
August 10, 2020 APM346 – Week 10 Justin Ko

1 Laplace’s Equation on Circular Domains

Laplace’s equation on rotationally symmetric domains can be solved using a change of variables to
polar coordinates. The two dimensional Laplace operator in its Cartesian and polar forms are

∆u(x, y) = uxx + uyy and ∆u(r, θ) = urr +
1

r
ur +

1

r2
uθθ.

We are interested in finding bounded solutions to Laplace’s equation, so we often have that implicit
assumption. The “radial” problem will be an Euler ODE which has the following solution.

Euler Equations: An ODE of the form

ax2y′′ + bxy′ + cy = 0

are called Euler ODEs. The ODE is solved by finding the roots r1 and r2 of the characteristic
polynomial

C(x) = ax(x− 1) + bx+ c = 0

and the general form of the solution is given by

y(x) =


C1x

r1 + C2x
r2 r1, r2 ∈ R, r1 6= r2

C1x
r + C2 log(x)xr r1 = r2 = r ∈ R

C1x
α cos(β log x) + C2x

α sin(β log x) r1 = α+ iβ, r2 = α− iβ, β 6= 0.

1.1 Rotational Invariance

The reason why the Laplacian has a simple form in polar coordinates is because it is invariant under
rotations. Given α, consider the counterclockwise rotation by α,[

x̃
ỹ

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
x
y

]
=⇒ x̃= cos(α)x− sin(α)y

ỹ = sin(α)x+ cos(α)y
.

By the chain rule,

∂x = cos(α)∂x̃ + sin(α)∂ỹ
∂y =− sin(α)∂x̃ + cos(α)∂ỹ

=⇒ ∂2x = cos2(α)∂2x̃ + 2 sin(α) cos(α)∂x̃∂ỹ + sin2(α)∂2ỹ
∂2y = sin2(α)∂2x̃ − 2 sin(α) cos(α)∂x̃∂ỹ + cos2(α)∂2ỹ

so
uxx + uyy = (cos2 α+ sin2 α)(ux̃x̃ + uỹỹ) = ux̃x̃ + uỹỹ.

This can also be seen in its polar form. If we define θ̃ = θ + α, then

∂θ = ∂θ̃ ∂2θ = ∂2
θ̃

so

urr +
1

r
ur +

1

r2
uθθ = urr +

1

r
ur +

1

r2
uθ̃θ̃.

Remark 1. This property generalizes nicely to n dimensions as well. Given a rotation matrix R,
consider the rotation x̃ = R~x. If we define ∇~x = (∂x1 , . . . , ∂xn)T and ∇x̃ = (∂x̃1 , . . . , ∂x̃n)T, then the
chain rule implies

∇~x = RT∇x̃
so it follows that

∆~x = ∇T
~x∇~x = (RT∇x̃)T(RT∇x̃)~x = ∇T

x̃RRT∇x̃ = ∇T
x̃∇x̃ = ∆x̃,

since rotation matrices are orthogonal RRT = I. It follows that ∆~xu = ∆x̃u, so the Laplacian in Rn
is also rotationally invariant.
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1.2 Example Problems

Problem 1.1. (?) (Interior of a Disk) Solve{
∆u = 0 for r < a, − π ≤ θ ≤ π,

u|r=a = 1 + 2 sin(θ),

Solution 1.1. After converting to polar coordinates, our PDE can be written as the following problem
on the circle 

urr + 1
rur + 1

r2uθθ = 0 0 < r < a, −π ≤ θ ≤ π
u(r,−π) = u(r, π) 0 < r < a

uθ(r,−π) = uθ(r, π) 0 < r < a

u(a, θ) = 1 + 2 sin(θ) −π ≤ θ ≤ π
limr→0 u(r, θ) <∞ −π ≤ θ ≤ π

The condition that limr→0 u(r, θ) <∞ is an implicit assumption of this problem.

Step 1 — Separation of Variables: The PDE has periodic homogeneous angular boundary conditions,
so we look for a solution of the form u(r, θ) = R(r)Θ(θ). For such a solution, the PDE implies

∆u = R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0 =⇒ −r

2R′′ + rR′

R
=

Θ′′

Θ
= −λ.

This results in the ODEs

r2R′′(r) + rR′(r)− λR(r) = 0 and Θ′′(θ) + λΘ(θ) = 0

with angular boundary conditions

R(r)Θ(−π)−R(r)Θ(π) = 0, R(r)Θ′(−π)−R(r)Θ′(π) = 0

and radial boundary conditions

R(a)Θ(θ) = 1 + 2 sin(θ) lim
r→0

R(r)Θ(θ) <∞.

For non-trivial solutions to the angle problem, we require R(r) 6≡ 0, Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

Step 2 — Eigenvalue Problem: We now solve the periodic angular eigenvalue problem{
Θ′′ + λΘ = 0

Θ(π)−Θ(−π) = Θ′(π)−Θ′(−π) = 0.

The eigenvalues and corresponding eigenfunctions are given by the full Fourier series

λ0 = 0, Θ0(x) = 1, λn = n2, Θn(θ) = cos(nθ), Φn(θ) = sin(nθ), n = 1, 2, . . . .

Step 3 — Radial Problem: We now solve the radial problem for each eigenvalue. The ODE

r2R′′ + rR′ − λR = 0

is an Euler ODE with solutions

R0(r) = C0 log r +D0, Rn(r) = Cnr
−n +Dnr

n, n = 1, 2, . . .
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Since the solution should be regular at 0 (limr→0R(r) < ∞), we need Cn = 0 for all n ≥ 0, so our
solution is of the form

R0(r) = D0, Rn(r) = Dnr
n, n = 1, 2, . . .

for some arbitrary coefficients D0 and Dn.

Step 4 — General Solution: Using the principle of superposition, and summing all the eigenfunc-
tions gives us the general solution

u(r, θ) = A0 +

∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ))

where A0, An and Bn are yet to be determined coefficients.

Step 5 — Particular Solution: To find constants A0, An and Bn we need to use the boundary condition.
Using the boundary condition we get

1 + 2 sin(θ) = u(a, θ) = A0 +

∞∑
n=1

an (An cos(nθ) +Bn sin(nθ)) .

Instead of solving for the Fourier series like usual, we can just equate coefficients to see that

A0 = 1, a1B1 = 2 =⇒ B1 =
2

a
,

and the rest of the coefficients are 0.

Step 6 — Final Answer: To summarize, the solution to the PDE is given by

u(r, θ) = 1 +
2

a
r sin(θ).

Problem 1.2. (??) (Wedge of a Disk) Solve
∆u = 0 for r < a, 0 < θ < β,

u|r=a = g(θ),

u|θ=0 = 0, u|θ=β = β

Solution 1.2. After converting to polar coordinates, our PDE can be written as the following problem
on the wedge 

urr + 1
rur + 1

r2uθθ = 0 0 < r < a, 0 < θ < β

u(r, 0) = 0 0 < r < a

u(r, β) = β 0 < r < a

u(a, θ) = g(θ) 0 < θ < β

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change of
variables to reduce our problem to the case with homogeneous angular boundary conditions. We set

u(r, θ) = v(r, θ) + w(r, θ)

where w(r, θ) is chosen to satisfy the inhomogeneous boundary conditions. Like usual, we can take
w(r, θ) to be a polynomial of the form

w(r, θ) = (Aθ2 +Bθ + C) · β
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for some constants A,B,C. Substituting w(r, θ) in the boundary conditions gives

C = 0 = w(r, 0)

(Aβ2 +Bβ + C)β = β = w(r, β).

By inspection it is clear that A = 0, B = 1/β, and C = 0 zero works. Therefore,

w(r, θ) = θ.

Step 2 — Separation of Variables: Since v(r, θ) = u(r, θ)− w(r, θ), our choice of w(r, θ) implies
vrr + 1

rvr + 1
r2 vθθ = 0 0 < r < a, 0 < θ < β

v(r, 0) = 0 0 < r < a

v(r, β) = 0 0 < r < a

v(a, θ) = g(θ)− θ 0 < θ < β.

(∗)

This now has homogeneous angular boundary conditions, so we can use separation of variables and
look for a solution of the form v(r, θ) = R(r)Θ(θ). For such a solution, the PDE implies

∆v = R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0 =⇒ −r

2R′′ + rR′

R
=

Θ′′

Θ
= −λ.

This results in the ODEs

r2R′′(r) + rR′(r)− λR(r) = 0 and Θ′′(θ) + λΘ(θ) = 0

with angular boundary conditions

R(r)Θ(0) = R(r)Θ(β) = 0.

and radial boundary conditions (and regularity condition)

R(a)Θ(θ) = θ, lim
r→0

R(r)Θ(θ) <∞

For non-trivial solutions to the angle problem, we require R(r) 6≡ 0, Θ(0) = Θ(β) = 0.

Step 3 — Eigenvalue Problem: We now solve the angular eigenvalue problem{
Θ′′(θ) + λΘ(θ) = 0 0 < θ < β

Θ(0) = Θ(β) = 0.

This is a standard problem, and the eigenvalues and corresponding eigenfunctions are

λn =
(nπ
β

)2
, Θn(θ) = sin

(nπ
β
θ
)
, n = 1, 2, . . . .

Step 4 — Radial Problem: For each eigenvalue, we solve the radial problem

r2R′′(r) + rR′(r)−
(nπ
β

)2
R(r) = 0.

This is an Euler ODE with characteristic equation C(r) = r(r − 1) + r − (nπβ )2 and roots r = ±nπβ ,
which has general solution of the form

Rn(r) = Anr
nπ
β +Bnr

−nπβ
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for some yet to be determined coefficients An and Bn. Since the solution should be regular at 0
(limr→0R(r) <∞), we need Bn = 0, so our solution is of the form

Rn(r) = Anr
nπ
β , n = 1, 2, . . .

for some yet to be determined coefficient An. Using the principle of superposition, and taking a linear
combination of the eigenfunctions gives the general solution

v(r, θ) =

∞∑
n=1

Anr
nπ
β sin

(nπ
β
θ
)
.

Step 5 — Particular Solution: We now use the radial boundary condition to find An. Plugging the
general solution into the boundary conditions, R(a)Θ(θ) = g(θ)− θ implies

∞∑
n=1

Ana
nπ
β sin

(nπ
β
θ
)

= g(θ)− θ.

By the Fourier sine series, we have

a
nπ
β An =

2

β

∫ β

0

(g(θ)− θ) sin
(nπ
β
θ
)
dθ =⇒ An = a−

nπ
β

2

β

∫ β

0

(g(θ)− θ) sin
(nπ
β
θ
)
dθ.

Step 6 — Final Answer: To summarize, since u(r, θ) = v(r, θ) + w(r, θ) we have

u(r, θ) =

∞∑
n=1

Anr
nπ
β sin

(nπ
β
θ
)

+ θ.

where the coefficients An are given by

An = a−
nπ
β

2

β

∫ β

0

(g(θ)− θ) sin
(nπ
β
θ
)
dθ.

Problem 1.3. (??) (Wedge of an Annulus) Solve
∆u = 0 for a < r < b, α < θ < β,

u|r=a = g(θ), u|r=b = h(θ),

u|θ=α = u|θ=β = 0.

Solution 1.3. After converting to polar coordinates, our PDE can be written as the following problem
on the wedge of an annuli

urr + 1
rur + 1

r2uθθ = 0 0 < a < r < b, α < θ < β

u(r, α) = 0 0 < a < r < b

u(r, β) = 0 0 < a < r < b

u(a, θ) = g(θ) α < θ < β

u(b, θ) = h(θ) α < θ < β

Step 1 — Change of Variables: Before doing separation of variables, we begin by using a change of
variables to reduce our problem to the case with the standard Dirichlet angular boundary conditions.
We use rotation invariance, and set

v(r, θ) = u(r, θ + α).
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By rotational invariance, it is easy to see that vrr + 1
rvr + 1

r2 vθθ = urr + 1
rur + 1

r2uθθ = 0 and the
domain of v(r, θ) is the centered wedge of the annuli {0 < θ < β − α, a < r < b}.

Step 2 — Separation of Variables: Since v(r, θ) = u(r, θ + α), our PDE can be expressed as

vrr + 1
rvr + 1

r2 vθθ = 0 0 < a < r < b, 0 < θ < β − α
v(r, 0) = 0 0 < a < r < b

v(r, β − α) = 0 0 < a < r < b

v(a, θ) = g(θ + α) 0 < θ < β − α
v(b, θ) = h(θ + α) 0 < θ < β − α.

This PDE now has symmetric homogeneous angular boundary conditions, so we look for a solution of
the form v(r, θ) = R(r)Θ(θ). For such a solution, the PDE implies

∆v = R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0 =⇒ −r

2R′′ + rR′

R
=

Θ′′

Θ
= −λ.

This results in the ODEs

r2R′′(r) + rR′(r)− λR(r) = 0 and Θ′′(θ) + λΘ(θ) = 0

with angular boundary conditions

R(r)Θ(0) = R(r)Θ(β − α) = 0,

and radial boundary conditions

R(a)Θ(θ) = g(θ + α), R(b)Θ(θ) = h(θ + α).

For non-trivial solutions to the angle problem, we require R(r) 6≡ 0, Θ(0) = Θ(β − α) = 0.

Step 3 — Eigenvalue Problem: We now solve the angular eigenvalue problem{
Θ′′(θ) + λΘ(θ) = 0 0 < θ < β − α
Θ(0) = Θ(β − α) = 0.

This is a standard problem, and the eigenvalues and corresponding eigenfunctions are

λn =
( nπ

β − α

)2
, Θn(θ) = sin

( nπ

β − α
θ
)
, n = 1, 2, . . . .

Step 4 — Radial Problem: For each eigenvalue, we solve the radial problem

r2R′′(r) + rR′(r)−
( nπ

β − α

)2
R(r) = 0.

This is an Euler ODE with characteristic equation C(r) = r(r− 1) + r− ( nπ
β−α )2 and roots r = ± nπ

β−α ,
which has general solution of the form

Rn(r) = Anr
nπ
β−α +Bnr

− nπ
β−α

for some yet to be determined coefficients An and Bn. Using the principle of superposition, and taking
a linear combination of the eigenfunctions gives the general solution

v(r, θ) =

∞∑
n=1

(
Anr

nπ
β−α +Bnr

− nπ
β−α

)
sin
( nπ

β − α
θ
)
.
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Step 5 — Particular Solution: We now use the radial boundary condition to find An. Plugging the
general solution into the radial boundary conditions implies,

∞∑
n=1

(
Ana

nπ
β−α +Bna

− nπ
β−α

)
sin
( nπ

β − α
θ
)

= g(θ + α)

and
∞∑
n=1

(
Anb

nπ
β−α +Bnb

− nπ
β−α

)
sin
( nπ

β − α
θ
)

= h(θ + α).

By the Fourier sine series, we have

Ana
nπ
β−α +Bna

− nπ
β−α =

2

β − α

∫ β−α

0

g(θ + α) sin
( nπ

β − α
θ
)
dθ =

2

β − α

∫ β

α

g(θ) sin
(nπ(θ − α)

β − α

)
dθ,

and

Anb
nπ
β−α +Bnb

− nπ
β−α =

2

β − α

∫ β−α

0

h(θ + α) sin
( nπ

β − α
θ
)
dθ =

2

β − α

∫ β

α

h(θ) sin
(nπ(θ − α)

β − α

)
dθ.

This system can be written as a 2× 2 matrix with linearly independent columns (since a 6= b), so we
may solve for An and Bn. To solve this system, we can use the formula for the inverse of a 2×2 matrix.

If we define In = 2
β−α

∫ β
α
g(θ) sin

(
nπ(θ−α)
β−α

)
dθ and Jn = 2

β−α
∫ β
α
h(θ) sin

(
nπ(θ−α)
β−α

)
dθ, this gives[

a
nπ
β−α a−

nπ
β−α

b
nπ
β−α b−

nπ
β−α

] [
An
Bn

]
=

[
In
Jn

]
=⇒

[
An
Bn

]
=

1

a
nπ
β−α b−

nπ
β−α − a−

nπ
β−α b

nπ
β−α

[
b−

nπ
β−α −a−

nπ
β−α

−b
nπ
β−α a

nπ
β−α

] [
In
Jn

]
.

That is, for Cn = a
nπ
β−α b−

nπ
β−α − a−

nπ
β−α b

nπ
β−α we have

An =
1

Cn
·
(

2b−
nπ
β−α

β − α

∫ β

α

g(θ) sin
(nπ(θ − α)

β − α

)
dθ − 2a−

nπ
β−α

β − α

∫ β

α

h(θ) sin
(nπ(θ − α)

β − α

)
dθ

)
and

Bn =
1

Cn
·
(
− 2b

nπ
β−α

β − α

∫ β

α

g(θ) sin
(nπ(θ − α)

β − α

)
dθ +

2a
nπ
β−α

β − α

∫ β

α

h(θ) sin
(nπ(θ − α)

β − α

)
dθ

)
.

Step 6 — Final Answer: To summarize, since v(r, θ) = u(r, θ + α) we have u(r, θ) = v(r, θ − α), we
have

u(r, θ) =

∞∑
n=1

(
Anr

nπ
β−α +Bnr

− nπ
β−α

)
sin
( nπ

β − α
(θ − α)

)
,

where for Cn = a
nπ
β−α b−

nπ
β−α − a−

nπ
β−α b

nπ
β−α the coefficients An and Bn are given by

An =
1

Cn
·
(

2b−
nπ
β−α

β − α

∫ β

α

g(θ) sin
(nπ(θ − α)

β − α

)
dθ − 2a−

nπ
β−α

β − α

∫ β

α

h(θ) sin
(nπ(θ − α)

β − α

)
dθ

)
and

Bn =
1

Cn
·
(
− 2b

nπ
β−α

β − α

∫ β

α

g(θ) sin
(nπ(θ − α)

β − α

)
dθ +

2a
nπ
β−α

β − α

∫ β

α

h(θ) sin
(nπ(θ − α)

β − α

)
dθ

)
.

Remark 2. If we solve the following eigenvalue problem{
Θ′′(θ) + λΘ(θ) = 0 α < θ < β,

Θ(α) = Θ(β) = 0,

we will get the eigenvalue and eigenfunctions

λn =
( nπ

β − α

)2
Θn(θ) = sin

(nπ(θ − α)

β − α

)
n = 1, 2, . . . .
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