that
u = u1 +u2 is a solution to the PDE given in this problem. Therefore, by linearity and our result from
Problem 1.1, we have

u(x, t) = u1(x, t) + u2(x, t) = −1

2
erf

(
−1− x√

4kt

)
+

1

2
+

1

2
erf

(
1− x√

4kt

)
− 1

2

= −1

2
erf

(
−1− x√

4kt

)
+

1

2
erf

(
1− x√

4kt

)
=

1

2
erf

(
1 + x√

4kt

)
− 1

2
erf

(
x− 1√

4kt

)
since the error function is odd.

Problem 1.3. (?) Solve the following IVP{
ut = kuxx x ∈ R, t > 0,

u|t=0 = eax x ∈ R,

where a ∈ R.

Solution 1.3. The particular solution of this IVP is given by

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt eay dy.

Since the initial data is an exponential, we can complete the square to simplify the integral. Completing
the square in y, we have

− (y − x)2

4kt
+ ay = −y

2 − 2xy + x2 − 4ktay

4kt

= −y
2 − (2x+ 4kta)y + x2

4kt

= − (y − (x+ 2kta))2 − (x+ 2kta)2 + x2

4kt

= − (y − (x+ 2kta))2

4kt
+ ax+ a2kt.

Therefore, we have

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−(x+2kta))2

4kt +ax+a2kt dy = eax+a
2kt 1√

4πkt

∫ ∞
−∞

e−
(y−(x+2kta))2

4kt dy︸ ︷︷ ︸
=1

= eax+a
2kt.

See either Remark 6 or Remark 7 for the reasoning why the Gaussian integral is equal to 1.
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Remark 6. In general, for any a ∈ R and b > 0 we have

√
b√
π

∫ ∞
−∞

e−b(y−a)
2

dy = 1.

To see this we can do the change of variables p =
√
b(y − a) to see that

√
b√
π

∫ ∞
−∞

e−b(y−a)
2

dy =
1√
π

∫ ∞
−∞

e−p
2

dp =
1

2

(
erf(∞)− erf(−∞)

)
= 1.

Remark 7. To see that the integral

1√
4πkt

∫ ∞
−∞

e−
(y−(x+2kta))2

4kt dy = 1,

we can use the fact that this Gaussian integral corresponds to the p.d.f. of a Gaussian random variable
with mean (x+ 2kta) and variance 2kt, so its integral over R is equal to 1.

Remark 8. The particular solution of this PDE is given by

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt eay dy.

If set X ∼ N(x, 2kt), then we have u(x, t) = E eaX . In particular, using the formula for the moment
generating function of the Gaussian random variable, we have

u(x, t) = E eaX = eaµ+
1
2a

2σ2

= eax+a
2kt.

Problem 1.4. (?) Solve the following IVP{
ut = kuxx x ∈ R, t > 0,

u|t=0 = x x ∈ R.

Solution 1.4. The particular solution of this IVP is given by

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt y dy.

If we set X ∼ N(x, 2kt), then we have u(x, t) = EX. In particular, since the mean of this normal
distribution is x, we have

u(x, t) = EX = x.

Alternative Solution: We can add and subtract x and integrate to conclude

u(x, t) =
1√

4πkt

∫ ∞
−∞

(y − x)e−
(y−x)2

4kt dy +
x√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt dy = x,

since the first integral is 0 by symmetry and the second integral is equal to x, by Remark 6.

Problem 1.5. (?) Solve the following IVP{
ut = kuxx x ∈ R, t > 0,

u|t=0 = x2 x ∈ R.
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Solution 1.5. The particular solution of this IVP is given by

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt y2 dy.

If we set X ∼ N(x, 2kt), then we have u(x, t) = EX2. In particular, since the variance of this normal
distribution is 2kt and the mean is x, we have

u(x, t) = EX2 = Var(X) + (EX)2 = 2kt+ x2,

where we used the fact Var(X) = EX2 − (EX)2.

Alternative Solution: We can use the change of variables p = y−x√
4kt

to see that

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−
(y−x)2

4kt y2 dy

=
1√
π

∫ ∞
−∞

(x+
√

4ktp)2e−p
2

dp

=
1√
π

∫ ∞
−∞

(x2 + 2x
√

2ktp+ 4ktp2)e−p
2

dp

= x2 +
4kt√
π

∫ ∞
−∞

p2e−p
2

dp Remark 6 and Symmetry

= x2 − 2kt√
π
pe−p

2
∣∣∣p=∞
p=−∞

+
2kt√
π

∫ ∞
−∞

e−p
2

dp IBP

= x2 + 2kt. Remark 6

Remark 9. In general, monomial initial conditions can be computed directly using a change of variable
p = y−x√

4kt
and integrating by parts. To simplify notation, we can also use the Gaussian integration by

parts formula
E gF (g) = EF ′(g)

where g ∼ N(0, 1).

Problem 1.6. (?) Solve the following IVP{
ut − kuxx = x2 x ∈ R, t > 0,

u|t=0 = 0 x ∈ R.

Solution 1.6. The particular solution of this PDE is given by

u(x, t) =

∫ t

0

∫ ∞
−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) y2 dyds.

Using Problem 1.5 to compute the inner integral, we see that∫ t

0

∫ ∞
−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) y2 dyds =

∫ t

0

2k(t− s) + x2ds = kt2 + tx2.
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