Welcome to MAT137 - Calculus with proofs!

- Assignment 4 is due on November 26.
- Test 2 begins on December 4.

- Before next class:
 - Watch videos 5.10, 5.11
 - Download next class slides. No need to look at them.

MVT – True or False?

True or False

Consider f(x) = |x| on the interval $\left[-\frac{1}{2}, 2\right]$. There exists c in $\left(-\frac{1}{2}, 2\right)$ such that

$$f'(c) = rac{f(2) - f(-rac{1}{2})}{2 - (-rac{1}{2})}$$

A driver competes in a race.

Use MVT to prove that at some point during the race the instantaneous velocity of the driver is exactly equal to the average velocity of the driver during the race.

Car race - 2

Two drivers start a race at the same moment and finish in a tie.

Can you conclude that there was a time in the race (not counting the starting time) when the two drivers had exactly the same speed?

Claim

IF two drivers start a race at the same moment and finish in a tie, THEN at some point in the race (not counting the starting time) they had exactly the same speed.

Proof?

- Let f(t) and g(t) be the positions of the two cars at time t.
- Assume the race happens in the interval $[t_1, t_2]$. By hypothesis:

$$f(t_1) = g(t_1), \qquad f(t_2) = g(t_2).$$

• Using MVT, there exists $c \in (t_1, t_2)$ such that

$$f'(c)=rac{f(t_2)-f(t_1)}{t_2-t_1}, \quad g'(c)=rac{g(t_2)-g(t_1)}{t_2-t_1},$$

• Then f'(c) = g'(c).

Car race - resolution

Two drivers start a race at the same moment and finish in a tie.

Prove that at some point during the race (not counting the starting time) the two drivers had exactly the same speed.