
June 16, 2020 APM346 – Week 2 Justin Ko

1 The Transport Equation

The transport equation models the concentration of a substance flowing in a fluid at a constant rate.

Definition 1. For parameters c ∈ R, the transport equation on R× R+ is

ut + cux = 0. (1)

The corresponding IVP for the transport equation is{
ut + cux = 0 x ∈ R, t > 0

u|t=0 = f(x) x ∈ R.
(2)

The solution to this equation is derived using a method called the method of characteristics.

Theorem 1 (Solution to the Transport Equation)

(a) The general solution to (1) is
u(x, t) = φ(x− ct), (3)

where φ is an arbitrary function.

(b) The particular solution to (2) is
u(x, t) = f(x− ct). (4)

1.1 Derivation of the General Solution

We give two derivations of (3). Consider the general constant coefficient equation on R2

aux + buy = 0. (5)

1.1.1 Method 1: Integral Curves

We present a geometric derivation of general solution. If we define ~c = (a, b), then the (5) can be
written as

∇cu := ~c · ∇u = aux + buy = 0.

That is, the directional derivative of u in direction ~c is 0, so u is constant along the lines parallel to ~c.

y

x
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Notice that the vector ~c has corresponds to lines with slope b
a , so it described by the integral curves

satisfying the characteristic equations

dy

dx
=
b

a
⇐⇒ dx

a
=
dy

b
. (6)

The equations for lines with slope b
a can be recovered by integrating (6),

dx

a
=
dy

b
=⇒ ay = bx+ C =⇒ ay − bx = C.

Therefore, the solution only depends on the family of characteristic curves of the form ay − bx = C.
These lines can be parameterized by C, so

u(x, y) = φ(C) = φ(ay − bx)

for some function φ : R→ R.

1.1.2 Method 2: Change of Variables

Using the characteristic equations
dx

a
=
dy

b
, (7)

we can do a change of variables to reduce the PDE into an ODE. Integrating (7) implies

dx

a
=
dy

b
=⇒ ay = bx+ C =⇒ ay − bx = C =⇒ y =

C + bx

a
.

We now treat y as a function of C and x and define

v(x,C) := u(x, y(C, x)) where y(C, x) :=
C + bx

a
.

By the multivariable chain rule,

∂

∂x
v(x,C) = ux + uy ·

∂

∂x
y(C, x) = ux + uy ·

b

a
= 0.

since u satisfies the equation (5). This is now an ODE in x, so we can integrate both sides with respect
to x to conclude that the general solution is of the form

v(x,C) = φ(C)

for some function φ : R → R. Since C = ay − bx and v(x,C) = u(x, y), we can write this equation
back in terms of u to conclude

u(x, y) = v(x, ay − bx) = φ(ay − bx).

Remark 1. We could’ve also written x as a function of y. If we did this, then we will have to treat
x as a function of C and y,

x(C, y) =
ay − C

b
.

One can check that this choice of change of variables will give us the same solution.

Remark 2. One can check that Method 2 works even when a = 0 or b = 0 after a small modification.

Page 2 of 12



June 16, 2020 APM346 – Week 2 Justin Ko

1.2 Particular Solution

Suppose we now specify the boundary condition{
aux + buy = 0 x ∈ R, y > 0

u|y=0 = f(x) x ∈ R.
(8)

To recover the particular solution (4) from the general solution, we simply plug the general solution

u(x, y) = φ(ay − bx)

into the boundary condition and solve for the yet to be determined function φ

u|y=0 = f(x) =⇒ u(x, 0) = φ(−bx) = f(x)
s=−bx
=⇒ φ(s) = f

(
−s
b

)
for s ∈ R.

Therefore,

u(x, y) = φ(ay − bx) = f
(
−ay − bx

b

)
= f

(
x− a

b
y
)
.

1.3 Example Problems

Problem 1.1. (?) Solve the boundary value problem{
ux + xuy = 0 x ∈ R, y ∈ R
u|x=0 = sin(y) y ∈ R.

(9)

In which region of the xy-plane is the solution uniquely determined by the initial condition?

Solution 1.1. We explicitly solve this first order linear PDE using a change of variables.

Characteristic Equations: From the characteristic equations

dx

1
=
dy

x

we get the family of characteristic curves

y =
x2

2
+ C.

General Solution: Using the change of variables y(C, x) = x2

2 + C and v(x,C) = u(x, y(C, x)), we get

∂

∂x
v(x,C) = ux + uy ·

∂

dx
y(C, x) = ux + uy · x = 0 =⇒ v = φ(C),

for some yet to be determined φ : R→ R. Since C = y − x2

2 , we can write this back into our original
equation to conclude that

u(x, y) = φ
(
y − x2

2

)
. (10)

Particular Solution: Plugging in the general solution into the boundary condition, we see that

u|x=0 = sin(y) =⇒ φ(y) = sin(y)
y=s
=⇒ φ(s) = sin(s) for s ∈ R,

so

u(x, y) = sin
(
y − x2

2

)
.

Notice that the condition u|x=0 = sin(y) specifies φ(s) for all s ∈ R so this boundary condition uniquely
determines u(x, y) in the entire xy plane.
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Problem 1.2. (??) Consider the boundary value problem{
ux + xuy = 0 x ∈ R, y ∈ R
u|y=0 = f(x) x ∈ R.

(11)

(a) What conditions do we need on f to ensure a solution exists?

(b) In which region of the xy-plane is the solution uniquely determined by the initial condition?

Solution 1.2. We use a geometric approach to determine if the BVP is well posed without solving it.

Characteristic Curves: At the point (x, y), the directional derivative in the direction ~c = (1, x) vanishes
by (11). Since ∇cu = 0, u is constant along the characteristic curves satisfying

dx

1
=
dy

x
=⇒ y =

x2

2
+ C.

x

y

(a) Since the solution is constant on the characteristic curves and the curves y = x2

2 +C intersect the

line y = 0 at the points ±
√
−2C for C ≤ 0, we need f(x) to be an even function for a solution to exist,

i.e. f(−
√
−2C) = f(

√
−2C) for all C ≤ 0 in addition to standard differentiability assumptions.

(b) Since the solution is constant on the characteristic curves and the curves y = x2

2 + C inter-
sect the line y = 0 only for C ≤ 0, the solution is only uniquely determined on the shaded region.
That is, on the points in the xy-plane (the shaded region in the picture above) such that

y − x2

2
≤ 0.

Remark 3. From Problem 1.1, we know the general solution is given by (10). Plugging this in the
boundary conditions gives

u|y=0 = f(x) =⇒ φ
(
− x2

2

)
= f(x)

s=− x2

2=⇒ φ(s) = f(±
√
−2s) for s ≤ 0.

Since f(
√

2s) = φ(s) = f(−
√

2s) for s ≥ 0, we must have f is even. Furthermore, the initial condition

is only specified for s ≤ 0 so u(x, y) = φ(y − x2

2 ) is only uniquely determined for y − x2

2 ≤ 0.
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2 First Order Semilinear Equations

We want to find a formal solution to the first order semilinear PDEs of the form

a(x, y)ux + b(x, y)uy = c(x, y, u). (12)

The principles used to solve the transport equation can be extended to solve many first order semilinear
equations. The change of variable computation in these general cases is almost identical to the one in
Problem 1.1, so we can simplify the procedure by formally solving a system of characteristic equations.

Remark 4. Of course the methodology to solve semilinear equations will also apply to the simpler
case of linear first order equations.

2.1 The Method of Characteristics

Using a change of variables corresponding to characteristic lines, we can reduce the problem to a
system of 3 ODEs. The solution follows by simply solving two ODEs in the resulting system. This
approach is called the method of characteristics.

Step 1: Formally, we want to solve the following system of equations

dx

a(x, y)
=

dy

b(x, y)
=

du

c(x, y, u)
. (13)

Step 2: We first find the characteristic curve by solving the first pair,

dx

a(x, y)
=

dy

b(x, y)
⇔ dy

dx
=
b(x, y)

a(x, y)
⇔ dx

dy
=
a(x, y)

b(x, y)
.

We will get a characteristic line of the form C = f(x, y).

Step 3: We now can now find the general solution by solving either

dx

a(x, y)
=

du

c(x, y, u)
or

dy

b(x, y)
=

du

c(x, y, u)
.

We choose to solve the ODE that is easier to solve. We may need to use the characteristic curve and
the implicit function theorem to write f(x, y) = C as y = y(C, x) or x = x(C, y) to eliminate a variable
to solve this ODE. When we solve the ODE, we must remember to write the constant of integration
we get as a function φ(C) = φ(f(x, y)).

Step 4: If we are given some initial conditions, then we can find the specific form of φ.

Remark 5. This approach is a generalization of the formal computations used to solve separable
ODEs. There is a hidden change of variables that allows us to manipulate the differentials in a
rigorous way. An explanation of this method is outlined in Section 2.3.

Remark 6. Depending on which systems you solve, the general solution may appear to be different.
However, since the solutions are defined in terms an arbitrary function φ, the different general solutions
are equivalent. Solving for the particular solution will result in the same answer provided the PDE is
well-posed.

Remark 7. This procedure can be adapted to solve problems in Rn as well. In R3, the main difference
is that integral curves are now curves in R3, so they are parametrized by a two parameters instead of
one in the R2 case. Some examples in R3 are explained in Problem 2.3 and Problem 2.4.

Remark 8. We can interpret the solution z = u(x, y) as a surface in R3. Because ~n = (ux, uy,−1)
defines the normal vectors to the surface z = u(x, y), the PDE (12) says that the vector field
(a(x, y), b(x, y), c(x, y, z)) is perpendicular to ~n at each point. This implies the integral curve equations
(13) defines an integral surface in R3 that is tangent to the characteristic direction (a, b, c).
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2.2 Example Problems

2.2.1 Semilinear Equations in R2

Problem 2.1. (?) Find the general solutions to the following equations

−4ux + uy + u = 0, (1)

−2ux + 4uy = ex+3y − 5u. (2)

Solution 2.1.

(1) We have the system of equations
dx

−4
=
dy

1
=

du

−u
.

Characteristic Curve: We start by solving the equation involving the first and second term,

dx

−4
=
dy

1
⇒ dx

dy
= −4⇒ C = x+ 4y.

General Solution: We now solve the equation involving the second and third term,

dy

1
=

du

−u
⇒ du

dy
= −u.

This is a separable ODE, which has solution

log |u| = −y + ψ(C)⇒ u = ±eψ(C)e−y.

Since ψ(C) is an arbitrary function and u ≡ 0 is a solution, we might can redefine ±eψ(C) =: φ(C).
Since C = x+ 4y, we have our general solution is

u(x, y) = φ(x+ 4y)e−y

for some φ : R→ R.

Remark 9. To find the general solution, if we solved the equation involving the first and third term

dx

−4
=

du

−u
,

we will get a general solution
u(x, y) = ψ(x+ 4y)e

x
4 ,

for some ψ : R→ R. This solution might look completely different, but it is actually of the same form.
To see this, we can define ψ(s) = e−

s
4φ(s) to conclude that

u(x, y) = ψ(x+ 4y)e
x
4 = φ(x+ 4y)e−

x+4y
4 e

x
4 = φ(x+ 4y)e−y,

so the solutions are actually equivalent.

(2) We have the system of equations

dx

−2
=
dy

4
=

du

ex+3y − 5u
.

Characteristic Curve: We start by solving the equation involving the first and second term,

dx

−2
=
dy

4
⇒ dy

dx
= −2⇒ C = y + 2x.
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General Solution: We now solve the equation involving the first and third term,

dx

−2
=

du

ex+3y − 5u
⇒ du

dx
= −1

2
(ex+3y − 5u)⇒ du

dx
− 5

2
u = −1

2
ex+3y.

There is a y variable appearing in this ODE that we must eliminate first. Since y = C − 2x, we need
to solve

du

dx
− 5

2
u = −1

2
e−5x+3C .

This is a linear ODE, which can be solved using an integrating factor of the form I(x) = e−
5
2x, which

gives us

u = e
5
2x

(
− 1

2

∫
e−5x+3Ce−

5
2x dx

)
= −1

2
e

5
2x

(
2e−

15
2 x+3C

−15
+ ψ(C)

)
⇒ u =

1

15
e−5x+3C − 1

2
ψ(C)e

5
2x.

Since C = y + 2x, if we set φ(s) = − 1
2ψ(s) then we get the general solution

u(x, y) =
1

15
ex+3y + φ(y + 2x)e

5
2x,

for some φ : R→ R.

Problem 2.2. (??) Find a solution to the initial value problem

xux + yuy = xe−u

with u(x, y) = 0 on {y = x2}.

Solution 2.2. We have the system of equations

dx

x
=
dy

y
=

du

xe−u
.

Characteristic Curves: We start by solving the equation involving the first and second term,

dx

x
=
dy

y
⇒ y = Cx.

General Solution: We now solve the equation involving first and third term,

dx

x
=

du

xe−u
⇒ du

dx
= e−u ⇒ eu = x+ φ(C).

Since C = y
x , we have our general solution is

u(x, y) = ln
(
x+ φ

(y
x

))
.

Particular Solution: We now use the initial value to solve for φ. Since u(x, y) = 0 when y = x2, we
have

0 = u(x, y)
∣∣
y=x2 = ln

(
x+ φ

(y
x

))∣∣∣
y=x2

= ln(x+ φ(x))⇒ φ(x) = 1− x.

Therefore, our particular solution is of the form

u(x, y) = ln
(
x+ 1− y

x

)
.

We can easily verify that these formal computations gives us a solution to the PDE.
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Problem 2.3. (??) Find a solution to the initial value problem

2xyux + (x2 + y2)uy = 0

with u(x, y) = exp(x/(x− y)) on {x+ y = 1}.

Solution 2.3. We have the system of equations

dx

2xy
=

dy

(x2 + y2)
=
du

0
.

Characteristic Curves: We start by solving the equation involving the first and second term,

dx

2xy
=

dy

(x2 + y2)
⇒ dy

dx
=

1

2
· x
y

+
1

2
· y
x
.

This is a Homogenous ODE, which can be solved using the change of variables w = y
x . We have

dy
dx = xdwdx + w, so under this change of variables we have

x
dw

dx
+ w =

1

2
· w−1 +

1

2
· w ⇒ x

dw

dx
=

1

2
· w−1 − 1

2
· w =

1− w2

2w
.

This is a separable equation, so

2w

1− w2
dw =

1

x
dx⇒ − ln(1− w2) = lnx+D ⇒ e−D = x(1− w2) =

x2 − y2

x
.

If we set C = e−D, then C = x2−y2
x is our characteristic curve.

General Solution: We now solve the equation involving the first and third term,

dx

2xy
=
du

0
⇒ du

dx
= 0⇒ u = φ(C).

Since C = x2−y2
x , we have our general solution is

u(x, y) = φ
(x2 − y2

x

)
.

Particular Solution: We now use the initial value to solve for φ. Since u(x, y) = exp(x/(x− y)) when
x+ y = 1, we have

e
x

x−y = u(x, y)
∣∣
x+y=1

= φ
(x2 − y2

x

)∣∣∣
x+y=1

= φ
( (x− y)(x+ y)

x

)∣∣∣
x+y=1

= φ
(x− y

x

)
.

If we set s = x−y
x , then the above implies φ(s) = e

1
s , so our particular solution is of the form

u(x, y) = e
x

x2−y2 .

2.2.2 Semilinear Equations in R3

Problem 2.4. (??) Find the general solution to the equation

ux + 3uy − 2uz = u.

Find the particular solution when u(0, y, z) = f(y, z).
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Solution 2.4. We have the system of equations,

dx

1
=
dy

3
=
dz

−2
=
du

u
.

Characteristic Curves Part 1: We start by solving the equation involving the first and second term,

dx

1
=
dy

3
=⇒ C = 3x− y.

Characteristic Curves Part 2: We now solve the equation involving the first and third term,

dx

1
=
dz

−2
=⇒ D = 2x+ z.

General Solution: We now solve the equation involving the first and fourth term,

dx

1
=
du

u
=⇒ x = log |u|+ ψ(C,D) =⇒ u(x, y, z) = φ(C,D)ex = φ(3x− y, 2x+ z)ex,

for some function φ of two variables.

Particular Solution: Plugging in our initial conditions, we have

u(0, y, z) = φ(−y, z) = f(y, z).

We set s = −y and t = z to conclude that

φ(s, t) = f(−s, t).

Therefore, our particular solution is given by

u(x, y, z) = φ(3x− y, 2x+ z)ex = f(y − 3x, 2x+ z)ex.

Remark 10. The general form of the solution may be expressed differently depending on which
characteristic curves we solve, but the particular solution will be the same. For example, if we solved
for the equation involving the second and third term in the second step, we would get

C = 3x− y and D = 3z + 2y.

The general solution in this case after solving the equation involving the first and fourth term will
result in

u(x, y, z) = φ(C,D)ex = φ(3x− y, 3z + 2y)ex.

We can plug in the initial conditions to conclude that

u(0, y, z) = φ(−y, 3z + 2y) = f(y, z).

We set s = −y and t = 3z + 2y. We write y and z as function of s and t,

y = −s and z =
t− 2y

3
=
t+ 2s

3
=⇒ φ(s, t) = f(y, z) = f

(
− s, t+ 2s

3

)
.

Therefore, our particular solution is given by

u(x, y, z) = φ(3x− y, 3z + 2y)ex = f

(
y − 3x,

3z + 2y + 2(3x− y)

3

)
ex = f(y − 3x, 2x+ z)ex,

which is the same as above.

Page 9 of 12



June 16, 2020 APM346 – Week 2 Justin Ko

Problem 2.5. (? ? ?) Find the general solution to the equation

yux + xuy + uz = 0.

Find the particular solution when u(x, y, 0) = f(x, y).

Solution 2.5. We have the system of equations,

dx

y
=
dy

x
=
dz

1
=
du

0
.

Characteristic Curves Part 1: We start by solving the equation involving the first and second term,

dx

y
=
dy

x
=⇒ x2 = y2 + C =⇒ C = x2 − y2.

Characteristic Curves Part 2: We now solve the equation involving the first and third term using the
fact y =

√
x2 − C,

dz

1
=
dx

y
=

dx√
x2 − C

=⇒ z = log |
√
x2 − C + x|+D = log |y + x|+D =⇒ D =

(x+ y)

ez
.

General Solution: We now solve the equation involving the third and fourth term,

dz

1
=
du

0
=⇒ u(x, y, z) = φ(C,D) = φ

(
x2 − y2, (x+ y)

ez

)
.

Particular Solution: Plugging in our initial conditions, we have

u(x, y, 0) = φ(x2 − y2, x+ y) = f(x, y).

We set s = x2 − y2 and t = x+ y. Our goal is to write x and y as some functions of s and t. We see
that

s = x2 − y2 = (x− y)(x+ y) = (x− y)t =⇒ x− y =
s

t
.

Since x+ y = t and x− y = s
t , we can add and subtract our answers to conclude

x =
1

2

(
t+

s

t

)
and y =

1

2

(
t− s

t

)
,

so

φ(s, t) = f(x, y) = f
(1

2

(
t+

s

t

)
,

1

2

(
t− s

t

))
.

Therefore, our particular solution is given by

u(x, y, z) = φ
(
x2 − y2, (x+ y)

ez

)
= f

(1

2

(x+ y

ez
+
x2 − y2
(x+y)
ez

)
,

1

2

(x+ y

ez
− x2 − y2

(x+y)
ez

))
= f

(1

2

(x+ y

ez
+
x− y
e−z

)
,

1

2

(x+ y

ez
− x− y

e−z

))
.

Remark 11. We were a bit sloppy with the constants and domains of our functions above. The
constants C and D changed each line and writing x2 − y2 = C implicitly in terms of y depends on
the value of C. We should check our general solution to ensure that it is a solution to our PDE by
differentiating.
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2.3 Appendix: Proof of the Method of Characteristics

We now explain why the above method works for certain semilinear PDEs that can be reduced to
solvable ODEs. We essentially do a change of variables to reduce the PDE into an ODE. Suppose we
have a PDE of the form

a(x, y)ux + b(x, y)uy = c(x, y, u). (∗)

Step 1: We want to solve the equation

dx

a(x, y)
=

dy

b(x, y)
⇒ dy

dx
=
b(x, y)

a(x, y)
.

Suppose we can find a family of solutions f(x, y) = C, called the characteristic curves. Since this is a
solution to the ODE, by implicitly differentiating, we must have

0 =
d

dx
f(x, y) = fx(x, y) + fy(x, y)

dy

dx
= fx(x, y) + fy(x, y)

b(x, y)

a(x, y)

and therefore, our the family of solutions must satisfy the condition

0 = a(x, y)fx(x, y) + b(x, y)fy(x, y). (14)

We will see that using this f(x, y), we can reduce our PDE into either an ODE with respect to x
(Choice 1) or an ODE with respect to y (Choice 2).

Step 2 (Choice 1): We now explain why it suffices to solve the equations

dx

a(x, y)
=

du

c(x, y, u)
⇒ du

dx
=
c(x, y, u)

a(x, y)
.

To reduce (∗) to this ODE, we do a change of variables

ξ(x, y) = x, η(x, y) = f(x, y)

where f(x, y) = C is the function we found in Step 1. Notice that

ux =
∂u

∂ξ
· ∂ξ
∂x

+
∂u

∂η
· ∂η
∂x

= uξ + uηfx(x, y)

and

uy =
∂u

∂ξ
· ∂ξ
∂y

+
∂u

∂η
· ∂η
∂y

= uηfy(x, y)

therefore we have

a(x, y)ux + b(x, y)uy = a(x, y)(uξfx(x, y)uη) + b(x, y)fy(x, y)uη

= a(x, y)uξ + (a(x, y)fx(x, y) + b(x, y)fy(x, y))uη

= a(x, y)uξ(ξ, η)

since f(x, y) satisfies (14). Since our PDE satisfies (∗), we have shown that

uξ(ξ, η) =
c(x(ξ, η), y(ξ, η), u)

a(x(ξ, η), y(ξ, η))

We can write this back in our original coordinates ξ = x, η = f(x, y) = C. If the characteristic curve
f(x, y) = C can be solved implictly for y = y(x,C), then we can eliminate the y variable, which gives
us

ux(x,C) =
c(x, y(x,C), u)

a(x, y(x,C))
.
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This is precisely the ODE we are solving if we choose the first ODE in Step 3. This also explains why
the integration constant is of the form F (C) instead of just a constant.

Step 2 (Choice 2): It might be easier to instead solve the system

dy

b(x, y)
=

du

c(x, y, u)
⇒ du

dy
=
c(x, y, u)

b(x, y)
.

To reduce (∗) to this ODE, we instead use the change of variables,

ξ(x, y) = y, η(x, y) = f(x, y),

where f(x, y) = C is the function we found in Step 1. Notice that

ux =
∂u

∂ξ
· ∂ξ
∂x

+
∂u

∂η
· ∂η
∂x

= uηfx(x, y)

and

uy =
∂u

∂ξ
· ∂ξ
∂y

+
∂u

∂η
· ∂η
∂y

= uξ + uηfy(x, y)

so we have

a(x, y)ux + b(x, y)uy = a(x, y)(fx(x, y)uη) + b(x, y)(uξ + fy(x, y)uη)

= b(x, y)uξ(ξ, η) + (a(x, y)fx(x, y) + b(x, y)fy(x, y))uη

= b(x, y)uξ(ξ, η)

since f(x, y) satisfies (14). Since our PDE satisfies (∗), we have shown that

uξ(ξ, η) =
c(x(ξ, η), y(ξ, η), u)

a(x(ξ, η), y(ξ, η))
.

We can write this back in our original coordinates ξ = y, η = f(x, y) = C. If the characteristic curve
f(x, y) = C can be solved implictly for x = x(y, C), then we can eliminate the x variable, which gives
us

uy(C, y) =
c(x(y, C), y, u)

a(x(y, C), y)
.

This is precisely the ODE we are solving if we choose the second ODE in Step 3. This also explains
why the integration constant is of the form F (C) instead of just a constant.

Remark 12. Notice that the above procedure works even if one of the coefficients vanish (i.e. a ≡ 0,
b ≡ 0 or c ≡ 0 ). We just lose some choice as to the equations we solve, since if a ≡ 0, then we must
use Choice 2 because Choice 1 does not make sense. The derivation assumed that the coefficients were
sufficiently nice such that we can find solutions to the ODEs at least locally. We should verify that
our formal solutions are true solutions by checking our solutions after deriving them.
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