
August 17, 2020 APM346 – Week 11 Justin Ko

1 Properties of Laplace’s Equation in R2

Consider an open set Ω ⊆ R2. Solutions to Laplace’s equation

∆u = uxx + uyy = 0 in Ω

are called harmonic functions. Harmonic functions in R2 are closely related to analytic functions in
complex analysis. We discuss several properties related to Harmonic functions from a PDE perspective.

We first state a fundamental consequence of the divergence theorem (also called the divergence form of
Green’s theorem in 2 dimensions) that will allow us to simplify the integrals throughout this section.

Definition 1. Let Ω be a bounded open subset in R2 with smooth boundary. For u, v ∈ C2(Ω̄), we
have ∫∫

Ω

∇v · ∇u dxdy +

∫∫
Ω

v∆u dxdy =

∮
∂Ω

v
∂u

∂n
ds. (1)

where n = n(x, y) is the outward pointing unit normal at (x, y) ∈ ∂Ω and ∂u
∂n := ∇u · n is the

corresponding outward normal derivative of u. This identity is called Green’s first identity.

Remark 1. To simplify notation, we restricted the analysis to R2 but all results in this section
generalize easily to Rn. The domains Ω is always assumed to have smooth boundary.

1.1 Mean Value Property

We will show that the values of harmonic functions is equal to the average over balls of the form

Br(x0, y0) = {(x, y) ∈ R2 :
√

(x− x0)2 + (y − y0)2 ≤ r} ⊂ Ω.

Theorem 1 (Mean Value Property)

If u ∈ C2(Ω) is harmonic in Ω, then

u(x0, y0) =
1

2πr

∮
∂Br(x0,y0)

u ds =
1

πr2

∫∫
Br(x0,y0)

u dxdy (2)

for any ball Br(x0, y0) ⊂ Ω.

Proof. We fix (x0, y0) ∈ Ω. We begin by showing the first equality in (2).

First Equality: Consider the function

f(r) =
1

2πr

∮
∂Br(x0,y0)

u ds =
1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ

using the counter clockwise parametrization of ∂Br(x0, y0) with x(θ) = x0 + r cos(θ) and y(θ) =
x0 + r sin(θ) for −π ≤ θ ≤ π. Differentiating with respect to r implies that

f ′(r) =
1

2π

∫ π

−π
cos(θ)ux(x0 + r cos(θ), y0 + r sin(θ)) + sin(θ)uy(x0 + r cos(θ), y0 + r sin(θ)) dθ

=
1

2πr

∮
∂Br(x0,y0)

x− x0

r
ux(x, y) +

y − y0

r
uy(x, y) ds

=
1

2πr

∮
∂Br(x0,y0)

∂u

∂n
ds n =

1

r
(x− x0, y − y0)

=
1

2πr

∫∫
Br(x0,y0)

∆u dxdy Green’s first identity (1)

= 0 (3)
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since ∆u = 0 on Br(x0, y0) ⊂ Ω. Therefore f(r) is constant. To figure out the value of f(r), we take
the limit as r → 0 and apply continuity to see that

lim
r→0

f(r) = lim
r→0

1

2πr

∮
∂Br(x0,y0)

u ds = lim
r→0

1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ = u(x0, y0).

Second Equality: From the previous section, for all ρ ≤ r we have

u(x0, y0) =
1

2π

∫ π

−π
u(x0 + ρ cos(θ), y0 + ρ sin(θ)) dθ.

We can multiply both sides by ρ and integrate to conclude that∫ r

0

ρu dρ =
1

2π

∫ π

−π

∫ r

0

u(x0 + ρ cos(θ), y0 + ρ sin(θ))ρ dρdθ.

The term on the left simplifies to r2

2 u(x, y) and the term on the right is the integral over Br(x0, y0)
expressed in polar coodinates, so

u(x, y) =
1

πr2

∫ π

−π

∫ r

0

u(x0 + ρ cos(θ), y0 + ρ sin(θ))ρ dρdθ =
1

πr2

∫∫
Br(x0,y0)

u dxdy.

Remark 2. The normalizations appearing in (2) are the circumference of a circle and the area of a
disc. This normalization means that the integrals can be interpreted as the expected value of u over
a uniform probability measure on the circle and disc.

The converse of Theorem 1 is also true, so the mean value property characterizes harmonic functions.

Theorem 2 (Converse of the Mean Value Property)

If u ∈ C2(Ω) satisfies (2) for every ball Br(x0, y0) ⊂ Ω, then u is harmonic in Ω.

Proof. Suppose that ∆u 6≡ 0 in Ω. Without loss of generality, suppose that ∆u(x0, y0) > 0 at some
(x0, y0) in Ω. By continuity, there exists a ball Bρ(x0, y0) such that ∆u > 0 within Bρ(x0, y0). For
r ≤ ρ, consider

f(r) =
1

2πr

∮
∂Br(x0,y0)

u ds.

If u satisfies (2) for every ball in the domain, then clearly f must be constant since it must equal
u(x0, y0) for all r ≤ ρ. The computations leading to (3) implies that

f ′(r) =
1

2πr

∫∫
Br(x0,y0)

∆u dxdy > 0,

which contradicts the fact that f(r) must be constant. If ∆u < 0 within some Bρ(x0, y0), then we
arrive at the same contradiction because the f will be strictly decreasing in that scenario.

Remark 3. Theorem 1 and Theorem 2 implies that u is harmonic if and only if it satisfies the mean
value property. This characterization of harmonic functions is also valid in Rn.
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1.2 Maximum Principle

Harmonic functions also attain its extreme values on the boundary of the set. This implies that the
maximum/minimum of solutions to ∆u = 0 are determined by the boundary conditions.

Theorem 3 (Weak Maximum Principle)

Let Ω be a connected bounded open set Ω ⊆ Rn. If u is harmonic in Ω and u is continuous on Ω̄,
then the maximum and minimum values of u are attained on ∂Ω.

Proof. The proof is identical to the maximum principle for the heat equation proof. Let u be a
harmonic on Ω and continuous on Ω̄. Let ε > 0 and define vε(x, y) = u(x, y) + ε(x2 + y2). The
following interior point condition holds

vεxx + vεyy = vεxx + vεyy + 4ε ≥ 0 + 4ε > 0 in Ω.

By the second derivative test, any interior maximum must satisfy the critical point condition vεxx+vεyy ≤
0, which is impossible because it contradicts the interior point condition vεxx + vεyy > 0. Therefore,
vε(x, y) does not attain an interior maximum.

Since vε(x, y) is a continuous function and Ω̄ is compact, vε attains a maximum at some point
(x̃, ỹ) ∈ ∂Ω. We are on a bounded domain, x2 +y2 ≤M for all (x, y) ∈ ∂Ω. Since 0 ≤ ε(x2 +y2) ≤Mε,
we have

max
Ω

u(x, y) ≤ max
Ω

vε(x, y) ≤ vε(x̃, ỹ) ≤ u(x̃, ỹ) + ε(x̃2 + ỹ2) ≤ max
∂Ω

u(x, y) + 2M.

The upperbound holds for all ε > 0, so taking ε→ 0 implies

max
Ω

u(x, y) ≤ max
∂Ω

u(x, y) =⇒ max
Ω

u(x, y) = max
∂Ω

u(x, y)

as required. The proof of the minimum principle follows by applying the maximum principle to−u(x, y)
and using the fact ∆(−u) = 0.

Remark 4. The weak maximum principle can be used to prove uniqueness and stability of continuous
solutions to (4). These proofs are similar to the proofs in the setting of the heat equation.

1.3 Uniqueness

We now provide two proofs of uniqueness of Poisson’s equation with Dirichlet boundary conditions,{
∆u = f(x, y) in Ω,

u|∂Ω = g(x, y) on ∂Ω.
(4)

Theorem 4 (Uniqueness of the Dirichlet Problem)

Continuous solutions to (4) are unique.

Proof Using the Maximum Principle. Consider two continuous solutions u and v of the Dirichlet
problem (4). It is easy to see that w = u− v solves{

∆w = 0 in Ω,

w|∂Ω = 0 on ∂Ω.

The function w is continuous and harmonic so it satisfies the maximum principle. Since w = 0 on ∂Ω,
for any (x, y) ∈ Ω

0 = min
∂Ω

w ≤ w(x, y) ≤ max
∂Ω

w = 0

so w = 0 in Ω as well. Therefore, w = 0 in Ω̄, so u = v.
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We now present a proof using the energy method. Given a function w ∈ C2(Ω), where Ω ⊂ Rn is
an open domain, we define energy of w as

E[w] =

∫∫
Ω

|∇w|2 dxdy.

Our goal is to show that E[w] ≤ 0 which will imply E[w] = 0. This will prove that ∇w = 0 in Ω,
which proves that w is constant on the interior. If we can show that w = 0 on ∂Ω, then we can prove
uniqueness of continuous solutions.

Proof Using the Energy Method. Consider two continuous solutions u and v of the Dirichlet problem
(4). It is easy to see that w = u− v solves{

∆w = 0 in Ω,

w|∂Ω = 0 on ∂Ω.

Computing the energy of w, we have

E[w] =

∫∫
Ω

|∇w|2 dxdy

=

∮
∂Ω

w
∂w

∂n
ds−

∫∫
Ω

w∆w dxdy Green’s First Identity

=

∮
∂Ω

w
∂w

∂n
ds ∆w = 0

=

∮
∂Ω

0 ds = 0 Boundary Conditions.

Since E[w] ≥ 0 the computation above implies 0 ≤ E[w] ≤ 0, so E[w] = 0. The integrand is non-
negative, so by continuity,

∇w ≡ 0 in Ω =⇒ w = constant in Ω̄.

Since w = 0 on ∂Ω, we must have w ≡ 0 which implies u = v on Ω̄.

Remark 5. The energy argument can be adapted to problems on the exterior of a circle using a
change of variables called the Kelvin transform, ũ(x, y) = u( x

x2+y2 ,
y

x2+y2 ). In polar coordinates, this

transformation is ũ(r, θ) = u(r−1, θ), so it is straightforward to check that u is harmonic if and only if
ū is harmonic. The domain of ū is a circle if u is defined on the exterior of a circle, so we can apply
the energy argument to ũ when u is defined on the exterior of a circle.

1.4 Poisson’s Formula

Recall that the solution to Laplace’s equation on the interior of the disk Ba(0, 0) (see the computation
in Week 10 Summary Problem 1.1){

∆u = 0 r < a, − π ≤ θ ≤ π,
u|r=a = g(θ),

(5)

is given by

u(r, θ) =
A0

2
+

∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ))

where

An =
1

πan

∫ π

−π
g(φ) cos(nφ) dφ and Bn =

1

πan

∫ π

−π
g(φ) sin(nφ) dφ.
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In this example, the Fourier series is summable, so we can get a closed form representation for u.
Replacing the Fourier coefficients with the integrals, we see that

u(r, θ) =
1

2π

∫ π

−π
g(φ) dφ+

∞∑
n=1

rn

πan

∫ π

−π
g(φ)(cos(nφ) cos(nθ) + sin(nφ) sin(nθ)) dφ

By the product sum identities, this simplifies to

u(r, θ) =
1

2π

∫ π

−π
g(φ)

(
1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ))

)
dφ.

The infinite series is geometric, so it can be explicitly computed to give

1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ)) = 1 +

∞∑
n=1

( r
a

)n
eni(θ−φ) +

( r
a

)n
e−ni(θ−φ)

= 1 +
rei(θ−φ)

a− rei(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

∞∑
n=1

xn =
x

1− x

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.

Theorem 5 (Poisson’s Formula)

The solution to (5) is given by

u(r, θ) =
(a2 − r2)

2π

∫ π

−π

g(φ)

a2 − 2ar cos(θ − φ) + r2
dφ. (6)

Poisson’s formula also has an alternate representation in Cartesian coordinates. For r < a, let

(x, y) = (r cos(θ), r sin(θ)) ∈ B◦a(0, 0) and (x̃, ỹ) = (a cos(φ), a sin(φ)) ∈ ∂Ba(0, 0).

The cosine law implies that

(x− x̃)2 + (y − ỹ)2 = a2 − 2ar cos(θ − φ) + r2.

In polar coordinates, x̃ = a cos(φ) and ỹ = a sin(φ) so adφ = ds̃, which implies that (6) simplifies to

u(x, y) =
a2 − (x2 + y2)

2πa

∮
∂Ba(0,0)

u(x̃, ỹ)

(x− x̃)2 + (y − ỹ)2
ds̃. (7)

As an application of this formula, we show that harmonic functions are smooth.

Theorem 6 (Regularity of Harmonic Functions)

If u is harmonic in Ω ⊆ R2, then u ∈ C∞(Ω).

Proof. Let (x0, y0) ∈ Ω and suppose that r > 0 is chosen sufficiently small so that Br(x0, y0) ⊂ Ω.
After recentering (7), we can conclude for (x, y) ∈ B◦r (x0, y0) ⊂ Ω that

u(x, y) =
r2 − (x− x0)2 − (y − y0)2

2πr

∮
∂Br(x0,y0)

u(x̃, ỹ)

(x− x̃)2 + (y − ỹ)2
ds̃. (8)

Since (x, y) ∈ B◦r (x0, y0), there exists a m such that (x − x̃)2 + (y − ỹ)2 > m on the domain of
integration. The integrand is infinitely differentiable for all x, y ∈ Br(x0, y0), so u is smooth in Ω.

Remark 6. Poisson’s formula (8) also gives an alternate proof of the mean value property (Theorem 1),

u(x, y)
∣∣∣
(x,y)=(x0,y0)

=
r2

2πr

∮
∂Br(x0,y0)

u(x̃, ỹ)

r2
ds̃ =

1

2πr

∮
∂Br(x0,y0)

u(x̃, ỹ) ds̃.
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1.5 Example Problems

Problem 1.1. (?) Find the maximimum and minimum values of u = x3 − 3xy2 + 3x on the disk
Ω = {(x, y) : x2 + y2 ≤ 1}.

Solution 1.1. We have
uxx + uyy = 6x− 6x = 0

so u is harmonic in R2. By the weak maximum principle (Theorem 3) u attains its maximum on the
circle ∂Ω = {(x, y) : x2 + y2 = 1}. In polar coordinates, we have

u(1, θ) = cos3(θ)− 3 cos(θ) sin2(θ) + 3 cos(θ) =: f(θ).

We have

f ′(θ) = −3 cos2(θ) sin(θ)− 6 cos2(θ) sin(θ) + 3 sin3(θ)− 3 sin(θ)

= 3 sin(θ)(sin2 θ − 3 cos2(θ)− 1)

= −12 sin(θ) cos2(θ)

which is equal to 0 when θ = 0,±π,±π2 on the domain [−π, π]. Since

f(0) = 4 f(±π) = −4 f
(
± π

2

)
= 0

the maximum value is 4 and the minimum value is −4.

Problem 1.2. (?) Suppose u is harmonic in the disc Ω = {(x, y) : x2 + y2 < 1} and continuous on Ω̄.
If u is equal to x2y2 on ∂Ω, find u(0, 0).

Solution 1.2. By the mean value property (Theorem 1), we have

u(0, 0) =
1

2π

∮
∂Ω

u ds =
1

2π

∫ π

−π
u(cos(θ), sin(θ)) dθ =

1

2π

∫ π

−π
cos2(θ) sin2(θ) dθ

=
1

8π

∫ π

−π
sin2(2θ) dθ

=
1

8
.
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