## 1 The Wave Equation on $\mathbb{R}$

The one dimensional wave equation models a vibrating string.
Definition 1. For parameter $c \in \mathbb{R}^{+}$, the homogeneous wave equation on $\mathbb{R} \times \mathbb{R}^{+}$is

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0 \tag{1}
\end{equation*}
$$

The corresponding IVP for the inhomogeneous wave equation is

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t) & x \in \mathbb{R}, t>0  \tag{2}\\ \left.u\right|_{t=0}=g(x) & x \in \mathbb{R} \\ \left.u_{t}\right|_{t=0}=h(x) & x \in \mathbb{R}\end{cases}
$$

The solution to this equation is derived using the method of characteristics.

## Theorem 1 (Solution to the Wave Equation)

(a) The general solution to (1) is

$$
\begin{equation*}
u(x, t)=\phi(x-c t)+\psi(x+c t) \tag{3}
\end{equation*}
$$

where $\phi, \psi$ are arbitrary functions.
(b) The particular solution to (2) is given by d'Alembert's Formula,

$$
\begin{equation*}
u(x, t)=\frac{g(x+c t)+g(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s \tag{4}
\end{equation*}
$$

### 1.1 Derivation of the General Solution

We give two derivations of the general solution (3).

### 1.1.1 Method 1: Factoring the Operator

We reduce the second order PDE to iterated first order PDEs and apply the methods from Week 2. We begin by factoring the linear operator $L[u]=\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u$,

$$
L[u]=\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u=\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right) u
$$

Notice that if $u$ is a solution to (1), then $L[u]=0$. If we define $v=\left(\partial_{t}-c \partial_{x}\right) u=u_{t}-c u_{x}$, then

$$
L[u]=0 \Longleftrightarrow\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right) u=\left(\partial_{t}+c \partial_{x}\right) v=v_{t}+c v_{x}=0
$$

This gives us the following system of first order equations

$$
\left\{\begin{array}{l}
u_{t}-c u_{x}=v  \tag{5}\\
v_{t}+c v_{x}=0
\end{array}\right.
$$

Solving the Second Equation: Using the general solution of the transport equation (see Week 2),

$$
v_{t}+c v_{x}=0 \Longrightarrow v(x, t)=\varphi^{\prime}(x-c t)
$$

for some differentiable function $\varphi^{\prime}$ (this form was chosen to simplify notation).
Solving the First Equation: Since $v=u_{t}-c u_{x}$ to recover $u$, we need to solve

$$
u_{t}-c u_{x}=\varphi^{\prime}(x-c t)
$$

This is a first order linear equation, so it suffices to solve the system

$$
\frac{d t}{1}=\frac{d x}{-c}=\frac{d u}{\varphi^{\prime}(x-c t)}
$$

The equation involving the first and second terms gives us the characteristics

$$
\frac{d t}{1}=\frac{d x}{-c} \Longrightarrow x=-c t+C \Longrightarrow C=x+c t
$$

Solving the equation involving the first third term implies

$$
\frac{d t}{1}=\frac{d u}{\varphi^{\prime}(x-c t)}=\frac{d u}{\varphi^{\prime}(C-2 c t)} \Longrightarrow u(x, t)=-\frac{1}{2 c} \varphi(C-2 c t)+\psi(C)=-\frac{1}{2 c} \varphi(x-c t)+\psi(x+c t) .
$$

If we define $\phi=-\frac{1}{2 c} \varphi$, then we get the general solution

$$
u(x, t)=\phi(x-c t)+\psi(x+c t)
$$

### 1.1.2 Method 2: Change of Variables

We do a change of variables to simplify the form of the PDE. We begin by factoring the linear operator $L[u]=\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u$,

$$
L[u]=\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u=\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right) u
$$

This factorization seems to suggest two characteristic curves

$$
\frac{d t}{1}=\frac{d x}{c} \Longrightarrow C=x-c t \quad \text { and } \quad \frac{d t}{1}=\frac{d x}{-c} \Longrightarrow D=x+c t
$$

We will use these characteristics curves to define a change of variables that will greatly simplify the PDE. Consider the change of variables

$$
\begin{equation*}
\xi(x, t)=x-c t \quad \text { and } \quad \eta(x, t)=x+c t \tag{6}
\end{equation*}
$$

By the multivariable chain rule,

$$
\partial_{t} u(\xi, \eta)=\frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial t}+\frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial t}=-c u_{\xi}+c u_{\eta}=\left(-c \partial_{\xi}+c \partial_{\eta}\right) u(\xi, \eta) \Longrightarrow \partial_{t}=\left(-c \partial_{\xi}+c \partial_{\eta}\right)
$$

and

$$
\partial_{x} u(\xi, \eta)=\frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x}+\frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x}=u_{\xi}+u_{\eta}=\left(\partial_{\xi}+\partial_{\eta}\right) u(\xi, \eta) \Longrightarrow \partial_{x}=\left(\partial_{\xi}+\partial_{\eta}\right)
$$

In particular, these computations imply that the original operators are equal to

$$
\left(\partial_{t}+c \partial_{x}\right)=\left(\left(-c \partial_{\xi}+c \partial_{\eta}\right)+c\left(\partial_{\xi}+\partial_{\eta}\right)\right)=2 c \partial_{\eta}
$$

and

$$
\left(\partial_{t}-c \partial_{x}\right)=\left(\left(-c \partial_{\xi}+c \partial_{\eta}\right)-c\left(\partial_{\xi}+\partial_{\eta}\right)\right)=-2 c \partial_{\xi}
$$

Therefore, under the change of variables (6),

$$
L[u]=\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u=\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right) u=\left(2 c \partial_{\eta}\right)\left(-2 c \partial_{\xi}\right) u=-4 c^{2} u_{\xi \eta}
$$

If $u$ satisfies (1), then $L[u]=0$. Since $c \neq 0$, directly integrating this PDE (see Week 1) implies

$$
0=L[u]=-4 c^{2} u_{\xi \eta} \Longrightarrow u(\xi, \eta)=\phi(\xi)+\psi(\eta) \Longrightarrow u(x, t)=\phi(x-c t)+\psi(x+c t)
$$

after writing it back in the original variables using (6).
Remark 1. From the proofs, we see that the general solution (3) holds for $t<0$ as well.

### 1.2 Derivation of the Particular Solution

We will now use the initial conditions (2) to find the particular form of the solution. By linearity, we can write the solution as $u=v+w$, where $v$ solve the homoegenous IVP and $w$ solves the inhomogeneous IVP with vanishing initial values,

$$
\left\{\begin{array} { l l } 
{ v _ { t t } - c ^ { 2 } v _ { x x } = 0 } & { x \in \mathbb { R } , t > 0 , }  \tag{7}\\
{ v | _ { t = 0 } = g ( x ) } & { x \in \mathbb { R } , } \\
{ v _ { t } | _ { t = 0 } = h ( x ) } & { x \in \mathbb { R } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
w_{t t}-c^{2} w_{x x}=f(x, t) & x \in \mathbb{R}, t>0 \\
\left.w\right|_{t=0}=0 \\
\left.w_{t}\right|_{t=0}=0 & x \in \mathbb{R} \\
& x \in \mathbb{R}
\end{array}\right.\right.
$$

### 1.2.1 The Particular Solution for the Homogeneous IVP

Suppose that $g \in C^{2}(\mathbb{R})$ and $h \in C^{1}(\mathbb{R})$. We want to find the solution to

$$
\begin{cases}v_{t t}-c^{2} v_{x x}=0 & x \in \mathbb{R}, t>0  \tag{8}\\ \left.v\right|_{t=0}=g(x) & x \in \mathbb{R} \\ \left.v_{t}\right|_{t=0}=h(x) & x \in \mathbb{R}\end{cases}
$$

From (3), the general solution to the PDE is

$$
v(x, t)=\phi(x-c t)+\psi(x+c t)
$$

We now use the initial conditions to solve for $\phi$ and $\psi$. The first initial condition $\left.v\right|_{t=0}=g(x)$ implies

$$
\begin{equation*}
\left.v(x, t)\right|_{t=0}=\left.(\phi(x-c t)+\psi(x+c t))\right|_{t=0}=\phi(x)+\psi(x)=g(x) \quad \text { for } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

and the second initial condition $\left.v_{t}\right|_{t=0}=h(x)$ implies

$$
\begin{equation*}
\left.v_{t}(x, t)\right|_{t=0}=\left.\left(-c \phi^{\prime}(x-c t)+c \psi^{\prime}(x+c t)\right)\right|_{t=0}=-c \phi^{\prime}(x)+c \psi^{\prime}(x)=h(x) \quad \text { for } x \in \mathbb{R} \tag{10}
\end{equation*}
$$

We now differentiate (9) and compare with (10) to get the system of equations

$$
\left\{\begin{aligned}
\phi^{\prime}(x)+\psi^{\prime}(x) & =g^{\prime}(x) \\
-c \phi^{\prime}(x)+c \psi^{\prime}(x) & =h(x)
\end{aligned}\right.
$$

Solving for $\phi$ implies

$$
2 c \phi^{\prime}(x)=c g^{\prime}(x)-h(x) \Longrightarrow \phi(x)=\frac{1}{2} g(x)-\frac{1}{2 c} \int_{0}^{x} h(s) d s+C \quad \text { for } x \in \mathbb{R}
$$

and solving for $\psi$ implies

$$
2 c \psi^{\prime}(x)=c g^{\prime}(x)+h(x) \Longrightarrow \psi(x)=\frac{1}{2} g(x)+\frac{1}{2 c} \int_{0}^{x} h(s) d s+D \quad \text { for } x \in \mathbb{R}
$$

Therefore, using (3) and the formulas for $\phi$ and $\psi$ above,

$$
v(x, t)=\phi(x-c t)+\psi(x+c t)=\frac{g(x+c t)+g(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s+C+D
$$

We now have to find the constants $C+D$. The equation must hold for all $x$ and $t$, so plugging in $x=0$ and $t=0$ and using the fact $v(0,0)=g(0)$ by the first initial condition implies

$$
v(0,0)=g(0)+C+D=g(0) \Longrightarrow C+D=0
$$

Therefore the particular solution to (8) (the first two terms in (4)) is

$$
v(x, t)=\frac{g(x+c t)+g(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s
$$

Remark 2. It turns out that $C=\phi(0)-\frac{1}{2} g(0)$ and $D=\phi(0)-\frac{1}{2} g(0)$ by the fundamental theorem of calculus and our particular choice of the lower limit of integration.

### 1.2.2 The Particular Solution to the Inhomogeneous IVP

We will use a change of variables to find the solution to

$$
\begin{cases}w_{t t}-c^{2} w_{x x}=f(x, t) & x \in \mathbb{R}, t>0  \tag{11}\\ \left.w\right|_{t=0}=0 & x \in \mathbb{R} \\ \left.w_{t}\right|_{t=0}=0 & x \in \mathbb{R}\end{cases}
$$

Characteristic Coordinates: We want to parametrize by the characteristic coordinates $\xi(x, t)=x+c t$ and $\eta(x, t)=x-c t$, so we use the change of variables

$$
x=\frac{\xi+\eta}{2} \quad \text { and } \quad t=\frac{\xi-\eta}{2 c}
$$

This is essentially the inverse change of variables in Method 2 (see Section 1.1.2). Under this change of variables, we have
so

$$
\partial_{\xi}=\frac{1}{2} \partial_{x}+\frac{1}{2 c} \partial_{t} \quad \text { and } \quad \partial_{\eta}=\frac{1}{2} \partial x-\frac{1}{2 c} \partial_{t}
$$

$$
\partial_{\eta} \partial_{\xi}=\left(\frac{1}{2} \partial x-\frac{1}{2 c} \partial_{t}\right)\left(\frac{1}{2} \partial_{x}+\frac{1}{2 c} \partial_{t}\right)=-\frac{1}{4 c^{2}}\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right)
$$

Therefore,

$$
w_{t t}-c^{2} w_{x x}=f(x, t) \Longrightarrow w_{\xi \eta}=-\frac{1}{4 c^{2}} f\left(\frac{\xi+\eta}{2}, \frac{\xi-\eta}{2 c}\right)
$$

Integrating with respect to $\eta$ then $\xi$, we get

$$
w(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{\xi_{0}}^{\xi} \int_{\eta_{0}}^{\eta} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi}+\phi(\xi)+\psi(\eta)
$$

where $\phi$ and $\psi$ are differentiable functions. We can choose the lower limit to be anything we wish (as long as it is independent of the upper limit of integration), but a clever choice of the lower limits will make the integral part of the solution satisfy the boundary conditions $\left.w\right|_{t=0}=0$ and $\left.w_{t}\right|_{t=0}=0$ automatically. To this end, we take $\eta_{0}=\tilde{\xi}$ and $\xi_{0}=\eta$, so

$$
\begin{equation*}
w(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{\eta}^{\xi} \int_{\tilde{\xi}}^{\eta} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi}+\phi(\xi)+\psi(\eta) \tag{12}
\end{equation*}
$$

This choice of lower bound is special because we can solve for $\phi(\xi)$ and $\psi(\eta)$. We now evaluate the formula when $t=0$. In this case, we have $\left.\xi\right|_{t=0}=\left.\eta\right|_{t=0}=x$, so the initial condition $\left.w\right|_{t=0}=0$ implies

$$
0=\left.w(\xi, \eta)\right|_{t=0}=-\frac{1}{4 c^{2}} \int_{x}^{x} \int_{\tilde{\xi}}^{x} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi}+\left.(\phi(\xi)+\psi(\eta))\right|_{t=0}
$$

The integral term vanishes and $\left.(\phi(\xi)+\psi(\eta))\right|_{t=0}=(\phi(x)+\psi(x))$, so we can conclude

$$
\begin{equation*}
\phi(x)+\psi(x)=0 \quad \text { for all } x \in \mathbb{R} \tag{13}
\end{equation*}
$$

Next, we use the Leibniz integral rule to differentiate with respect to $t$ and use the fact that $\left.w_{t}\right|_{t=0}=0$ to conclude that

$$
\begin{aligned}
0=\left.w_{t}(\xi, \eta)\right|_{t=0}= & \left(-\frac{1}{4 c} \int_{\xi}^{\eta} f\left(\frac{\xi+\tilde{\eta}}{2}, \frac{\xi-\tilde{\eta}}{2 c}\right) d \tilde{\eta}-\frac{1}{4 c} \int_{\eta}^{\eta} f\left(\frac{\eta+\tilde{\eta}}{2}, \frac{\eta-\tilde{\eta}}{2 c}\right) d \tilde{\eta}\right. \\
& \left.+\frac{1}{4 c} \int_{\eta}^{\xi} f\left(\frac{\tilde{\xi}+\eta}{2}, \frac{\tilde{\xi}-\eta}{2 c}\right) d \tilde{\xi}+\left(c \phi^{\prime}(\xi)-c \psi^{\prime}(\eta)\right)\right)\left.\right|_{t=0}
\end{aligned}
$$

Since $\left.\xi\right|_{t=0}=\left.\eta\right|_{t=0}=x$, all the integral terms vanish leaving us with

$$
\begin{equation*}
c \phi^{\prime}(x)-c \psi^{\prime}(x)=0 \quad \text { for all } x \in \mathbb{R} \tag{14}
\end{equation*}
$$

Integrating (14) and comparing it with (13) implies that

$$
\left\{\begin{array}{l}
\phi(x)+\psi(x)=0 \\
\phi(x)-\psi(x)=C
\end{array} \quad \Longrightarrow \phi(x)=\frac{C}{2}, \psi(x)=-\frac{C}{2} \quad \text { for all } x \in \mathbb{R} .\right.
$$

Therefore, $\phi(\xi)+\psi(\eta)=-\frac{C}{2}+\frac{C}{2}=0$, so the particular solution (12) to (11) expressed in terms of the characteristic coordinates simplifies to

$$
\begin{equation*}
w(\xi, \eta)=\frac{1}{4 c^{2}} \int_{\eta}^{\xi} \int_{\eta}^{\tilde{\xi}} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi} \tag{15}
\end{equation*}
$$

Original Coordinates: We now have to write (15) back in terms of $x$ and $t$. Notice that the region of integration in (15) corresponds to the triangle

$$
\tilde{\Delta}(\xi, \eta)=\{(\tilde{\xi}, \tilde{\eta}): \eta \leq \tilde{\eta} \leq \tilde{\xi} \leq \xi\}
$$

Using the change of variables $\tilde{\xi}=y+c s$ and $\tilde{\eta}=y-c s$, this triangle in the original coordinates is

$$
\Delta(x, t)=\{(y, s): x-c t \leq y-c s \leq y+c s \leq x+c t\}
$$

Since

$$
x-c t \leq y-c s \Longrightarrow x-c(t-s) \leq y \quad \text { and } \quad y+c s \leq x+c t \Longrightarrow y \leq x+c(t-s)
$$

and for $y=x$

$$
x-c t \leq x-c s \leq x+c s \leq x+c t \Longrightarrow-t \leq-s \leq s \leq t \Longrightarrow 0 \leq s \leq t
$$

the region of integration (also called the domain of dependence) can be simplified to

$$
\Delta(x, t)=\{(y, s): 0 \leq s \leq t, x-c(t-s) \leq y \leq x+c(t-s)\}
$$

The regions of integrations $\tilde{\Delta}$ and $\Delta$ are plotted below:



The Jacobian of the transformation is

$$
d \tilde{\eta} d \tilde{\xi}=\left|\operatorname{det}\left(\begin{array}{cc}
1 & -c  \tag{16}\\
1 & c
\end{array}\right)\right| d y d s=2 c d y d s
$$

so the solution to (11) using (15) can be expressed as

$$
w(x, t)=\frac{1}{2 c} \iint_{\Delta} f(y, s) d y d s=\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
$$

giving us the third term in (4).
Remark 3. The assumptions on the regularity of $g, h$ and $f$ ensure that $u \in C^{2}(\mathbb{R})$. If we weaken the notion of what it means to be a solution, then we can assume less conditions on $g, h$, and $f$. We can check that the formula extends to these cases when the initial conditions might not be differentiable.

### 1.3 Example Problems

Problem 1.1. ( $\star$ ) Solve the initial value problem

$$
\begin{cases}u_{t t}-4 u_{x x}=0 & x \in \mathbb{R}, t>0 \\ \left.u\right|_{t=0}=\tanh (x) & x \in \mathbb{R} \\ \left.u_{t}\right|_{t=0}=\arctan (x) & x \in \mathbb{R}\end{cases}
$$

Solution 1.1. By d'Alembert's formula (4), the particular solution to this IVP is given by

$$
u(x, t)=\frac{\tanh (x+2 t)+\tanh (x-2 t)}{2}+\frac{1}{4} \int_{x-2 t}^{x+2 t} \arctan (y) d y
$$

The integral term can be computed using integration by parts,

$$
\begin{aligned}
& \frac{1}{4} \int_{x-2 t}^{x+2 t} \arctan (y) d y \\
& =\left.\frac{1}{4}\left(y \arctan (y)-\frac{1}{2} \ln \left|1+y^{2}\right|\right)\right|_{y=x-2 t} ^{y=x+2 t} \\
& =\frac{1}{4}\left((x+2 t) \arctan (x+2 t)-(x-2 t) \arctan (x-2 t)-\frac{1}{2} \ln \left(1+(x+2 t)^{2}\right)+\frac{1}{2} \ln \left(1+(x-2 t)^{2}\right)\right)
\end{aligned}
$$

Problem 1.2. ( $\star$ ) Solve the following initial value problems
1.

$$
\begin{cases}u_{t t}-4 u_{x x}=0 & x \in \mathbb{R}, t>0 \\ \left.u\right|_{t=0}=g(x) & x \in \mathbb{R} \\ \left.u_{t}\right|_{t=0}=h(x) & x \in \mathbb{R}\end{cases}
$$

with

$$
g(x)=\left\{\begin{array}{ll}
0 & |x| \geq 1 \\
x^{2}-x^{4} & |x|<1
\end{array}, \quad h(x)=0\right.
$$

2. 

$$
\begin{cases}u_{t t}-4 u_{x x}=0 & x \in \mathbb{R}, t>0 \\ \left.u\right|_{t=0}=g(x) & x \in \mathbb{R} \\ \left.u_{t}\right|_{t=0}=h(x) & x \in \mathbb{R}\end{cases}
$$

with

$$
g(x)=0, \quad h(x)= \begin{cases}0 & |x| \geq 1 \\ x^{2}-x^{4} & |x|<1\end{cases}
$$

## Solution 1.2.

(1) Since $h(x)=0$, by d'Alembert's formula (4), the particular solution to this IVP is given by

$$
u(x, t)=\frac{g(x+2 t)+g(x-2 t)}{2}
$$

Since $g(x)$ changes form based on the value of $|x|$, we can break our solution into 4 cases:
A. $|x+2 t| \geq 1,|x-2 t| \geq 1$ : On this region, $g(x+2 t)=0$ and $g(x-2 t)=0$, so

$$
u(x, t)=0
$$

B. $|x+2 t|<1,|x-2 t| \geq 1$ : On this region, $g(x+2 t)=(x+2 t)^{2}-(x+2 t)^{4}$ and $g(x-2 t)=0$, so

$$
u(x, t)=\frac{(x+2 t)^{2}-(x+2 t)^{4}}{2}
$$

C. $|x+2 t| \geq 1,|x-2 t|<1$ : On this region, $g(x+2 t)=0$ and $g(x-2 t)=(x-2 t)^{2}-(x-2 t)^{4}$, so

$$
u(x, t)=\frac{(x-2 t)^{2}-(x-2 t)^{4}}{2}
$$

D. $|x+2 t|<1,|x-2 t|<1$ : On this region, $g(x+2 t)=(x+2 t)^{2}-(x+2 t)^{4}$ and $g(x-2 t)=$ $(x-2 t)^{2}-(x-2 t)^{4}$, so

$$
u(x, t)=\frac{(x+2 t)^{2}-(x+2 t)^{4}+(x-2 t)^{2}-(x-2 t)^{4}}{2}
$$

Characteristic Lines: The regions $A, B, C, D$ are displayed below


Description of Picture: The initial condition is supported on the interval $[-1,1]$. The wave propagates right along the lines $x-2 t=C \in[-1,1]$ (between the blue characteristic lines) and left along the lines $x+2 t=C \in[-1,1]$ (between the green characteristic lines). The behavior on each of the regions can be determined by drawing the domain of dependence at the point $(x, t)$ and seeing if the corners lie in the interval $[-1,1]$. For example, at the point $(-1,0.5)$ the left corner does not lie in $[-1,1]$, while the right corner is in $[-1,1]$, which corresponds to case $B$ above. Similarly, at the point $(0,1.5)$ both corners do not lie in $[-1,1]$, which corresponds to case $A$ above.
(2) Since $g(x)=0$, by d'Alembert's formula (4), the particular solution to this IVP is given by

$$
u(x, t)=\frac{1}{4} \int_{x-2 t}^{x+2 t} h(y) d y
$$

Since $h(x)$ changes form based on the value of $|x|$, we can break our solution into 5 cases:
A. $x-2 t \leq-1 \leq 1 \leq x+2 t$ : On this region, we can split our region of integration into

$$
\begin{aligned}
u(x, t)=\frac{1}{4} \int_{x-2 t}^{x+2 t} h(y) d y & =\frac{1}{4} \int_{x-2 t}^{-1} h(y) d y+\frac{1}{4} \int_{-1}^{1} h(y) d y+\frac{1}{4} \int_{1}^{x+2 t} h(y) d y \\
& =\frac{1}{4} \int_{-1}^{1} y^{2}-y^{4} d y \\
& =\left.\frac{1}{4}\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right|_{y=-1} ^{y=1}=\frac{1}{15}
\end{aligned}
$$

B. $x-2 t \leq-1 \leq x+2 t \leq 1$ : On this region, we can split our region of integration into

$$
\begin{aligned}
u(x, t)=\frac{1}{4} \int_{x-2 t}^{x+2 t} h(y) d y & =\frac{1}{4} \int_{x-2 t}^{-1} h(y) d y+\frac{1}{4} \int_{-1}^{x+2 t} h(y) d y \\
& =\frac{1}{4} \int_{-1}^{x+2 t} y^{2}-y^{4} d y \\
& =\left.\frac{1}{4}\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right|_{y=-1} ^{y=x+2 t}=\frac{(x+2 t)^{3}}{12}-\frac{(x+2 t)^{5}}{20}+\frac{1}{30} .
\end{aligned}
$$

C. $-1 \leq x-2 t \leq 1 \leq x+2 t$ : On this region, we can split our region of integration into

$$
\begin{aligned}
u(x, t)=\frac{1}{4} \int_{x-2 t}^{x+2 t} h(y) d y & =\frac{1}{4} \int_{x-2 t}^{1} h(y) d y+\frac{1}{4} \int_{1}^{x+2 t} h(y) d y \\
& =\frac{1}{4} \int_{x-2 t}^{1} y^{2}-y^{4} d y \\
& =\left.\frac{1}{4}\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right|_{y=x-2 t} ^{y=1}=\frac{1}{30}-\frac{(x-2 t)^{3}}{12}+\frac{(x-2 t)^{5}}{20}
\end{aligned}
$$

D. $-1 \leq x-2 t \leq x+2 t \leq 1$ : On this region, the integrand is always equal to $h(y)=y^{2}-y^{4}$

$$
\begin{aligned}
u(x, t)=\frac{1}{4} \int_{x-2 t}^{x+2 t} h(y) d y & =\frac{1}{4} \int_{x-2 t}^{x+2 t} y^{2}-y^{4} d y \\
& =\left.\frac{1}{4}\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right|_{y=x-2 t} ^{y=x+2 t} \\
& =\frac{(x+2 t)^{3}}{12}-\frac{(x+2 t)^{5}}{20}-\frac{(x-2 t)^{3}}{12}+\frac{(x-2 t)^{5}}{20}
\end{aligned}
$$

E. $x-2 t \geq 1$, or $x+2 t \leq-1$ : On this region, the integrand is always equal to $h(y)=0$, so

$$
u(x, t)=0
$$

Characteristic Lines: The regions $A, B, C, D, E$ are displayed below


Description of Picture: The initial condition is supported on the interval $[-1,1]$. The behavior in each of the regions can be determined by drawing the domain of dependence at the point $(x, t)$ and seeing how much of the interval $[-1,1]$ is contained in the base of the triangle. For example, at $(-1,0.5)$ the left corner of the base of the triangle is $<-1$ and the right corner of the base is in $[-1,1]$, which corresponds to case $B$ above. Similarly, at $(0,3)$ the left corner of the base of the orange triangle is $<-1$ and the right corner of the base is in $>1$, which corresponds to case $A$ above.

Problem 1.3. ( $\star$ ) Solve the initial value problem

$$
\begin{cases}u_{t t}-4 u_{x x}=f(x, t) & x \in \mathbb{R}, t>0 \\ \left.u\right|_{t=0}=g(x) & x \in \mathbb{R} \\ \left.u_{t}\right|_{t=0}=h(x) & x \in \mathbb{R}\end{cases}
$$

with

$$
f(x, t)=\left\{\begin{array}{ll}
\sin (x) & 0<t<\pi \\
0 & t \geq \pi
\end{array}, \quad g(x)=0, \quad h(x)=0\right.
$$

Solution 1.3. Since $g(x)=0$ and $h(x)=0$, by d'Alembert's formula (4) the particular solution to this IVP is given by

$$
u(x, t)=\frac{1}{4} \int_{0}^{t} \int_{x-2(t-s)}^{x+2(t-s)} \sin (y) \mathbb{1}_{[0, \pi]}(s) d y d s=\frac{1}{4} \int_{0}^{\min (t, \pi)} \int_{x-2(t-s)}^{x+2(t-s)} \sin (y) d y d s
$$

If you draw the region of integration, we are basically chopping off $\Delta$ above the line $t=\pi$ and integrating the remaining trapezoid (or triangle if $t$ is small enough). We have two cases,
A. $t<\pi$ : On this region, we have

$$
\begin{aligned}
u(x, t) & =\frac{1}{4} \int_{0}^{t} \int_{x-2(t-s)}^{x+2(t-s)} \sin (y) d y d s \\
& =\frac{1}{4} \int_{0}^{t}\left(-\left.\cos (y)\right|_{y=x-2(t-s)} ^{y=x+2(t-s)}\right) d s \\
& =\frac{1}{4} \int_{0}^{t}-\cos (x+2(t-s))+\cos (x-2(t-s)) d s \\
& =\left.\frac{1}{8}(\sin (x+2(t-s))+\sin (x-2(t-s)))\right|_{s=0} ^{s=t} \\
& =\frac{1}{4} \sin (x)-\frac{1}{8} \sin (x+2 t)-\frac{1}{8} \sin (x-2 t)
\end{aligned}
$$

B. $t \geq \pi$ : On this region, we have

$$
\begin{aligned}
u(x, t) & =\frac{1}{4} \int_{0}^{\pi} \int_{x-2(t-s)}^{x+2(t-s)} \sin (y) d y d s \\
& =\frac{1}{4} \int_{0}^{\pi}\left(-\left.\cos (y)\right|_{y=x-2(t-s)} ^{y=x+2(t-s)}\right) d s \\
& =\frac{1}{4} \int_{0}^{\pi}-\cos (x+2(t-s))+\cos (x-2(t-s)) d s \\
& =\left.\frac{1}{8}(\sin (x+2(t-s))+\sin (x-2(t-s)))\right|_{s=0} ^{s=\pi} \\
& =0
\end{aligned}
$$

Problem 1.4. (**) Find the solution to the Goursat problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0, & x>c|t| \\ \left.u\right|_{x=-c t}=g(t), & t<0 \\ \left.u\right|_{x=c t}=h(t), & t>0\end{cases}
$$

where $g$ and $h$ satisfy the compatibility condition $g(0)=h(0)$.

Solution 1.4. Recall that the general solution of $u_{t t}-c^{2} u_{x x}=0$ is given by

$$
u(x, t)=\phi(x+c t)+\psi(x-c t) \text { for } x>c|t|
$$

for some yet to be determined functions $\phi$ and $\psi$. Using the initial conditions, we can recover the specific form of $\phi$ and $\psi$. For $t<0$, the first boundary condition implies,

$$
\left.u\right|_{x=-c t}=g(t) \Longrightarrow \phi(0)+\psi(-2 c t)=g(t) \stackrel{s=-2 c t}{\Longrightarrow} \psi(s)=g\left(-\frac{s}{2 c}\right)-\phi(0) \text { for } s>0
$$

and for $t>0$, the second boundary condition implies

$$
\left.u\right|_{x=c t}=h(t) \Longrightarrow \phi(2 c t)+\psi(0)=h(t) \stackrel{s=2 c t}{\Longrightarrow} \phi(s)=h\left(\frac{s}{2 c}\right)-\psi(0) \text { for } s>0
$$

If we take limits as $s \rightarrow 0$ from right, the condition $g(0)=h(0)$ implies that

$$
\psi(0)=g(0)-\phi(0) \quad \text { and } \quad \phi(0)=h(0)-\psi(0) \Longrightarrow \psi(0)+\phi(0)=g(0)=h(0)=\frac{g(0)+h(0)}{2}
$$

Therefore, our particular solution is given by

$$
\begin{equation*}
u(x, t)=h\left(\frac{x+c t}{2 c}\right)+g\left(\frac{c t-x}{2 c}\right)-(\phi(0)+\psi(0))=h\left(\frac{x+c t}{2 c}\right)+g\left(\frac{c t-x}{2 c}\right)-\frac{g(0)+h(0)}{2} \tag{17}
\end{equation*}
$$

since $x+c t>0$ and $c t-x<0$ for $x>c|t|$, the solution is uniquely defined on this region.

Problem 1.5. $(\star \star \star)$ Find the solution to the Goursat problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t), & x>c|t| \\ \left.u\right|_{x=-c t}=g(t), & t<0 \\ \left.u\right|_{x=c t}=h(t), & t>0\end{cases}
$$

where $g$ and $h$ satisfy the compatibility condition $g(0)=h(0)$.

Solution 1.5. This is the inhomogeneous variant of Problem 1.4.
Inhomogeneous solution: We computed the homogeneous solution in the previous exercise. It suffices to find the solution to the problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t), & x>c|t| \\ \left.u\right|_{x=-c t}=0, & t<0 \\ \left.u\right|_{x=c t}=0, & t>0\end{cases}
$$

Since we want to parametrize by the characteristic coordinates $\xi=x+c t$ and $\eta=x-c t$, we use the change of variables

$$
x=\frac{\xi+\eta}{2} \quad \text { and } \quad t=\frac{\xi-\eta}{2 c}
$$

Under this change of variables,

$$
\partial_{\xi}=\frac{1}{2} \partial_{x}+\frac{1}{2 c} \partial_{t} \quad \text { and } \quad \partial_{\eta}=\frac{1}{2} \partial x-\frac{1}{2 c} \partial_{t}
$$

so

$$
\partial_{\eta} \partial_{\xi}=\left(\frac{1}{2} \partial x-\frac{1}{2 c} \partial_{t}\right)\left(\frac{1}{2} \partial_{x}+\frac{1}{2 c} \partial_{t}\right)=-\frac{1}{4 c^{2}}\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right)
$$

Therefore,

$$
u_{t t}-c^{2} u_{x x}=f(x, t) \Longrightarrow u_{\xi \eta}=-\frac{1}{4 c^{2}} f\left(\frac{\xi+\eta}{2}, \frac{\xi-\eta}{2 c}\right)
$$

Integrating with respect to $\eta$ then $\xi$, we get

$$
u(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{\xi_{0}}^{\xi} \int_{\eta_{0}}^{\eta} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi}+\phi(\xi)+\psi(\eta)
$$

where $\phi$ and $\psi$ are differentiable functions. We can choose the lower limit to be anything we wish, so we choose $\xi_{0}=0$ and $\eta_{0}=0$ (this particular choice will become apparent later on in the computation),

$$
u(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{0}^{\xi} \int_{0}^{\eta} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi}+\phi(\xi)+\psi(\eta)
$$

We now use the initial conditions to solve for $\phi$ and $\psi$. When $\xi=0$, we must have $x=-c t$. On this line the initial condition $\left.u\right|_{x=-c t}=0$ implies that $u(0, \eta)$ must be 0 for all $\eta$, so

$$
0=u(0, \eta)=\phi(0)+\psi(\eta) \Longrightarrow \psi(\eta)=-\phi(0)
$$

Similarly, when $\eta=0$, we must have $x=c t$. On this line the initial condition $\left.u\right|_{x=c t}=0$, so

$$
0=u(\xi, 0)=\phi(\xi)+\psi(0) \Longrightarrow \phi(\xi)=-\psi(0)
$$

Therefore, both $\phi(\xi)$ and $\psi(\eta)$ are constant functions, so adding these two conditions implies that

$$
\phi(\xi)+\psi(\eta)=-\phi(0)-\psi(0)=-(\phi(\xi)+\psi(\eta)) \Longrightarrow \phi(\xi)+\psi(\eta)=0 .
$$

Since the $\phi(\xi)+\psi(\eta)$ term vanishes, changing back into the $x$ and $t$ coordinates (the Jacobian of this linear transformation is $2 c$ by (16) ), we see that

$$
\begin{equation*}
u(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{0}^{\xi} \int_{0}^{\eta} f\left(\frac{\tilde{\xi}+\tilde{\eta}}{2}, \frac{\tilde{\xi}-\tilde{\eta}}{2 c}\right) d \tilde{\eta} d \tilde{\xi} \Longleftrightarrow u(x, t)=-\frac{1}{2 c} \iint_{R(x, t)} f(y, s) d y d s \tag{18}
\end{equation*}
$$

where $R(x, t)$ is the image of the rectangle in $\tilde{\xi}$ and $\tilde{\eta}$,

$$
\{(\tilde{\xi}, \tilde{\eta}): 0 \leq \tilde{\xi} \leq \xi, 0 \leq \tilde{\eta} \leq \eta\} \mapsto R(x, t)=\{(y, s): 0 \leq y+c s \leq x+c t, 0 \leq y-c s \leq x-c t\}
$$

Full Solution: By linearity, the full solution of the inhomogeneous Goursat problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t), & x>c|t| \\ \left.u\right|_{x=-c t}=g(t), & t<0 \\ \left.u\right|_{x=c t}=h(t), & t>0,\end{cases}
$$

is given by the sum of the homogeneous (17) and inhomogeneous (18) solutions of the Goursat problem,

$$
u(x, t)=h\left(\frac{x+c t}{2 c}\right)+g\left(\frac{c t-x}{2 c}\right)-\frac{g(0)+h(0)}{2}-\frac{1}{2 c} \iint_{R(x, t)} f(y, s) d y d s
$$

## Characteristic Lines:



Description of Picture: The region of integration $R(x, t)$ is given by the region bounded by the boundary $x=c t$ and $x=-c t$ and the characteristic lines passing through the point $(x, t)$. In the picture above, the region of integration corresponding to the point $(x, t)$ indicated by the blue hollow dot is the region bounded by the blue and dashed red lines.

