Lisa Jeffrey



1 Introduction
The simplest 1-dimensional object that isn’t R is
Sti={2€Cllz| =1} =[0,1]/ ~

where 0 ~ 1.
Consider the 2-sphere S? :

S*={(z.y,2) 1 2® +y’ + 27 =1}
It can be regarded as
e The level set F~!(1) of F': R® — R where F(z,y,2) = 22 + y* + 22

e The Riemann sphere C':= CU{oc} = U]]V/ ~ where U = {z € C} and V = {w € C}
with z€ U~w eV < z=w"!for z #0.

e Stereographic projection defines parametrizations of S? \ { N} and S? \ {S}, where N =
(0,0,1) and S = (0,0, —1). We define 7 : S? \ {N} — R? by

(u,v) =7(z,y,2)
where
4u
A
4v
2w +0?)
“wervid

y:

where
D—2i- :{(I7yaz)|220,1‘2+y2—}—z2 = 1}
Dz = {(fL‘,y,Z)|Z < O,{L’2—|—y2—}-22 = ]_}

/

and (z,y,2) € D3 ~ (2/,y,2') € D2 «+— z2=0,z=2",y =y

Examples of 2-manifolds:



The torus: We identify the sides of a square as follows

The Klein bottle: We identify the sides of a square as follows

The real projective plane: We identify the sides of a square as follows

e genus g oriented 2-manifold: Identify the edges of a 4g-gon as follows. All 4¢g vertices are
identified to the same point.

Manifolds of dimension n are objects parametrized locally by open sets in R”. For example, S?
is parametrized locally by open sets in R2.
Themes:

1. Smoothness: Some level sets F~'(ay,...,ay) (for (ay,...,a,) € R™ andF : RY — R™)
are not smooth. We will establish a criterion for when a level set is a smooth manifold.

For example, F' : C* — C defomed bu F(z,w) = 2* — w? In this case, F~!(0) is not
locally modelled on R?. We see this by examining F~1(0) N R? = {(x,y) € R?|23 = y°}.
This is y = £23/2 which is not smooth at (0,0).

2. Tangent space T,,M to a manifold M at x € M

o If F:R" —» RY and

OF;
dF);; = —
( )l] axj
(1=1,...,N)and (j =1,...,n)) then Im(dF’), is the tangent space to M := F(R")

at F(z).

o If we look at b = F~!(a) for F': R® — RY, then the tangent space to F~!(a) at y
(where F(y) = a) is the kernel of dF":

{€ e R*[(dF)y(£) = 0}

We will make sense of manifolds and their tangent spaces in a way that is independent
of their description as subsets of R¥.

Remark: In fact all manifolds of dimension n can be written as subsets of R?" (Whitney
embedding theorem)

3. Tangent bundles: The set of points in a manifold M together with their tangent spaces
gives an object called a tangent bundle of M. For example, for S' C R? the tangent
bundle is

(z,6) e R2 x R¥||z| = 1,< &, 0 >= 0}.
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Tangent bundles of smooth manifolds are also smooth manifolds. The key map is the
projection 7 : TM — M with 7=!(z) = T, M. Locally TM|y = U x R™ but usually we
don’t have TM = M x R™.

. Vector bundles over a manifold M generalize the tangent bundle T'M of M. These are
objects E with a surjective map 7 : E — M for which 77!(z) has the structure of a vector
space.

. Sections: A section of the tangent bundle consists of the specification of a tangent vector
at each € M, in other words s : TM — M with mo s = id. A section of the tangent
bundle is called a vector field.

Do sections exist, must they have a zero somewhere? We will prove a theorem that on S?
there is no nowhere vanishing section.

. Integration on manifolds: Recall the change of variables formula
|ty = [ fog@ldg/dslda
9(U) U
where g : R — R, U open in R. More generally y = (y1,...,¥n), £ = (T1,...,Zp)

/ f(y)dy = / f o g(x)|detdg,|d
g(U) U

Integration of functions on manifolds is not well defined. We must pass to differential
forms, whose description in terms of a local parametrization of the manifold transforms
under change of parametrization so that integration of differential forms is well defined.

. Orientability: Orientability of a manifold M is a consistency condition on parametrization
of tangent spaces. It is equivalent to the existence of a nowhere vanishing n-form (if n is
the dimension of M).

The sphere, the torus and the manifolds of dimension 4¢ obtained by gluing the sides of
a (4g)-gon are orientable. Examples of nonorientable manifolds include the Klein bottle,
the M&bius strip and the real projecctive space (obtained by attaching the boundary of
a disk to the boundary of a Mébius strip). Integration of differential forms can only be
defined on orientable manifolds.

. Differential calculus of forms: We define the exterior derivative d which takes r-forms to
(r + 1)-forms.



9. Stokes’ Theorem

10. De Rham cohomology



2 Smooth functions

Definition 2.1 A function F' : R™ — R" is smooth (or C*) if its partial derivatives to all
orders exist and are continuous.

Definition 2.2 The Jacobian (dF), is the matriz

OF;
aJ]j

(i=1,...,n;5=1,..., m)

Definition 2.3 F' is a homeomorphism if it is a continuous bijective map whose inverse is also
continuous.

Definition 2.4 F' s a diffeomorphism if it is a smooth homeomorphism whose inverse is also
smooth.

Theorem 2.5 (Chain Rule) Suppose F' : R™ — R" and G : R? — R™. Then d(F o G), =
(dF)G(I) o (dG)x

Definition 2.6 A topological manifold M of dimension m is a topological space which is Haus-
dorff and second countable (i.e. there is a countable base of open sets for its topology) and for
which each point has an open neighbourhood homeomorphic to an open subset of R™.

Definition 2.7 A chart of M is (U, ¢) where U is an open subset of M and ¢ : U — R™ is a
homeomorphism.

Definition 2.8 Let m, : R™ — R be projection onto the k-th coordinate. Let x, = mpo¢p : U —
R. The x} are coordinate functions of the chart.

Definition 2.9 Let (Uy, ¢1) and (U, ¢2) be charts of M. They are C*-compatible if ¢1 0 ¢y "
and ¢y 0 7' are C®-mappings whenever they are defined, in other words whenever ¢1 o ¢y is
a bijective map from ¢o(Uy NUs) to ¢1 (U NUS)).

Definition 2.10 An atlas for M is a collection {V,, ¢o) with UV, = M.
Definition 2.11 A C*-atlas is an atlas for which all the charts are C*>-compatible.

Definition 2.12 A C*°-structure is a mazimal C*-atlas (every chart which is compatible with
every chart of the atlas is already a member of it).



Definition 2.13 A C'*°-manifold is a topological manifold equipped with a C* atlas.

Remark 2.14 There may be inequivalent C'*°-structures on a topological manifold — manifolds
homeomorphic but not diffeomorphic — for example R* (S. Donaldson) and ST (J. Milnor).

Example 2.15 1. R™, with the chart ¢ = identity

2.5 ={e € C} Take Vi = {¥ : —e < 0 < 7m+e} and Vo = {¥ : 7 < § < 27}
¢ : Vi = (—e,m+¢€) and ¢o : Vo — (m,27) given by ¢;(e?) = 0 for i = 1,2. Then
P (VinVa) = (—€,0) [I(m, 7+ €). 2001 [(—c0)(0) = 0 + 21 while ¢ 0 ¢7 " |(r rse)(0) = 0.

8. 8" = {(z0,..., 1) : >;22 = 1} Charts U = {xa; > 0}(i = 0,...,n) Chart maps
¢; U =R

¢i<$0,...7$n):($07...,fi7...,xn)

So
(b;ro(gb;r)*l(zl,...,zn):(21,...,,%,..., 1—222,...,2,’”)

k

(where the \/1 =", zi occurs in the (i — 1)-th place).

4. Stereographic projection on S*: There are two systems of coordinates on S?, (u,v) and

(@, 0).
. u
U= —-7
u? + v?
and
. —v
V= —-—
u? 4 v?
and u(z,y,z) = % and v(z,y,z) = 7. The map ¢n : S* ~ {(0,0,1)} — R* (stereo-
graphic projection from N on the plane through the equator) is
¢S = (’&7{))
where
. x
u =
1+2
and
o=
142
So
u x/(1—2)

u+v2 22/(1—2)2+y2/(1 — 2)?
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z(1—2) T .
x? 492 14+ 2

Likewise
—v

u2 + v?

More generally this method in fact works for S™:

>

QSN(ja CC?’L—l—l) =y

where

_ T
V= 1 - Tni1 '

Al507 ¢S(:faxn+1) = ﬁ

. Real projective space RP™ = S™/ ~ where x ~ —x (x and —z are related by the antipodal
map, which is multiplication by —1). Denote by [xg : ... : z,] the equivalence class of
(2o, ..., T,) under the antipodal map

Ur = {[z] € RP" : x; # 0}

and

[0 : ..., @) = sgn(zg) (To, - ooy Ty o+ -5 T)
We may check that this endows RP™ with the structure of a C* atlas.
. RP? = D?/ ~ where s ~ —s for s € 0D?* (the elements in the boundary of D?).

. Complex projective space CP™

CP" = (C™ ~ {0}) / ~

where (2o, ..., 2n) ~ (A20,...,A2,) for A € C~ {0}. The equivalence class is normally
denoted [z : ... : z,|. The sets
Ui={lz0: - za]|z # 0}
form a covering of CP".
Define
<1 ~ Zn
¢l [ZO Zn] (2’7,’ ) %y ’ Zl)



SO

Remark 2.16 CP! = §?

CP = {[a: 2]} ={[1: 2} U{[w: 1]}/ ~
Here [w: 1] ~[1:1/w] if w # 0.



3 The inverse function theorem

Theorem 3.1 (Inverse function theorem,)

Let A be an open subset of R™ and let ' : A — R™ be C in an open neighbourhood containing
a. Suppose the square matrixz dFy; is invertible. Then there is an open neighbourhood V' of a
and an open set W containing F (V) such that F : V — W has an inverse F~ : W — V which
is continuous and differentiable , and (dFy)~' = d(F, ") if F(z) = .

Proof: See Apostol, Mathematical Analysis (2nd edition) Chaps. 13.2 and 13.3 or Spivak,
Calculus on Manifolds Thm. 2.11.

Definition 3.2 (Rank of a matriz) Rank (F|,) = dim (Im(dF),) .

Theorem 3.3 (Constant rank theorem) Suppose U C R™, F' = (f1,..., fn) : U = R™ is C*
in a neighbourhood of a, and Rk(F), = r for all x in a neighbourhood of a. Then there are
open neighbourhoods U (resp. V') of a (resp. F(a)) and diffeomorphisms ¢ : U — R™ and
bV — R™ with

F

U %
¢ ¥
R" R™

such that o F o ¢ Ywy,...,x,) = (21,...,2,,0,...,0).

Proof: WLOG a =0 and F(a) = 0 (by composing with translations). WLOG

(AF), = (10 8)

(by composing with suitable linear transformations of R™ resp. R™).
Define ¢(x1,...,2z,) = (fi(z),..., fr(z),2r41,. .., 2,) where r is the rank of f. Then

of of1 ?
B cr !
(dé)o = | op, ofn 9
g ... g

0 0 0 1,
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So F is invertible if and only if there is a local neighbourhood V' of 0 in R™ such that ¢|y is a C*°-
diffeomorphism from V to ¢(V). Define g = Fo ¢! : ¢(V) = R™ for z = (21,...,2,) € ¢(V).

g(z) = (Zl7 R ZTng-Fl(Z)’ s ,gm(z))
since ¢ and F' agree on the first » components. Hence

1, 0 0 0

2 Ogri1 99r+1

: 0zr41 e Ozm
(dg )Z - : : : :

? Ogm 9gm

: Ozr41 Ozm

Since F' (and hence also g) has constant rank r on a neighbourhood of 0,

O(gr+1, - > Gm)

O(Zri1y -y 2m) =0 (1)

Hence each of the g,41, ..., gm depends only on z1,. .., 2. in a neighbourhood of 0 (by the Mean
Value Theorem applied to the last m — r coordinates). Recall that the Mean Value Theorem
says that if f: U C R™ — R" and [a,b] C U is a line segment then

1(6) = f(a)ll < [lb—al| sup [|f'(x)]]

z€[a,b]

In our situation, sup,¢(, ) f'(¥) = 0 for any [a, b] because of (1). Define

\I[(ylw”aym):(yla"’v/y?’ayr—l-l_gT-l-l(yl""ayTvOJ'”?O)"‘7ym_gm<y17"'7y7’707"'70>'

Hence on a neighbourhood of 0 in R",
VoFog HNz,...,2)=Vog(2)=V(z1,..., 2, 041(2), ..., gm(2))

= (21, s 2r, Gr11(Z2) — Gra1(21, -, 20,0, ..0,0), o0 G (Z2) — gm(21, -+, 2, 0,...,0)
=(21,..+,21,0,...,0)

as grit,---,9m depend only on zq, ..., 2.

Lemma 3.4 The rank satisfies
tk(dF), > 1k(dF),

for all x in a neighbourhood of a.
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This is because the set of points x € R™ where at least one minor of the matrix df, is nonzero
is an open set.
Special cases:

1. Local submersion theorem: Suppose f : R — R™ and (df), is onto (for a € R™). This
implies the rank of (df), is m on a neighbourhood of a. Then there are neighbourhoods
U,V and maps ¥ and ¢ such that

Vo foo HNay,...,x0) = (T1,...,Tm).

2. Local immersion theorem: Suppose [ : R" — R""™ and (df), is injective (this implies
the rank of (df), is n on a neighbourhood of @). Then there are neighbourhoods U, V' and
maps ¥ and ¢ such that

Vo foo Hay,...,2n) = (x1,...,2,,0,...,0).

3. Implicit function theorem: Suppose f : R"™ — R™ is C*°. If f(z,y) =0 (for T € R™
and y € R™) and detM # 0 (where M is the m x m matrix M;; = g—if) then for some
open neighbourhoods U C R™ and V' C R™ there is a C*° function g : U — V such that

f(@,9) =05 =g(x)
in other words
{(z,9)|f(z,y) =0}
is locally the graph of g.

Proof: (of Implicit Function Theorem) The result follows from the Inverse Function
Theorem. Define F/(z,y) = (Z, f(Z,y)). Then det(dF)zy; # 0 (here dF; 5 is an (n+m) X
(n +m) matrix). By the Inverse Function Theorem, F' has a C* inverse h: W — A x B
for some neighbourhood W of 0 in R™* and a neighbourhood A of 0 in R™ together with
a neighbourhood B of 0 in R™, for which h(z,y) = (z, k(Z,y)) for some smooth function
k whose domain is an open neighbourhood of 0 in R™"™ and whose range is an open
neighbourhood of 0 in R™. Put 7 : R” x R™ — R™ with 7(Z,7) =y so 7 o F = f. Then

f (@, k(z,9)) = foh(Z,y) =moFoh(z,y) =¥

For z € R" and z € R™, f(z, 2) = 0 implies zZ = k(z,0) as (Z,y) — (Z,k(z,y)) is bijective
and f(f, k(i’,g)) = 0 implies § = 0.
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4 Smooth maps between smooth manifolds

Definition 4.1 Suppose M and N are smooth manifolds. A map F : M — N is smooth iff for
all charts (U, ¢) for M and (V,) for N, we have the following commutative diagram:

F

U 1%
" y
o(U) —Z e p(v).

In the above diagram, G :== Vo Fo¢~l: p(UNFYV)) = (V).
Special case: F': M — R is smooth iff F' o ¢! is smooth.

Remark 4.2 To establish that F' is smooth it suffices to check for one choice of charts U,V
with a € U, F(a) € V because composition of C* maps is C*, and

\I/oFong_l:\I/OFO(Qb/)_lO(CbIOQS_l)

if po(¢') ™ is C™ (since the charts are C*°-compatible) so Wo Fo(¢)™! is smooth iff WoFo(¢')™!
is smooth. Similarly if one replaces ¥ by W', Wo Fo(¢)~! is smooth iff ¥ o Fo(¢)~! is smooth.

Remark 4.3 It is also useful to know that the composition of smooth functions is smooth in
order to prove that specific functions are smooth. We can often reduce to specific examples:

1. linear functions
polynomial functions
roots x + x'/P

trigonometric functions sin, cos

S N

exponential functions

Definition 4.4 e F is an immersion at p € M if (dG)(¢) is an injective map R™ — R"
(since the previous condition implies rank(dG)(¢p(x)) = m).

o I is a submersion at p € M if (dG)(¢(p)) is surjective (this implies rank(dG)(¢(z)) =

13



In this situation m > n.
The following two theorems are special cases of the constant rank theorem:

Theorem 4.5 (Local immersion theorem) If F is an immersion at p then there exists a chart
(U, ¢) around p and (V,V) around F(p), with ¢(p) = 0 and V(F(p)) = 0, for which G is the

immersion i : R™ — R"™ given by i(z1,...,2m) = (T1,...,Zm,0,...,0).

F

U V

¢ (8

o) - p(v)

Theorem 4.6 (Local submersion theorem) If F' is a submersion at p then there exist charts
(U,¢) and (V,W) as above for which G is the projection ™ where w : R™ — R"™ given by
T (T, ) = (T, Ty).

Methods to construct manifolds
1. An open set of a manifold is also a manifold

2. If M and N are manifolds then so is M x N

3. The regular value theorem (a consequence of the local submersion theorem) yields many
examples of manifolds

Definition 4.7 If F : R™ — R" is smooth, then b € R™ is a regular value for F if Va € F~1(b),
(dF), is a surjective map from R™ to R".

Definition 4.8 Suppose dim(M) = m and dim(N) = n. Then a point b € N is a regular
value for G if for all a € F~1(b) there are charts (U, ¢) near a and (V,¥) near F(a) for which
(dG)g(a) 5 a surjective linear map from R™ to R™.

Recall the commutative diagram

F
UcM—VCN




for ¢ and ¥ as above.

Theorem 4.9 (Regular value theorem) If b € N is a regular value for F', then F~1(b) is a
manifold of dimension m — n.

Proof: Informally: If G : R™ — R" and (dG) () is surjective for all a € G7(b), then in ap-
propriate coordinates G : (z1,...,%m) = (T1,...,2,). So G710) = {(0,...,0,Zpi1,. .., Tm)}
The 11, - - -, T, define the structure of a manifold of dimension m —n on G~1(0).

More formally: WLOG G(xy,...,2m) = (71,...,2,) and ¢(b) = 0. Thus ¢(F~1(b) NU) =
G7H0,...,0) C (0,...,Tpy1,- -, Tm). Write ¢(a) = (¢1(a), p2(a)) where ¢;(a) € R™ (the first
n coordinates) and ¢o(a) € R™™™ (the last m — n coordinates). A chart on F~(b) N U is given
by (F~1(b) NU, ¢9)and ¢ maps F~1(b) N U to an open ball in R™™.

We check that these charts form a C-compatible atlas: If we have another (U, ), write
b = (¢1,hs) and ¢y o le—l =Ilodo¢'oiwhere IT : R™ — R™ ™ is projection on the last
m — n coordinates, while ¢ : R™™™ — R"” is inclusion as the last m — n coordinates. Hence
- -l N :
dp0 ¢y is C, since ¢ o ¢! is.

The proof of the following result is similar to the proof of the regular value theorem:

Theorem 4.10 (Constant rank theorem) If ' : M™ — N™ is smooth and F has constant
rank v on a neighbourhood of a for every a € F~Y(b), then F~(b) is a submanifold of M of
dimension m — r.

Example 4.11 F:R"™ - R, F(z) =<z,z > .
(dF).(§) =2<& x>

So (dF), is onto R unless x = 0. Hence any b # 0 is a reqular value of F'. The corresponding
F~Y(b) are manifolds of dimension m — 1 (they are diffeomorphic to S™!).

Example 4.12
O(n) ={A € My, : A'A =1}

Define
F:M,., — S, ~R+"5
by
F(A) = A'A
SO

(dF)a(§) = 'A+ A€
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Claim: The identity matrix [ is a regular value of F'.
Proof: (of Claim) We want to check that for all symmetric matrices C' there exists £ for which

(dF)a(&) = C. Put £ = AC/2. Then

_C'A'A n ATAC
- 5=
Theorem 4.13 (Sard’s Theorem) The set of critical values of a C* map f : M — N has
Lebesgue measure 0.

(dF) () C.

Definition 4.14 (Submanifolds) Let M be a manifold of dimension m. The space N C M
is an embedded submanifold of M of dimension n iff for all x € N there is a coordinate
chart (U,¢) around x in M in which ¢(U C N) = ¢(U) N R™ where R™ is identified with
{(2,0) e R™ : z € R"}.

Definition 4.15 If a map i : N — M 1is an injective immersion, i(N) is called an immersed
submanifold of M. Ifi is also a homeomorphism onto i(N), then i(N) is called an embedded
submanifold.

This is equivalent to the assertion that for all open U C N there is an open V' C M such that
F(U)=V NF(N) is open in the relative topology on F(N), or equivalently F~' is continuous
using this topology.

Example 4.16 The figure-cight is an example of an immersion of R into R? which is not
mjective.

F(t) = (2cos(g(t) — 7/2),sin2(g(t) — 7/2))
where lim;_, o, g(t) = 0 and lim;_,, g(t) = 27, while g(0) = 7/2.

Example 4.17 An injective immersion of R into R? which is not a homeomorphism onto its
range. (Homeomorphism <> For all V' C M there is U C N s.t. i(N)NV =i(NNU)).

Example 4.18 The skew line: f: R — S* x S!

If o is irrational then the image of f is dense in S* x S so if V is an open neighbourhood of
f(t) in S* x St then
VNfR)=V

so VN f(R) # f(U).
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Proposition 4.19 If FF: M — N s an injective immersion and M is compact then F is an
embedding and F(M) is a submanifold.

Proposition 4.20 If F' is an injective immersion and F is proper (in other words the inverse
image of a compact set is compact) then F' is an embedding and F(M) is a submanifold.

Proposition 4.21 If F : M — N 1is an immersion, then each p € N has a neighbourhood U
such that F|y is an embedding of U in N.

Definition 4.22 Manifolds with Boundary: A manifold with boundary is a topological
space M with a collection of charts (Vy, ¢o) with

o Vo = U, CH" :={(21,...,2,) € R" : z, > 0}

and every point has a neighbourhood homeomorphic to an open subset of H". The boundary of
M s the set of points which are mapped to OH™ := {(x1,...,2,-1,0)}.

Example 4.23 {(z € R?||z| < 1} is a manifold with boundary. The boundary is S* = {z €
R?||z| = 1}.

17



5 Tangent spaces

We have already defined smooth maps F': M — N. Now we define an appropriate domain and
range for dF', without reference to charts.
The tangent space T, M to M at a point a € M can be exhibited as follows.

e If M is an embedded submanifold of R", the inclusion map U — R"

1
R’n

UcM

¢

o(U) c R™" —— R"
Then T,M = Imd(io ¢~ ') C R".
o If M = F~10) for F: R — R™, then T,M = (dF)_;(0).
We will revisit these two examples.

Example 5.1 S™ is F71(1) for F: R" — R given by F(z) =< z,z > . Then (dF);'(0) =
{£ € R"| < a,§ >= 0} (this is the plane orthogonal to a).

Three definitions of the tangent space
First definition of tangent space:

Definition 5.2 (Short Curves) A short curve ~ at a is a smooth map v : (—0,9) — M with
7(0) = a.

Definition 5.3 Two short curves 1,7, at a are tangent to each other if for a chart (U, ¢) we
have (¢ o v1) (0) = (¢ 0 v2)'(0). We can check that this is independent of the choice of charts.

Definition 5.4 A tangent vector is an equivalence class of mutually tangent short curves at
a. The set of such equivalence classes is denoted S,.

Note one may identify ~; : (—d1,01) — M and s : (—ds,02) — M even if 6; # s.
Remark 5.5 Any chart (U, ¢) gives a map Ty, : S, — R™ defined by
Ts(7) = (¢ ©7)'(0).
This allows the tangent space to be identified with R™.
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Second definition of tangent space: Suppose (U, ¢) is a local chart and x; = 7; o ¢p
(projection on the i-th coordinate).
Likewise y; = m; o ¢y for another compatible coordinate chart (V, ¢y ).
Define
ToM = {(z,v)] ~}

where v = (vy,...,v,) € R" and @ = (z1,...,2,). (z,0) ~ (y,w) if

= d(dv 0 &5 )ou (@ (V)
Less formally: Tangent vectors are

0
2 gy
J

with the equivalence relation that

dy; 0
8% Z ox; 8y]
9

(a_y- is a notation for the j-th basis vector in R™). The vector space structure is as follows:
J

[z, v] + [z, w] = [z,v + W]

Az, v] = [z, \v]

(for A € R).

The identification between Definition 1 and Definition 2 is as follows: [z, v], is identified
with the equivalence class of ¢! oy where 7 is a curve in R" with 7/(0) = v.

The vector space structure is transferred from R™ to the space of equivalence classes of
curves: » aia%i corresponds to the curve [t — ¢, (¢ 3", ae;)]. The basis element - i
fied with v;(t) = ¢, (te;).

Third definition of tangent space:

T.M ={X: C*(U) = R|X(fg) = (X[)g(a) + f(a)(Xg)
Here X is a derivation.
Claim: T, M is the span of 6%1, ceey %.
Lemma 5.6 If f is smooth in a conver neighbourhood of 0 in R™ and f(0) = 0, then there is
gi : U — R™ with
1o fzy,.ooxn) =0 zigi(Tr, ..., xy)
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2. i(0) = 2 £(0).

Proof: Define h,(t) = f(tx) for 0 <t < 1. Then f(z) = f(z) — f(0) = [} Lh,(t)dt

—Jo &t
_/IZ( 0 f(tx)w - z;dt
0 Oz

(by the chain rule). So set g;(x) = fol o f(tx)dt
Proof of Claim:
For any derivation X

X(1)=X(1-1)=1-X(1)+1-X(1)

so X (1) = 0. So Vf defined on a convex domain around 0, where f(0) =0, X f = X(f—f(0)) =
XY xigi =, (Xx:)g:(0) +2,(0)(Xgi)) = Zi(Xxi)g—ai(O) Hence 0/0z; span the vector space.
Stereographic projection of S? on R? creates two coordinate systems:

x )
U= v =
1+2’ 1+ 2z
and
~ X ~ Yy
= D=
1—2’ 1—2
Then )
. —z
ufii= (1= 2/(1+2) = o
= u® +v?
SO U = ﬁ and 0 = ﬁ Likewise
1— 22
ifu=(1+2z)/(1-z2)= (1—2z)?
:a2+,&2
sou:ﬁandv:#SO

0 0 Ou 0 Ov

90 ouon  ovoo

B , U 0 200
S\ T(@2+92)2) du (@2 + 02200
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Example 5.7 Polar coordinates on R?:
x =rcos(f),y = rsin(f)
9 _0x9  0y9o
or  Ordx  Ordy

= COS(Q)% + sin(é’)é%

0 _owo oo
90 00 0x 00 dy

=—r sin(@)g% +r cos(@)(%

We can also express the x,y coordinates in terms of the r,0 coordinates: r = /x% +y%,0 =
arctan(y/zx) so

9 oo 0o
or Oz dr 0Ox 00

oz 0 1 —y\ 0

“ror T arel (—) a6
and similarly

2 v, (1)

dy ror  (y/x)?+1\xz/ 00
Transformation properties of tangent spaces under F': M — N

1. Curves: dF [t — ()] = [t — F o ()]

2. Local coordinates: Writing coordinates (z1,...,2,) on a chart in N, and z; o F' = Fj,
0 " OF; 0
dF = I .

3. Point derivations: dF'(X)(g) = X(go F)

Less formally, if we choose coordinates on chart domains in M and N then dF' is given by the

Jacobian matrix T
3
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Example 5.8 F: R? — R3 F(z,y) = (u,v,w) where u = zy, v =x + 3y, w = x*y>
0 Jud Ovd Owd

dF(@x) Oz Ou 8x8@+0x8w
0 0 0
= y— + — + 22%y—
y@u * ov ter y@w
0 ou 0O ovod Ow 0
dF(—) = ——4+ —— + — —
(8y) 8y8u+8yﬁv+8yaw

0 0
= 2— + 3=+ 22%y—
w

Of course, a change of coordinates can be viewed as a diffeomorphism.
For example, we can view polar coordinates as a map F : RT x [0, 27] — R*~ {0} F(r,0) =

(rcosf,rsing) = (z,y). So dF(0/0r) = 52 + gi{a% = —rsinf2 +Tc0898%

Proposition 5.9 d(F o G), = (dF)g) o (dG), for

G F
M N P

Proof: This is immediate in terms of the first definition (since a short curve v in M is sent
to the curve F' o G(7)). In the second definition (using local coordinates), it is a consequence
of the chain rule. After all, dF reduces to the Jacobian matrix d(W o fo¢™!)

5.1 The cotangent space

The space of cotangent vectors T M is the dual space of T,M. A basis for Ty M is given by
the differentials dz; corresponding to the coordinate functions x;. These give the dual basis to
the basis {%} for T),M. Transformation under a change of coordinates:

Z 8% dyz Z B jidyi

where the matrix B is given by

Bji _ (9.1'j ‘
yi
For any smooth function f : M — R, (df), : T,M — R is a cotangent vector, given by

df = Z d:p]
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Remark 5.10 We shall see that the matriz B is (T')" where Ty = %. The matriz T

transforms bases of tangent vectors:

Z 2 ayz

To prove this, we observe that

Z Oys Ovr _ 5
Ox; Oy; O3k

(where d;,, = 1 when j =k and 0 otherwise).

and

where Pj; 8‘” and Q;; = %. We check that Zj PijQy; = 0i.. Hence P = (Q1)T.

Example 5.11 On S?, near (0,0,1) we can take coordinates x,y. Define z = /1 — 12 — y2.

Then 9 5
z z
dz = —d —d
z o7 T+ oy Y
= —(—zdx — ydy)

5.2 Transformation properties under maps:

e Tangent vectors push forward:

f: M — N gives
(df)p - T,M = Ty N

If (z1,...,2,) : V — R are coordinates on a chart in N, and (z1,...,2,): U - Rin M,

8
8@ Z 8@ 8,23

Alternative notation for (df), is (fi),-
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e Cotangent vectors pull back:
If f: M — N, and dg is a cotangent vector on N (dg), € T;N, then f*((dg)sy)) =

d(go f)p. In particular f*dz; =d(zjo f) =), a(gf—;f)da:i

Example 5.12 f:R? - R?

f(x,y) = (Fl(xay)v FQ(xvy)’ Fg(f,y)

where Fi(x,y) = xy, Fy(x,y) = x + 3y, Fs(x,y) = y*x?
[r(dFy) = d(Fyo f) = d(zy) = ydz + zdy
[*(dFy) = d(Fyo f) = dx + 3dy
f*(dF3) = d(Fso0 f) = d(y*x?) = 2yz?dy + 2zy’dx
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6 Vector bundles

A wector bundle over a manifold B is a triple (E.B, ) where

1. B is a manifold (base space)
2. F is also a manifold (total space)

3. m: E — B is a surjective map (bundle projection) such that for each b € B, 7=1(b) is
endowed with the structure of an n-dimensional vector space such that E is locally trivial
(i.e. for each b € B there is a neighbourhood U containing b such that El|y := 7~1(U) is
isomorphic to U x R"

(Bundle isomorphism: A collection of maps

v
Ey Ey
st 9
B B

The map ¥ is bijective. The restriction of ¥ to each 7~1(b) is a linear mapping.
U is called a bundle chart.

6.1 Construction of bundles

All bundles may be constructed by imposing an equivalence relation
E={U x R"| ~}
where (a,&) ~ (a,gyu(a)f) if a € UNV. Here the gyy : UNV — GL(n,R) satisfy
e gyy =id
® guv - gvw = guw

® guv-gvy =id
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Example 6.1 The tangent bundle: Suppose U (resp. V') are coordinate charts with coordinates
{z;} (resp. {y;}). The transition functions

_ 9y
(gUV)ij = (9:1:]-

are the transition functions for the tangent bundle T'M .

6.2 Sections

A section s is a smooth map s : B — FE such that 7o s = id.

A section of the tangent bundle is called a vector field.

One obvious section is the zero section s(b) = 0 Vb.

A bundle is trivial if £ = B x RV

A bundle is trivial iff it has a basis of global nowhere vanishing sections s; : B — R" so that
U : B x R" — E defined by

Vb, (x1,...,2,)) = Z x;5;(b)

is a bundle isomorphism.

In some cases it is impossible to find even one nowhere vanishing section of a vector bundle
(for example the tangent bundle of S?). In terms of transition functions, the sections sy : U —
R" satisfying gyysy = sy on UNV

6.3 Complex vector bundles

Analogous definition: but each fibre 77 (b) has the structure of a complex vector space and the
bundle charts are subsets of C".
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7 Differential forms

Let M be a manifold with dim M = m. Recall that "M is defined as the smooth sections of
A"T*M. In coordinates (x1,...,Z,) on a chart U, an r-form p is Y, fi(z)dx;, A ...dx;, for
i1 < ... <4 Ifr >m, Q(M) = {0}. QM) = C>®(M). r =m : an r-form p defines a
multilinear function on T?M for all p € M.

Yh,....Y,) e T,M — p(Y3,...,Y,) € R.

This function is linear in each Y;.
Results about exterior algebras:
If pe Q" (M), o € Q(M), then there exists p A o € Q"5(M) satisfying

1. pAo = (—1)"c A p (for example if p is an odd-degree form then p A p = 0: This is not
necessarily the case for even-degree forms)

2. A is bilinear on forms
3. A is associative

4. if f is a smooth function, it may be viewed as a 0-form, so f A (>, grdxs, A ... ANdx;,) =
Zl(fgl)dl’il AL ANdz;,.

Suppose V' is a vector space with a basis {vy,...,v,} and the dual basis {¢y, ..., ¢, } for
V*. Then

DA NG =mIAL (G ® .. @ Pm) =D (1) r(1) @ ... @ Grirm)-

™

Then ¢A. .. ¢ (v1,...,v,) = 1 (only one permutation contributes). In particular for V= T, M,

x __ Tk _ _ 0
\% —TpM (ﬁl—dlﬂ“’ljz—a—xl

dxl/\-~~/\d$n(£,-~-,a%)=1~
1 n

Assume 1 <4 < ...<i, <m, 1 <j; <...<j, <m

0 0
dxllA/\dxlT(@T”@T>:O
J1 Jr

unless {i1,...,4.} = {Jj1,...,7-} in which case the result is 1.
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Example 7.1

o 0
dl‘l A dafg(a 83} )
I 2
o 0
dﬂ?l A\ d!l?g(ax 8(1} ) —
2 1
0 9
1 3

Example 7.2 ((n — 1)-form on S"' C R")

n

W, zn) = Z(—l)iazidwo A ANdT; N Lo N dy,

i=1
where x; : R* — R For example, on S' C R? w = xdy — ydx. It will turn out that w is the

natural volume form on S™ 1.

7.1 Exterior differential:
d: Q" (M) — QM) is defined by

d(ardxy N ... Ndx;,) = Z(gil dzxy Ndzi, N ... dx;).
¢

Note that

8‘” vanishes.

1. dxy Adxe = 0 so if £ appears among {iy,...,i,} then the term involving 3%

2. dx; Ndx; = —dx; A dz;.

The following Lemma follows from properties of exterior algebras.
Lemma 7.3 F*(wA0) = F*w A F*0.

We have

Theorem 7.4
dF* = F*d.

This is proved as follows.
Proof:
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(1) True if w = g is a C* function, for d(F*g) = d(go F) = F*(dg)
(2) True if w = dg for F*'w = F*dg = d(g o F') and d(F*w) = 0, also F*d(dg) = 0.

(3) If F*df = d(F™*0) for § € Q"(M), and F*(dw) = d(F*w), then d(0 A w) = (df) N\ w +
(=1)"0 A dw so F*d(0 N w) = F*(df) N F*w + (=1)"(F*0) A (F*dw) (by the Lemma)
= d(F*0) N F*w + (—1)"F*0 A d(F*w) (by hypothesis) = d(F*0) A F*w = d(F*(0 A w))
(by Lemma)

(4) By induction on 7: use the fact that all r-forms are of the form
ar(z)dz;, N... Ndz;,.

Also (1) gives the result for a; while (2) and (3) combine to give the result for dx;, A...A
dﬂ?ir .

Example 7.5 F :R? = R3 F(z,y) = (Fi(z,y), Fs(x,y), F3(z,y)) where
Fi(z,y) = 2 sin(y)
Fy(z,y) = y’e™

Fy(x,y) =y
Then oF aF
F*dz, = dFy, = —dx + —1dy = 2x sinydx + 2* cos ydy
ox oy
OF: OF:
F*dzy = —2dx + —2dy = 2y%e*dx + 3y*e* dy
ox dy

F*(dz Ndzo) = F*dzy A Frdzy = ((2zsiny) (3y°e™) — (2y°e**)(2* cos y) ) dx A dy
Very important result:
Theorem 7.6 On R", for any smooth map F : R" — R™ we have
F*(dyy A ... Ndyy,) = det(dF)(dzy A .. .dz,,).

This follows by the determinant theorem.
The importance of this will appear when we reach integration on manifolds: if g is a smooth
function on R and F': R — R, and y = F(x), then

/F<A) 9(y)dy = /AQ(F (2)) 7.



This is best summarized by viewing g(y)dy as a 1-form so

dF

F*(g(y)dy) = g(F(x))d—dx

Proof: (of Theorem)
Write F' = (Fy, ..., F,) : R" — R™. Then

F E,

1] 4eeeyln axil a v
oF, oF,
dryy N\ ... Ndxym
5k axﬂ(n) ) Tt
oF,
= dzi N ... Ndx,
Z 8137r 8x7r (n) “ v
=det(dF)dzy A ... Ndxy,

since dF' is the n x n matrix whose (i, j) entry is %.

7.2 A useful differential form

On S™ C R™"! a nowhere zero differential form is given by

Wago o = (—1)jxjdx1/\.../\dij/\.../\da:n.
J

For example, on S! we recover zgdz,; — z1dxy = r*df in polar coordinates.

7.3 The exterior differential
Definition 7.7 The exterior differential d : Q" (M) — Q" 1(M) is defined by

d(z ardr;; N\ ... Ndx; ) = Z Z giidxg Ndxy N...Ndx;,.
I ¢

Remark 7.8 1. dzyNdxy =0 so if £ appears among {i1, ..., i} then the term involving 3~ 6‘”
vanishes.

2. dx; Ndx; = —dx; A dx;.
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Properties:
1. d is linear
2. if f is a smooth function, df is a 1-form
3. p€Q(M),0 € (M) =dpNo)=(dp) No+ (—1)"pAdo
4. d*=0
Proof: (of (3)) d(a;dz’ Abydz”) = d(asby) A dz’ A dx”’
= (darby + ardby)(dx’ A dz”)
(by Leibniz)

= (dp) No+pAdo

Proof: (of (4))

& (azda’) = d( Z %d# A dz!
82&]
= d d d
axkal‘g {L‘k/\ l’g/\ Ty
But
0? 0?
8xk8xg n 8@8@
while

dﬁk A d!)ﬁg = —dl’g A de‘k

The following is proved in Guillemin-Pollack:

Proposition 7.9 d is the unique operator with properties (1)-(4).
Remark 7.10 If dim(M) =m and w € Q™ (M) then dw = 0.
Definition 7.11 A form « s closed if da = 0.

Definition 7.12 A form « is exact if a = df for some form (.
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An important consequence of the fact that d*> = 0 is that exact forms are closed. We can define

de Rham cohomology as follows:

Definition 7.13 The k-th de Rham cohomology group of a manifold M is
{a € Q¥M|da = 0}

{a € *M|a = dp}

Example 7.14 Forms that are closed but not exact:

e do not exist on R" (Poincaré lemma)

e On S" 1 C R"\ {0} the form >
exact. This will follow from Stokes’

(=D 'dry A A dr; A ... A\ dx, is closed but not
theorem.

7.4 Consequences in dimension 3:

Vector fields

Forms

Fy function

Qo = Fy function

Fy = (v, v2,v3) vector field

w1 = 'Uldﬂil + Ugdl'g —+ Ugdl'g 1-form

Fy = (f1, fa, f3 vector field

wy = frdroNdrs+ fodrs Adx,+ fydxy Adxy 2-form

F;5 function

w3 = F3d$1 VAN dQL’Q A d.’E3

F1 = VFO w1 = dwo
FQZVXFlzCUI'lFl (A)dew1
FgZV'FQZdiVFQ U.ngdUJQ
Here curlFy = (hy, ho, h3) where

py = Qv Ove

e 8.932 8.1'3

c%l 81)3

hy = oL 208

81’3 8351

L Rt

e 81’1 8%2




in other words

~ ~

€1 €2
hlél + hQég + hgég = det % 8;;
U1 V2
Also o of of
divk, = 2 2 3
W 8951 + (9372 + 81’3
Hence d o d = 0 translates to
V x (VFy) =0
and
V- (V X Fl) =0
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8 'Transversality

Let V4 and V5 be vector subspaces of a vector space V. Then V; and V5 are transversal if
V = Vi + V5 as subspaces of V. If Vi and V; are transversal, it follows that

dimV = dimVy + dimVy — dim(Vy N Va).

Submanifolds N; and Ny of a manifold M are said to be transverse if
T,Ni+TyNy =T, M

for all x € NN Ns.

Whether or not N; and Ny are transversal in M depends on M as well as on N; and Ns.
For example the x and y axes are transversal in R? but not in R3. If the sum of the dimensions
of N7 and N, is less than the dimension of M, then N; and N, can only intersect transversally
if their intersection is empty.

Proposition 8.1 If Ny and Ny are transverse submanifolds of M then N1NNs is a submanifold
of M of dimension dimNy + dimNy — dimM , or codim(N; N Ny) = codim(V;) + codim (V).

Two maps g1 : Ny = M and gy : Ny — M are transverse if g1, (7, Nv) + g2, (T3, No) = T,M
for all z1, zo, y with g1(z1) = go(z2) = v.

Let ® : M — N be a smooth map, and S C N an embedded submanifold. Then & is
transversal to S iff for all p € ®71(S), ®, 7, M and Te(,)S span Te,)N.

Theorem 8.2 If f : M — N is transverse to a submanifold L of codimension k (i.e. dimN -
dim L = k) and f~'(L) is not empty, then f~Y(L) is a codimension k submanifold of M.

Proof: Let f(p) = ¢ € L. In some neighbourhood V of ¢, LNV = R** NV’ (where
R = {(x1,..., 2y _%,0,...,0)}). Define 7 : R® — R* to be the projection on the last k
coordinates 7(z1,..., %) = (Tp_pt1, .-, Tn). The transversality condition means that 0 € R*
is a regular value of
Ubvey LRk

Hence for an open neighbourhood U in M, f~}(L)NU is a codimension k submanifold of U
(by the Regular Value Theorem). It follows that f~!(L) is a codimension & submanifold of M.
If ® is transversal to S, then ®~!(S) is an embedded submanifold of M whose codimension is
dim(N) — dim(S5). |

Sard’s Theorem: Let f : M — N be a smooth map. Then the set of critical values of f has
measure zero in N.

Proof: See Guillemin-Pollack, Appendix 1
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Theorem 8.3 (Whitney embedding theorem) Every k-dimensional manifold admits an embed-
ding in R?F+1,

Proof (from Guillemin and Pollack chap. 1.8):

We first give an argument that shows that if there is an injective immersion from X to RM
then there is an injective immersion from X to R**!. The hypothesis that there is an injective
immersion from X to R (for some M) will be proved in the section 'Partitions of Unity’.

If f: X — RRM is an injective immersion with M > 2k + 1, then there is a € RM
such that m o f is an injective immersion. (Here 7 is the projection from R to H, where
H={beR":b 1l a} =a} 2RM ' So we have an injective immersion into RM~*. Here
define h: X x X x R — RM by

h(x7y7t) = t(f([t) - f(y))

and g : TX — RM by
g(z,v) = df.(v).

Since dim(M) > 2k + 1, Sard’s theorem tells us that there is a € RM which is not in the image
of g or the image of h. (Sard’s theorem tells us that the regular values of g and h in the image
of a smooth map F' from an n- manifold to a vector space V' of dimension higher than n is
dense. When the dimension of V' is higher than n, the regular values are the complement of
the image of F.)

Let 7 be the projection of RM on H.

Lemma 8.4 wo f: X — H s injective.

Proof: Suppose not. Then 7o f(z) = 7o f(y) implies f(x) — f(y) = ta for some t. If x # y
then t # 0 since f is injective. But then h(z,y,t™!) = a contradicting the choice of a. Likewise

Lemma 8.5 wo f: X — H is an immersion.

Proof: Suppose v is a nonzero vector in T, X with d(mwo f),(v) = 0. 7 is linear, so d(wo f) =
modf. So wodf,(v) =0 implies df,(v) = ta for some t. Since f is an immersion, ¢ # 0. Hence
g(z,t71a) = a, contradicting the choice of a. |

(Note that in fact Whitney eventually proved that it was possible to embed a k-dimensional
manifold in R?*.)
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9 The Lie derivative

Let o be an r-form and let 5 be an s-form on M. Let X be a vector field on M. Define the
interior product ix : QF(M) — QF1(M) by

(ixa)(Y1,..., Y1) = a(X,Y7,..., Vi)

(we insert X as the first argument of «). This is also called the contraction of a by X. Then
ix(aAB)=(ixa) AB+ (=1)anixp

Remark 9.1 If X is a vector field and f: M — R is a smooth function then

irxa)(p) = f(p)(ixa)(p)

(in other words the interior product is C*°(M) -linear in X ).
Also, We have already shown that

d(a A B) = (da) A B+ (—1)la A dp.

Define the Lie derivative by
Ly =dix +ixd

which sends r-forms to r-forms. A straightforward calculation shows that
Lx(aNpB)=(Lxa)\B+aA(LxpB).
A derivation is a linear map L from Q"M to Q"t'M (here t is independent of r) satisfying
L(a A p)=(La) A\ B+ a(Lp).
An antiderivation is a linear map A from Q"M to Q"M (here t is independent of r) satisfying
Al A ) = (Aa) A B+ (=1)*a(AD).

For example d and i1x are antiderivations. The above shows that Lx s a deriwation. The
formula Lx = dix + ixd together with the fact that ix is C°(M)-linear in X show that Lx is
not C*°(M)-linear in X. Instead

(Lyxa)(p) = f(p)(Lxa)(p) + (df) A (ixa)(p)

Definition 9.2 (Lie bracket of vector fields) In terms of evaluation of vector fields on functions,

(X, Y]f = X(Y[) =Y(X[)
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In a coordinate system, all vector fields are of the form

X = Zal Y Zb 8%

SO
0 of
X(Yf)= Zai(x)g (Z bj%)
i ! j J
Z ob; of b, 02 f
B Ox; 0x; 7 O0x;0x; )
Similarly
B da; Of o f
VXS = %: bi (&Ej or; T &Ei(?xj) '
Hence

B db; af
[X,Y]f_z <aiaxi —bia ) 9e

Z’]

It follows immediately that

Proposition 9.3
o 0

[a_xi’ O_xj] =
The following is obvious:

Lemma 9.4 [X,Y] = —[Y, X]

The following can be proved by calculation with the above formula for the Lie bracket of vector

fields:
Lemma 9.5 (Jacobi identity)

XY 2+ Y (2, X + 12, [X Y] =

There is a formula for the exterior derivative in terms of the Lie bracket (see Boothby Chap.
V, (8.4)). Here is the special case of the exterior derivative on 1-forms.

Proposition 9.6 If X and Y are vector fields on M and « is a 1-form then

(do)(X,Y) = X(aY)) = V(X)) — a([X, Y]).

37



Proof: WLOG a = fdg for smooth functions f and g. So da = df A dg.
da(X,Y) = df (X)dg(Y) — dg(X)df (Y)

= (XNYg) - (Xg)(YF)

while
X(aY)) = Y(a(X)) — o([X,Y]) = X(fdg(Y)) — Y (fdg(X)) — fdg([X,Y])
= X(f(Y9)) - Y(f(Xg)) - f([X,Y]g)
By the Leibniz rule, this becomes
= (X/)(Yg) + f(X(Yg)) — (V) (Xg) - f(Y(Xg)) — [(X(Yg) - Y(Xg))
Four terms cancel, and we obtain
(XN (Yg) = (Xg)(Yf)

as claimed.
The more general formula is (if « is an r-form)

r—+1
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10 Flows

Let X be a vector field on a manifold M.

Definition 10.1 An integral curve of X is a smooth map F : (a,b) — M for which
dr
dt

Let W be an open set in R x M satisfying Ja(p) < 0 < 5(p) such that
WNRx{p})=A{(tp):alp) <t <Bp)}

Definition 10.2 A local flow on M is a smooth map 6 : W — M such that (introducing the
definition 0;(p) := 0(t,p))

L Oy(p) =p¥p e M

(to) = XF(to)

2. If (s,p) € W a(bs(p)) = a(p) — s and 5(0s(p)) = B(p) — s, and for ¢ such that a(p) — s <
t < B(p) — s, O15(p) is defined and

0:(05(p)) = Or1s(p)-

In particular 6, is a local diffeomorphism (the inverse is 6_;).

Equivalently, we have a collection of open neighbourhoods V,, covering M and maps 6% :
(—€as€a) X Vo, = M such that

0; (p) == 0°(t,p)
such that

1. 6~ and 6” agree on the intersection of their domains
2. 6%(0,p)=p
3. 07, = 07 o 0 where both sides are defined

Theorem 10.3 Given a vector field X on M, there exists 0 : (—0,0) X V. — M for which

d
ae(tv p) = XO(t,p)

and 6(0,p) = p for all p € V', in other words {0(t,p)} is an integral curve of X through p. Any
two such 0 are equal on the intersection of their domains.

39



Proof: Follows from existence and uniqueness of solutions for ordinary differential equations.

Theorem 10.4 1. LetU CR", (f1,..., fn) : (—€,€)xU — R™ smooth. Then there exists an
open subset V' of U such that for any (a1, ..., a,) € V there exist (x1,...,x,) : (—€,€) > U
satisfying

(a) G = filt, (@1(t), .., 2a(1)))
(b) x;(0) =a; fori=1,...,n.

The functions x; are uniquely determined.
2. Write x;(t, (a1, ...,a,)). Then z; is smooth in t and (ay,...,a,).

Proof: (of existence of integral curves:) The vector field X is written in local coordinates
(Y1, -5 Yn) as (f1,..., fn). Then

0
X - i~
2
If60=(0",...,0™): W — M then solving
00,
— =X
ot
is equivalent to solving .
00" £,
ot !

The existence of solutions of this follows from existence and uniqueness of ODE’s.

Lemma 10.5 If I(p) = {(a(p),B(p))} where the flow O(t,p) is defined for t € (a(p), 5(p)),

then we assume the domain W is maximal (in other words that |a(p)| and |B(p)| are mazimal

for all p).

Lemma 10.6 If 5(p) < oo and t, is an increasing sequence converging to 3(p), then {0(t,,p)}
cannot lie in any compact set.

Proof: Let K C M be a compact set. By the existence theorem, for all ¢ € M there exists
0 > 0 and a neighbourhood V' of ¢ such that 6 is defined on I5 x V. A finite number of these
cover K. Let &y be the minimum ¢ for these neighbourhoods. So for any ¢ € K 6(t, q) is defined
for |t| < do. If {(6(tn,p)} C K, and N so large that B(p) — ty < &y/3, then 0(t,0(tn,p)) is
defined only for t < B(p) — ty < do/3. But O(tn,p) € K so 0(t,0(tn,p)) is well defined for
|t| < (So. O
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Definition 10.7 A vector field is complete if O(t, p) is defined for allp € M and all t € R.
Corollary 10.8 (of Lemma) If M is compact then any vector field on M is complete.

Example 10.9 If M is a compact manifold and X is a vector field on M consider M' =
M ~Ap}. The flow generated by X |y is not complete. Take y € M for which 0(to,y) = p, so
y = 0(—to,p). Then on M’', 0(t,y) is only defined for t < t.

Theorem 10.10 1. Lie derivative on forms:

d

Lxw = Ehzoetw = 113(1) ;(Qtw —w)

2. Special case of above: Lxf = Xf

3. Lue derivative on vector fields:

d .1
LY = == li=o(6).Y = lim — (Y — (6:).Y_)

t—0 ¢
Proposition 10.11 If X and Y are vector fields, then
LxY =[X,Y]
Proof: ]
(LxY)o f=lim— (Y(0)(f) = (0:)Yo_.0)(f))

t—0 ¢
= lim+ (YO)(f) ~ Yo_0)(/ 0 0)
But 0;(p) = p+ tX(p) + O(t?) so fob,(p) = f(p) + tdf (X(p)) + O(t?) and we get

lim = (Y(0)f = Yo_o)(f + tf (X)(p) + O(t2))

t—0 t

o1
=tim > (Yof ~ Yo ,0f) = X(Vf) = Y (X]) = [X,Y]f
Proposition 10.12 (Cartan’s theorem) On differential forms,

Lx =dix +ixd.
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Proof: Since Lx and dix and ixd are derivations, it suffices to prove the identity on the
differential forms f (0-form) and df (exact 1-form) since all differential forms are given locally
as wedge products of forms of this type.

1. Lxf =rix(df): The left hand side is

d d
—0;f = — =df(X
This completes the proof.
2. Lxdf = dixdf: The left hand side is

d .
Eb&:df = d/dtlod(f o 0;) = d(ixdf).
This completes the proof.

Proposition 10.13 If X is a smooth vector field with X(p) # 0 then there are coordinates
x : U — R™ on a neighbourhood U of p for which X = 0/0xy on U. The flow in these
coordinates s

O (z,...,xy) = (1 +t,29,...,2,).

Proof: Start with an open set U C M. Assume we have coordinates (yi,...,y,) : U — R"
with y(p) = 0. Define 6,(q) the flow of X starting at ¢ € M. Assume X(p) = %(p). We
shall define new coordinates using the flow of X. In a neighbourhood of 0 there is a unique
integral curve through each point y = (0, as, . .., a,). If ¢ lies on the integral curve through this
point, use as,...,a, as the last n — 1 coordinates and the time it takes the curve to get to ¢
as the first coordinate. Define new coordinates x : V' — R™ on a neighbourhood V' of p by

7 ay, ..., a,) =04, 0y~(0,aq,...,a,), in other words a; = x; 06, oy~ 1(0,as,...,a,), and

0

Oy

= (dy;)(X(p)) = da since X (p) = 5>-.

(i 0 271(0,...,0)) =1im%(yi09toy‘l(0,---,0)—yiOGOOy‘l(O,---,U))

t—0

0 _ 1 _ _
a—%(yiox 1)(0,-..,0)2%5%;(%0900(1; Y0,...,t,...,0) —yiofyoy 1(O,...,O))

(where the ¢ in the first expression is the j-th coordinate) = ¢;; since 6, is the identity so

-----

is nonzero), which implies y o 7" is a local diffeomorphism (by the inverse function theorem).
Hence = are local coordinates (since y are).

-1
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Proposition 10.14 [In the preceding situation, 8%1 X.

Proof: For f:U — R,

-----

where p' = 0,, oy~ (0, a9,...,a,) = 7 (a1,...,a,)). This then equals (X f)(p’) since 6;(q) is
the flow of X starting at q.

Lemma 10.15 Two flows 0; and s commute if and only if the corresponding vector fields
commute.

Proof: See Boothby IV.7.12

Definition 10.16 Suppose dimM = n + k. A distribution on M is an assignment of an n-
dimensional subspace A, of T,M at each p € M. Suppose in a neighbourhood U of each p € M
there are n linearly independent vector fields Xy,..., X, which form a basis of A, for each
q € U. Then {X;} are called a local basis of A.

Example 10.17 M = R"** A spanned by %, i=1,...,n.

Definition 10.18 A distribution is integrable if each point has a coordinate neighbourhood
(1, ..., Zm) for which a local basis for A is given by {%,i =1,...,m}.

Definition 10.19 A distribution is involutive if there exists a local basis in a neighbourhood of
each point such that

X5, Xj] =) i Xi
k=1
in other words [X;, X;], lies in the plane A, for all p € M.

Theorem 10.20 (Frobenius) A distribution is integrable iff it is involutive.
Note that ‘if’ is clear since

2,9
85(?7;, 8:cj
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11 Smooth functions and partitions of unity

11.1 Smooth functions

Example 11.1 The function 6 : R — R given by
0(t) =0,t <0

and

O(t) =e V't >0
18 smooth and all its derwatives are 0 at t = 0. In particular it is not represented by its Taylor
series at 0.

The open cube C(r) is defined as follows.

Definition 11.2
C(r) ={(z1,...,x,) € R"||z;| < rVi}

The closure of C(r) is denoted C(r).

Lemma 11.3 There exists a smooth function h : R — R with
1. 0<h(z) <1
2. hz)=1,zeC(1)
3. h(z)=0,x ¢ C(2)

Remark 11.4 The function h s called the bump function.

Proof: Define o)
x
olz) = O(x) +6(1 —x)
Then ¢(x) =1 for x > 1 and ¢(x) = 0 for x < 0. Define ) : R — R by
P(2) = oz +2)9(2 — x).

Then ¢ (z) =1, |x| < 1 while ¢¥(x) = 0, |z| > 2. Thus define h(x1,...,x,) = ¥(x1) ... Y(z,).
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Definition 11.5 The support of a smooth function f : M — R is the closure of the set of
points x € M where f(x) # 0.

Consequences of existence of the function h:

Proposition 11.6 Let M be a smooth manifold and let (U, ¢) be a chart in an atlas for M.
There exists a smooth function f: M — R with f(M) C [0,1] and Supp(f) C U, and f(z) =1
on a neighbourhood of p € U.

Proof: For a point p € U choose a cubical neighbourhood B C R™ around ¢(p), say

{2 |o(pi) — x| <e}.
Define o : B — C(2) by

and define
fl@)={hoaop(z),z €UN¢ (B)}
and 0 otherwise. Then h : R" — R, h(xz) = 1 if |z;| < 1 for all 4, and h(z) = 0 if |x;| > 2 for

some ¢.

Definition 11.7 A partition of unity subordinate to an open cover {U,} of M is a collection
of smooth functions f, : M — R such that

1. For all v, Supp(f,) C U, for some o (here Suppf, is the closure of the subset where
f(x) #0)

2.0<f,<1lonM

3. Yo € M there is an open neighbourhood V,, of x s.t. there exist only finitely many f, s.t.
Suppf, NV, # 0 are nonzero at any points on V,

4- >, [y(x) =1 (this sum is finite because of (3))
We shall prove existence of a partition of unity. We require some facts from general topology.

Lemma 11.8 Manifolds are regular (in other words if C' C X is a closed subset, C' # X and
x € X N\ C then these can be separated by disjoint open subsets)

Let M be a Hausdorff space.
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Definition 11.9 M is paracompact if
1. M s reqular

2. every open cover admits a locally finite refinement

Definition 11.10 An open cover {V} is a refinement of the open cover {U} if there exists
v: Iy — Iy (where Ly is the indexing set of {V} and similarly for {U}) such that Vz C L.

Theorem 11.11 Manifolds are paracompact.

Proof: There exist compact subsets K; C Ky C ... of M such that K, C Int(K,.; and
M = U,Int(K,). Let {W;} be a countable base of the topology with each W; compact. K; =
Wi, ..., K, C U_,W; (let £ be the smallest for which this is true) and K, ; = U_, W;. Let {Uy,}
be an open cover: to get a locally finite refinement, choose finitely many V; = U,, covering K;.
Extend this by {Uai}fifl 41 to give an open cover of K,. M is Hausdorff so K is closed, and

Vi ="U,, ~ K7 is open, £ + 1 < /5 and {V}}fielﬂ is an open cover of K.
Note that K; does not meet V; for i > ¢;.
By induction we get {V;} such that K, meets only finitely many elements of V Vr > 1.
For any = € M, = € Int(K,) for some r, there exists a neighbourhood meeting only finitely

many elements of V.

Definition 11.12 A precise refinement of an open cover {Us} is a locally finite refinement
indexed by the same set with V,, C U,.

Proposition 11.13 If M is a paracompact manifold and {U,} is an open cover of M, then
this cover has a precise refinement.

Proof: There exists a refinement {W;} with j : K — A such that Wy C Uy, (since M is
regular). Passing to a locally finite refinement of W gives a locally finite refinement V' of U
with 2 : B — A with VB/ C Uyp). The Vﬁ’ are a locally finite family of closed subsets of M. For
all a € A, define 3, := 17 ().

Vo = Usesa V3

Because V' is locally finite, V, = Ugen, V’g c U,.

Definition 11.14 M is normal if whenever A and B are disjoint closed subsets of M, there
is an open set U containing A and disjoint from B with U N B = ().

Lemma 11.15 Paracompact spaces are normal.
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Proposition 11.16 (Urysohn’s lemma) Suppose M is normal and A and B are closed sub-
sets of M. There exists a smooth function f : M — [0,1] such that fla =1 and f|p = 0.

Theorem 11.17 Suppose K is compact and K C U for an open set U. Then there exists a
smooth function f:R™ — [0,1] with f|x =1 and f supported in U.

Use Lemma 11.3 to show that

Lemma 11.18 If A = (a1,b1) X ... X (an, b,) C R™ then there is a smooth function g4 : R* —
0,1) such that ga >0 on A and ga|grray = 0.

Proof: (of Theorem) Let K C R" be compact and U C R™ an open neighbourhood of K. For
each x € K, let A, be an open bounded neighbourhood of = of the form

Am = (CLLx, be) X ... X (an@, bn,x)

with A+2 C U, x € A,. By Lemma 11.18, there is a smooth function g, : R* — [0,1) with
gz(y) > 0 for y € A, and g,(y) = 0 for y # A,. Since K is compact, it is covered by finitely
many Ag,, ..., Ay, Define G =ga, +...+ga,, :R" = R. Then G is smooth on R", G(z) > 0
if z € K and supp(G) = 4, U...UA,, C U. Since K is compact, there exists § > 0 such that
G(z) > ¢ for x € K. Define our bump function ¢ so it is 0 for ¢ < 0 and 1 for ¢ > §. Define
f=0oG:R" —[0,1]. Then

1. f is smooth
2. supp(f) c U
3. flk =1
Theorem 11.19 There is a partition of unity subordinate to any open cover U.

Proof: If V is a refinement of U, then a partition of unity subordinate to V induces one
subordinate to U.
1:B—U

)\a = Z Hg-

per(a)

So since manifolds are locally compact, WLOG each U, has compact closure in M.

Vs C Uypy {ps} subordinate to U
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A precise refinement has the property that V, C U, is a compact subset. We may use
Urysohn’s lemma to give f. We choose a precise refinement V with VW a precise refinement of
V.

{Va }acu satisfy va|w, = 1 and supp(y,) C Vi C U,.

{suppya} is locally finite. v := >__ 7o is smooth and > 0. Define v, = 7,/7, which is
smooth. The v, are a partition of unity.

Applications of partitions of unity:

The primary application is integration on manifolds. Let us begin with integration of a
function on R". Assume {U,} is an open cover of R" and consider a partition of unity {f,}
subordinate to this open cover. Let g be a smooth function on R". Then

L= [ =3[ o)

Application to Whitney embedding theorem:

Proposition 11.20 Let X be a compact manifold. Then there is an injective immersion from
X into RM for some M.

Proof: Construct a covering of X by charts (U,, ¢.), and take a partition of unity {f,}
subordinate to the covering {U,}. Since X is compact, WLOG we may assume the number of

U, is a finite number M. Then define F : X — RM by

Fx) = (flx)u(@), -, fu (@) dnr ()
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12 Orientations and volume forms

Definition 12.1 Let V' be a vector space of dimension n. The top exterior power A"V* has
dimension 1 so A"V* ~ {0} has two components. An orientation of V' is the choice of one of
these. Equivalently, an orientation on V' is the choice of an ordered basis ley, . .., e,| of V with
le1, ..., en] declared equivalent to [fi,. .., fu] if the linear map B : V — V defined by Be; = f;
has determinant > 0.

Example 12.2 If (ey, e3) is the usual ordered basis for R?, then the two orientations of R? are
le1, ea] and [ea, e1].

Example 12.3 Ife;, ey are the first two basis vectors for R3, then the two possible orientations
of R® are [e1, ez, e1 X €3] and [ey, ea, 5 X €1] (where X denotes the cross product).

An invertible linear map F': V' — V preserves orientation if det(F') > 0.

12.1 Orientation of a manifold

Definition 12.4 A manifold is orientable if we have a covering by charts (U,, ¢o) for which,
for any two charts (U, ¢) and (V,v) with coordinate functions (z1,...,x,) and (yi,...,y,), we
have

detd(ipo ') >0

Proposition 12.5 A manifold M of dimension n is orientable iff it has a nowhere vanishing
n-form (call it w).

Proof: Suppose such a form w exists. Then in local coordinates (z1,...,x,),
0 0
= f(=—,...,=)dxi N\ ... Ndz,,
w f(amlu 73:17”) X1 xr
and in different local coordinates yi, ..., yn,
0 0
= fl=—,...,=—)dy1 A ... Ndy,.
“ f(a?h @yn) n Y
Then denoting w, := [831 e %] and w, = [ai se e o =91 (these are local sections of A"T'M)

we have that det(ay7 ) > 0 which is the definition of orientability. Suppose on the other hand we
know that M is orientable. Suppose {U,, f} is a partition of unity subordinate to an open cover
{Ua} of M. Suppose that (z,) are coordinates on U,. We can choose the open sets U, so that
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A"% is nonzero on each U,. Then there is a nowhere vanishing n-form w, := dx; A ... Adz,
supported on U,. This lets us make a nowhere vanishing n-form w on M,

W= Zfawa.

Proposition 12.6 Suppose M # R™" is an n-dimensional submanifold, given by an embed-
ding v : M — R"™ and M has a nowhere vanishing normal vector field N (in other words
Vp € M AN (p) € T,R™™ smoothly varying as p varies in M, with N(p) L T,M Yp € M) with
respect to the Euclidean metric on R ). Then M is orientable.

Proof: We will construct a nowhere vanishing n-form w. Take
wp(Xl, e ,Xn> == dlEl VANPIRIAN dIn+1(N(p), Xl, Ce ,Xn>

Suppose there is p for which w, = 0. as an element of A"T;M. In fact the formula we
have given defines w,(v1,...,v,) for v; € T,R™". But all vectors v; € T,R"** can be given
as v; = & + a;N(p) for some & € T,M, a; € R and w,(vy,...,v,) = wp(&,..., &) +
Yo ajwp(&ry .o, N(p), ..., &) (where N(p) is in the j-th place) 4+ terms where at least two
arguments are N (p). The terms w, (&1, ..., N(p),...,&,) are equal to 0 since &; € T,M (because
we assumed w, vanished on 7),M). Likewise the terms with two or more arguments of w, given
by N(p) are = 0. Write N(p) = (N1(p), ..., Nps1(p)). Then w,(vy,...,v,) =0 Yov; € T,R".
But

n
wp = > (=1 Nj(p)day A Adj Ao A dipg
j=1
as a tensor on R"! and at least one of the coordinates N;(p) is nonzero. This is a contradiction.
Hence w, cannot be zero as a tensor on R"™, so our assumption that it is zero on 7, M must
be false.

Example 12.7 The volume element on S? is given by the restriction to S* of the 2-form w on
R3 given by
w = x1dxy A dxs + xodrs A dry + x3dxy A das
Substituting spherical coordinates x1 = sinf cos ¢, xs = sinfsin ¢, x3 = cos one recovers
w = sinfdO A d¢.

Definition 12.8 A vector bundle is orientable if the transition functions gyyv can be chosen to
satisfy
detgyy(y) >0Vy e UNV, VU, V.

For example, the tangent bundle is orientable iff detd(1)o¢~1) > 0 for all chart maps ¢, . This
is the usual definition of the manifold M being orientable.
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12.2 Antipodal map on §”

Let w be the volume form on S", and i : S® — R™*! the inclusion map. w = i*Q) where (Q is

the form
n+1

Q == Z(—l)jilx‘jd%l VANAN diﬂj,l AN dijrl VANIAN dl’n+1
7j=1

on R™"*!. Notice that if A: S™ — S™ is defined by

A(l’l, s ax’n-‘rl) = (_xla SRR _xn-i-l)

then i0 A = Aoi where A : R™! — R™"! is defined by A(z1,...,2pp1) = (=21, ..., —Tpi1).
So A*i*Q) = i*A*Q. For F = (F,...,Fyy1) : R™ — R and 2; : R"*! — R a coordinate
function, we have

F*yi =x;,0 F = F,

and

F*dz; = d(z; 0o F) = dF;
Applying this to F' = A : R*! — R we get A*z; = —x;, A*dxr; = —dx;, and

n+1

A*Q = Z(—l)j_l(—xj)(—dxl) Ao A (=daj ) A (—dzj) A A (—ding) = (—1)"1Q

Thus
A*w = i*A*Q = (—1)"“2’*9 = (—1)”“w.

So if n is odd there is a nowhere vanishing n-form on RP"™ coming from the volume form
w on S", for which A*w = w. If n is even, we have seen (using a partition of unity) that if a
manifold is orientable then it has a nowhere vanishing n-form. So if RP"™ were orientable, there
would be a nowhere vanishing n-form on RP™ and A*¢*w = ¢*w. But any volume form w on S
is of the form & = f(x)wy where w is the standard volume form on S™ and f : 5™ — R ~\ {0}.
Hence since A*w = —w, A*(fw) = —(f 0 A)w so if A*(fw) = fw (in other words, if fw were
invariant under the antipodal map) then fo A(z) = — f(z), which is impossible. It follows that
RP™ is not orientable if n is even.

Remark 12.9 The product of two orientable manifolds is orientable.
Proposition 12.10 For any manifold M with charts U C C" and chart transformations ogp=!

giwen by holomorphic maps f; : C* — C", M is orientable.
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Proof: Ifn=1,v0¢ ' = f, +if, where fi, fo : R* - R. Then
h  Of
doo™) =54 &2
8CE1 81‘2

The Cauchy-Riemann equations tell us that

of _ 0
8371 (91‘2
of _ Oh
81'2 8371
This tells us that of o)
-1\ _ (YJ1 2 YJ2 2
detd(t 0 671) = |2 + [ 52

More generally if a linear map F' : R*" — R?" comes from a linear map F : C" — C" (i.e. an
nxn matrix of complex numbers) this means Fg splits into blocks of the form

()

and these can be reorganized into blocks of the form

Fe 0

0 Fc
so det Fg = | det F¢|> > 0. We apply this to F = d(¢ o).
Example 12.11 CP" is orientable (because ¢; o ¢;

-~ are of the form

(Wi, ..., wy) = (w1 /wy, ..., 1 w;, ... 0. .. 0, wj)

(where 1/w; is in the i-th position and w; is in the j-th position), and these are holomorphic
functions of (w1, ..., wy,).

Example 12.12 (Mobius band) M = {[0,27 + €| x (—=1,4+1)}/ ~ where (x,\) ~ (27 + x, —\
for xz € [0,€¢]. M contains M" = (0,2m) x (—1,1) which is orientable. If M had an orientation
it would restrict on M’ to one of the two standard orientations of M. But the map (x,\) —
(2w + x, —A) is orientation reversing, so M cannot have an orientation.

Example 12.13 The Klein bottle K s nonorientable since it contains the Mobius band.
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13 Integration on manifolds

Recall that integration of functions over domains U in R" is not invariant under diffeomorphism.
According to the Change of Variables Theorem in one variable,

f(b) b df
h(y)dy = h(f(x))|—|dz.
[, rwi= [ ey

In n variables we have
/ hdy, . ..dy, = / ho f|detdf|dz; . ..dx,.
f() U

But if we write
w=dy; N...Ndy,

ffw = ho f(detdf)dzy A ... A dzx,

/f(U)w - /Uf*w

/hdml/\.../\dxn:/ hdzq . ..dx,

SO

if we define

for any integrable h on R".
Let M be an oriented manifold with an oriented atlas with charts (U, ¢4 ).

Definition 13.1 Ifw has compact support in U, and with ((¢a)™")" w|pww.) = Alz)dzy A. .. A
dx,, then wa = f%(UQ) A(x)dxy .. .dzx,. In particular, if w has compact support in U C R™,

then w = A(x)dzy A ... Ndxy,. Or [, w:= [, A(x)dz; ... d,.

Definition 13.2 Suppose w is an arbitrary smooth form on M. Let {f,} be a partition of unity

subordinate to {U,}, then
W= faw
fe=2 ),

Theorem 13.3 If f : M — N is orientation preserving, then wa = fM ffw. If instead f is
orientation reversing then wa = — fM frw.

Note that f.w is supported in U,.
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Proof:

Case 1: First consider w supported in R™: If w(y) = h(y)dy; A ... A dy, then f*w(z) =
h(f(x))det(df)dxy A ... N dx,. If V is a coordinate chart in R™ (with coordinates x;) and
f(V) is a coordinate chart with coordinates y;, then [i, f*w = [i, h(f(z))det(df)da; ... dx,. So
Jo ffw=[ ) h(y)dy . ..dy,. The two right hand sides are equal by the change of variables
theorem.

Case 2: More generally if (¢~!)*w is supported in ¢(U) C R", then ff(U) w= f¢(f(U))(q§_1)*w

=/ g7 w

()

[ whrreyety
¥(U)

- /¢ L= [

In particular, taking f = id but ¢, ¥ arbitrary chart maps compatible with the orientation, we

see
—1\* — —1\*
[ww Yo /W)ws Y,

Proposition 13.4 The integral is well defined independent of the choice of charts.

(by case 1)

so we have

Lemma 13.5 Ifw is supported in some chart U then the first definition agrees with the second
definition.

Proof:

; /]\/[ Jaw = /qﬁ Z<fa o (¢ ) w) = /¢(U)(¢1)*w

W) &
The left hand side is Definition 13.2, while the right hand side is Definition 13.1.

Lemma 13.6 The definition of the integral is independent of the choice of partition of unity.
Proof: If {f.}, {gs} are two different partitions of unity then

/ foo =3 | st
/]\49500—;/]\4]‘;9660

S0 Y, faw = Zg gaw.
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13.1 Stokes’ Theorem

Theorem 13.7 [Stokes] With the above orientation convention [, dw = [, w if w is an
(n —1)-form on M.

Proof: First assume w has compact support in U, and ¢(U) is open in R* (in other words U
contains no boundary points of M). Then [, w =0. We write w = >, fidzy A...Adzy .. A
dx,,. So

dw = Z(—l)i_l%d:pl A...Ndxy,

)

. af;
o 1)1 g
/de = EZ (—1) (%jidxl A Adx,,

and

(by definition)
, . af;
— Z(—l)’_l/dxl A..odv. . dr, ] Ra—id%]

%

(by Fubini’s theorem)
— Z(—l)i‘l/dxl...dii/\...dmn_l(fi(oo) — fi(—o0))

(by fundamental theorem of calculus) = 0 (as w is compactly supported).
Now if U C H™ (the upper half space), we find instead that

[ o doy = (1ol s, O di
L,

But this is faM w where we recall that the orientation of OM is equal to [01, ..., d,_1] where the
orientation of M is [0, 04, ...,0,—1]. This is then (—1)" times the orientation [0, ..., 0,].
Consequences of Stokes” Theorem in dimension 3: Recall the identification between 1-forms
and vector fields (similarly between 2-forms and vector fields).
If v is a dimension 1 line,

/(Vg) Dy = g(b) — g(a)

(fundamental theorem of calculus applied to line integral)
If Sy is a 2-manifold with boundary in R3,

/(val)*uA:/ Vi
SQ 852
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(classical Stokes’ Theorem)
If Bs is a 3-manifold with boundary in R3,

V - Vidaydaydey = / Vo - 0A
Bs 9Bs3
(Gauss’s theorem, divergence theorem)

Consequences of Stokes” theorem for vector calculus:

1. Fundamental theorem of calculus (Stokes in dimension 1):

/ [(@)dz = £(b) — f(a)

/ if=[ =50 -
[a,b] Ola,b]

This follows from

2. Green’s theorem (Stokes for n = 2 in R?):

/8 (e + fale.g)dy) = /Q (020 — 0, /0y)) dady

if O is a region in R? with boundary 92 and fi, f> are smooth functions.
This follows from w = fi(x,y)dz + fo(z,y)dy and dw = (0fy/0x — O f1/0y) dx N dy.

3. Gauss’s theorem (divergence theorem) (Stokes for n = 3): Let M be a 3-manifold with
boundary in R3. The vector field F' = (Fy, Fy, F3) on M correponds to a 2-form

w = F1(§)dyz N dys + F5(y)dys A dyy + F3(3))dys A dys.

So
V-ﬁdyl/\dyg/\dygzdw

and .
(F-u)A=w

where A is the area form on M and 4 is the unit normal vector to M in R3.

4. Classical Stokes’ theorem: Suppose F' is a vector field on a 2-manifold ¥ embedded in R?
with boundary 0%, with w the corresponding 1-form w = Fidx, + Fydxy + Fzdrs. Then

/(ﬁ x F) @A = [ (Fidx, + Fpdzs + Fydas).
b o)

/dw:/w
by 8%
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13.2 Line integral
If w=>Y", fi(x1, 22, 23)dz; is a 1-form on R and v : I — R?® (where v(t) = (71(t), 72(¢), 73(t))

then
/ww_/wu_/ngz d% it
/f dvdt

/Vg Tt = (1) — g(0).

The line integral is

Proposition 13.8 The line integral over a closed path v bounding a surface S in R3 is equal
to 0 if w is defined everywhere on S and dw = 0.

Proof: By Stokes, [,qw = [dw =0.

Remark 13.9 If dw = 0 but w is not defined everywhere, then the conclusion of Proposition

13.8 will not hold: for example
_ xdy — ydx

x? 4+ y?
on R* \ {0} but [4 w = 2m.

Proposition 13.10 If w has the property that fﬂ/w = 0 for all closed curves 7y, then one can
define [}w as fol c*w for a curve c : [0,1] — R3 with ¢(0) = p,c(1) = q. (This depends only
on the endpoints p and q, not on the choice of c.) Any two such curves can be glued to form a
closed curve v = ¢; U (—cq) so fol Clw = fol ey xw since [ w=0.

Proposition 13.11 If fww = 0 for all closed curves v on R?® then w = df for some smooth
function f.

Proof: Define f(z) = f;w for any path ~ from p to z. (f is well defined by the previous
Proposition.) To compute Jf/dz;, take an open neighbourhood of z and

af a 1,22,T3
% — %/ wl(t7$271’3)dt = w1($1, 1'275133).
1 1Jp

1,22,23

Similarly to compute 0f/0x;, pick a path where only one coordinate x; varies at any time and
the coordinate x; changes only in the last segment of the path. We choose a path which is
piecewise linear and is obtained by concatenating the line segments vy, v9, v3 Where
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1. vy is the line segment from (pq, pa, p3) to (p1, pa, 3),
2. vy is the line segment from (pq, p2, x3) to (p1, o, x3)

3. vy is the line segment from (p, o, x3) to (21,22, x3).

Remark 13.12 These propositions generalize to connected manifolds M other than R but we
require that f7 w = 0 for all closed curves v C M.

Proposition 13.13 If a manifold M is simply connected then every closed 1-form on M is
exact.

Proof: If M is simply connected, then every closed curve v : S* — M extends to a smooth
map o : D* — M (where D* = {(v,y) € R? | 22 + y* < 1}). Then [[w = [, dw = 0, so
f7 w = 0 for every closed curve . This is the hypothesis of the previous proposition so w = df
for some smooth function f: M — R.
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14 Mayer-Vietoris Sequence

If U and V' are open subsets of a manifold M, the Mayer-Vietoris sequence is as follows. (We
refer to the "Homological Algebra’ notes for the result that a short exact sequence of chain
complexes gives rise to a long exact sequence of the corresponding cohomology groups.)

U uv) L oy e 0 ) L o)

0 0

where if iy : U - UUV and iy :V - UUV, juy: UNV = U, jy : UNV — V are the

canonical inclusions,

f= (i, iy)
and

9=Ju—Jv-

Clearly f is injective since a differential form o on U UV restricting to 0 on both U and V'
is simply a = 0.

To see that ¢ is surjective, we observe that a differential form ayny on U NV can written
as ayny = jrou — jyay for suitable forms ap on U and ay on V. Let {py, pv} be a partition
of unity subordinate to the open cover {U,V} of U U V. Then we have ayny = pravny —
(—pv)ayny on UNV. Now pyayny can be extended by zero to give a differential form Sy on
U. Likewise pyayny can be extended by zero to give a differential form Sy on V. Now we have
Qyny = jEBU - jx*/ﬂv-

Finally we must check that Im(f) = Ker(g). This is true because Ker(g) consists of forms
(ap,ay) on U (resp. V) with jiay = ji-ay. This means that oy and ay agree on U NV, so
there is a form § on U UV with apy = ij,8 and ay = i}, 5).

This completes the proof that the above sequence is exact.

Then according to the course notes section on ‘Homological Algebra’ Definition 9.1.1 and
Theorem 9.1.12, there is a corresponding long exact sequence of de Rham cohomology groups

HIWUUV) L miwy e 1) L B0 Av) S oY)

where 9 is the connecting homomorphism. The connecting homomorphism is defined as follows.
If « € V(U NYV) satisfies da = 0, then there are ay € QU and ay € YV with a =
Jray — jiray. We find that ji,day = ji-day so there is § € HTHU U V) with i}, = day and
it,f = doyy. We define d]a] = [5].
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15 Poincaré Lemma
Definition 15.1 A form « is closed if da = 0 and exact if « = dn for some n
Since d o d = 0, exact forms are closed.

Definition 15.2 The k-th de Rham cohomology of a manifold is the quotient of the space of
closed k-forms by the space of exact k-forms.

Theorem 15.3 (Poincaré Lemma) If  is a closed k-form on R™ then it is ezact.
More generally if a manifold M is smoothly contractible to a point and n is a closed form
on M then it is exact.

For example, a vector space and a ball are smoothly contractible to a point. A region U C R" is
smoothly contractible to a point if it is star-shaped (in other words there is pg € U s.t. Vp € U,
po+tp—po) CUfor 0 <t <1).

Example 15.4 Ifw is the 1-form on R*\{0} given by w = %, then dw = 0 but [, w = 2.

So w is not exact, since the integral of an exact form around S* would be 0.

Example 15.5 The form

_ mydry Ndxs + wadrs A dry + x3dry A dag
N (22 + 23 + 22)3/2

on R3 \ {0} is closed. It satisfies that its restriction to S* is the volume form on S%. So
f52 1*w = 4.
15.1 Chain homotopy

(Spivak, Chapter 7)
Suppose M is a smooth manifold and ¢ : M — M x [0, 1] is given by #(p) = (p,t). Define
T:QF(M x[0,1]) — Q¥ 1(M) as follows. Write w = w; +dt An where (for mp : M x[0,1] — M)

we have
1. wi(vy,...,v) = 0 if some v; ~ 9/0t (in other words if some v; € Ker(dmyy))

2. nis a (k — 1)-form with this property
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Define .
Zw(p)(vi, - .- vp-1) = / 0P, ) ()01, - -5 (1) k1)
0
Claim 1jw — 1jw = dZw + Zdw.
Proof:

e Case 1: Assume first local coordinates (z1,...,z,) on a chart in M.
w= f(z,t)dz;, A...Ndzxj,

(we denote the above by f(z,t)dz;). Hence dw is the sum of the term not involving dt
plus %dt ANdzxy. So
LOf
Z(dw)(p) = %(pi )dt" ) dz ;5 (p)
0

forpe M
= (f(p. 1) = f(p,0))das(p)
= fjw(p) — igw(p)
and Zw = 0. So in this case Zdw + dZw = 1w — ijw.

e Case 2: Assume w = f(x,t)dt A dzy. Then ijw = ifw = 0 because ij(dt) = d(c) = 0
(where c is the constant function with value 1) since i1(m) = (m,1). Now

I(dw)(p) =Z(- ) a‘z dt Adwo, Adzy)(p)

n 1
- _Z (/ ﬁ(p,t')dt') dry, A dzy.
a=1 0 axa
while

1
d(Zw)=d (/ f(p, t’)dt') dz;
0
- a ! / /
:;8_%(/0 f(p,t)dt)dxa/\d:vj
- YOf
:;(/0 axa(p,t)dt>dxa/\de

= —Z(dw)

so in this case also Zdw + dZw = 0.
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Consequences:

1. If M is smoothly contractible to a point, then there exists a homotopy H : M x[0,1] — M
for which H oy : M — M is the identity and H o4y : M — M is the constant map to a
point pg. Then w = (H o41)*w and 0 = (H o ip)*w. We have

w=iHw—iiHw

so if w is closed, then H*w is closed and ¢{H*w = w and ¢{H*w = 0. This shows
w = d(ZH*w), so w is exact. This gives a proof of the Poincaré lemma which works if M
is contractible.

Definition 15.6 If Fy.Fy : M — N are smooth maps, then a homotopy between Fy and F} is
a smooth map H : M x [0,1] — N for which H oiy = Fy and H oiy = Fy. Hereig: m — (m,0)
and iy : m +— (m, 1)

Consequences of chain homotopy Z:

If H: Mx[0,1] — N is a homotopy between Fy and F}, then Fjw—Fjw = if H*w—i{H*w =
(dI +Zd)H*w = d(ZH*w) + TH*(dw). So if dw = 0, then [Fjw] = [Ffw].

Consequences of Poincaré lemma:

Cohomology of spheres

HY(SF) 2 HY(SP 1) for k> 1 and £ > 1
Proof: (Sketch) (following Guillemin-Pollack p. 182) We will show that H*(S*) = HO(S*) =
R and all the other groups are 0. S* = U; U U, where Uy = {(zo,...,7%) : 7o > —¢} and
Uy ={(zo,...,2x) s w9 < €}. So Uy NUy = {Uy = {(z0,...,2x) : —€ < xy < €}

Recall that if Fy and F; are homotopic then Fjw — Ffw = (dZ + Zd)H*w (where T is a
chain homotopy w*(M x [0,1]) — w* 1 (M). Hence if dw = 0, [Fjw] = [Fjw]

Definition 15.7 Two manifolds A and B are homotopy equivalent if there are maps F' : A — B
and G : B — A for which F oG ~idg and Go F ~idy,.

Proposition 15.8 If two manifolds A and B are homotopy equivalent then H*(A) = H*(B).
Proof:

F*oG" = idH*(A),
G*oF* = 1dH*(B);
(by the previous Proposition).
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Definition 15.9 If A is a manifold and B a submanifold, a deformation retraction from A to
Bisamapr:A— B wherei: B — A is the inclusion map, for which ior : A — A is the
identity map and r oi : B — B is homotopic to the identity map. So if there is a deformation
retraction from A to B then A and B are homotopy equivalent and H*(A) = H*(B).

Lemma 15.10 There is a deformation retraction v : A — B where A = UyNUy and B = S*!
and
(0,4, 1y)

(T, ..., Tn) = :
(=0 ) Va4t al

(1 =t)xo, z1,...,xp)
(1 = )zo, 1, ., 20)||

Proof:
H(t, (xo,21,...,T,)) =

So Hoig=1id and Hoi; =roi.

Hence HP(Sk1) = HP(U, N Us).

Given a closed ¢-form w on U; UUs, we produce a closed (£ —1)-form n on U;NUs,. Start with
w. The restriction of w to U is exact (by the Poincaré lemma, since U; is smoothly contractible
to a point).

i, w = doy
and

ip,w = dos
for (¢ — 1)-forms ¢; on U; and ¢9 on U,. Thus d(¢1 — ¢9) = 0 on Uy NUs, S0 ¢1 — ¢ = [ is a
closed (¢ — 1)-form on Uy N Us.

Given a closed (¢ — 1)-form 1 on U; NUs, we produce a closed ¢-form on Uy U U,. Start with
smooth functions p; on U; and py on U, such that p; = 0 on a neighbourhood of the north
pole N, and py = 0 on a neighbourhood of the south pole S. (In fact we can assume py = 0 on
Uy~ (Ui NU3).) pi(x) € [0,1] and py + p = 1 everywhere. Thus p;3 is a form on U; and pyf3 is
a form on U; and we can define ¢; = p1 8 and ¢ = —po 3. Note that ¢; — ¢ = 8 on U; N U, as
p1+ p2 = 1. Then dp; — dpy = 0 on U; N Uy as dfB = 0. Define w € QYU UU,) by w|y, = doy
and w|y, = d¢o, and dw = 0 since this is true on U; and Us. In fact these two procedures are
inverse to each other (as indicated by the notation). So H*(S*) = H*"1(S*¥~1) for £ > 1. Hence
H*(S*) =~ HY(S') = R and H°(S*) = HO(S') = R and all the other groups are 0.

To see this, we use Mayer-Vietoris.

O QJ(U1UU2)—’QJ(Ul)@QJ(UQ)—’Q](UlmU2> O

This gives the long exact sequence
. T——— Hj(Ul U U2) - HJ(U1> EB HJ(UQ) — Hj(Ul N UQ) —_— ...

Using this we can show the following theorem:
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Theorem 15.11 H*(S*) =~ H*"1(SF 1)
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16 Brouwer fixed point theorem

Theorem 16.1 (Brouwer fized point theorem) Any smooth map f from D™ to itself has a fized
point.

Remark 16.2 This theorem can be generalized to continuous maps.

Proof: Suppose not. Then there is a map from D™ to S"! which is the identity on S™ !,
in other words there is a deformation retraction from D™ to S"~!. We construct this map by
using a line from z to f(z) and checking where this line hits S"~!. Define

gi(x) =tz + (1 =) f(2) = f(a) +t(z — f(z)).

We solve
1=tz — f(2))* + 2tf(z)(z — f(2)) + f(2)*
We take the solution ¢, with ¢ > 1. This solution is a smooth function of = (using the quadratic
formula). The map we seek is then g, (z). We note that ¢, (z) is a smooth function of x.
If r : D® — 8™ ! is a retraction, then 7 o4 = id for i : "' — D" the inclusion. Then we
have 7*r* = id but this factors through H"~!'(D") = {0}. This is a contradiction.
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17 Degree
In this section let M and N be compact oriented manifolds and f : M — N a smooth map.
Definition 17.1 If M is connected and oriented, and dim(M) = n, then
H"(M) = Q"(M)/dQ"*(M).
(Note that for any o € Q™(M), da =0.)

Proposition 17.2 If M is compact, connected and oriented and OM = (), then there is a linear
isomorphism B : H"(M) — R given by B(a) = [, a.

Proof: Using a partition of unity we can construct an n-form o on M with [ yao# 0. 1If
a = df then fM a = 0 by Stokes.

Remark 17.3 Later we will give the proof that the map R given by R([o]) = [,, o is an
isomorphism.

An application of this result is the definition of degree.

Lemma 17.4 There exists A € R for which fM ffa= )\fNa for all a. (X depends only on f
— it is independent of «.)

Proof: f* gives a linear map

1) L ()
By By
R R
A

A is called the degree deg(f) of f.

Theorem 17.5 If b is a reqular value of [ then deg(f) = ny — n_ where ny is the number
of p € f7X(b) for which df, : T,M — T,N preserves orientation, while n_ is the number of
p € f7Yb) for which df, : T,M — T,N reverses orientation.
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Proof: f~1(q) is a finite set of points p1,...,pr. Choose a neighbourhood U; around each p;
on which f|y, is a diffeomorphism. Such a neighbourhood exists because df),, is an isomorphism
for all p;. In particular these neighbourhoods cannot intersect.

Choose a compact neighbourhood W around ¢, and define W’ := f~1(W) ]| ; Uj. Choose
a neighbourhood V of ¢ in W, so f~4(V) Cc U; U... U U,. Redefine U; to be U; N f~1(V), so
f :U; — V is a diffeomorphism. Choose w = gdy; A ... Ady, where g > 0 has compact support
contained in V. Then the support of f*w is contained in U U. . .UUy. So fM ffw= 25:1 ij frw.

But since f : U; = V is a diffeomorphism, [, f*w = [, w if f is orientation preserving on U,
while [, f*w = — [, w if f is orientation reversing on U;.

Remark 17.6 The degree of f is independent of the choice of reqular value. So since b with
YD) = 0 is a regular value, the degree of f is O unless [ is surjective.

Example 17.7 If M and N are compact oriented manifolds and F : M — N is an orientation-
preserving covering map with n sheets (for example F : S* — S' defined by F(e%) = ¢™?) then
fM F*w = anw (as a consequence of the previous theorem).

17.1 Consequences of chain homotopy

Proposition 17.8 Homotopic maps have the same degree.

Proof: If H : M x [0,1] — N is a homotopy between the maps Fy : M — N and
F, : M — N, then Fj = Hoiyand Fy = H o so Fjw — Fiw = i{Hw — i{H'w =
d(TH*w) + ITdH*w. Hence if M and N are compact oriented manifolds and Fy and F; are
homotopic then [, Fyw = deg(Fp) [ w and [, Ffw = deg(Fy) [y w. But by Stokes’ theorem
Jy Fiw— [, Fgw = [,; dZH*w (recall that w is closed since it is an m-form on an m-dimensional
manifold) so degFy = degF}.

17.2 Consequences of degree

Proposition 17.9 “Hairy ball theorem”) If n is even, there is no nowhere zero vector field on

S

Proof: Let A be the antipodal map. Then A is an orientation reversing diffeomorphism since
n is even (it is an orientation preserving diffeomorphism when n is odd). Because a reflection
is an orientation reversing diffeomorphism, it has degree —1. The antipodal map of S™ is the
composition of n + 1 reflections, so deg(A) = (—1)"*! (see Proposition 17.11 below). At the
same time the degree of the identity map is 1. But if there is a nowhere zero vector field X on
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S™ then we can construct a homotopy between A and the identity map. For each p, there is a

unique great semicircle v, from p to A(p) = —p whose tangent vector at p is a multiple of X (p)
(if p is the north pole, v, would be the longitude whose tangent at p is is X(p)).
Note that for n odd we can construct a nowhere zero vector field on S™: for p = (xg,...,z,) €

S™ we define

X(p) = (21,20, —X3, T2y - oy, —Tpi1, Tp) = (=104 + 00y + ... + (—2p_10s, + 3,04, _,)

Theorem 17.10 If M is a compact orientable k-manifold then H*(M) = R.

The isomorphism is given by the map integrating differential forms over M.
Proof:

e Step 1: H¥(S*) =~ R, and the isomorphism is given by w +— [w. (This was already
proved, since we proved H*(S*) = H*=1(S*1) and H'(S!) 2 R)

e Step 2: If the k-form w is compactly supported in R¥, w = dn for some compactly
supported 7 iff [o, w = 0. (Proof: Let ® : S*\{N} — R be the stereographic projection.
Then ®*w = ' is a differential form on S*, for some w’ such that w = 0 on a contractible
neighbourhood U of N. So if [, w = 0 then [, ®*w =0so0w’ = dv on S*. As dv =0 on
the contractible neighbourhood U of N, iy : U — S* and d(if;v) = 0. By the Poincaré
lemma, i};v = dy for a (k—2)-form g on U. Hence i};v—dp = 0 and 7 := (@7 1)* (55,0 —dp)
is defined on R* and compactly supported, and w = d~.

If w = dn and 7 is compactly supported, then we choose R so large that Supp(n) C {z €
R¥||z| < R} := B(R). Then [p, w = fBK(R)w = fBK(R) dn = faBK(R)n =0.

e Step 3: If U C M is an open set diffeomorphic to R*, then any k-form B compactly
supported in U satisfies

18] = ( / B)l]

for any k-form w compactly supported in U with wa = 1. (This follows from Step 2,
because o := 3 — (f,; f)w = dn for some 7, because [, o =0.)

e Step 4: Cover M by a finite number of open sets Uy, ..., Uy and pick homotopies H; :
M x I — M with Hy|pxqoy = id and H|prq1y = Gi - Uy = U. So [w] = Gf|w] if w is the
extension to M of a form compactly supported on U with fU w = 1. This is true because
homotopic maps induce the same map in de Rham cohomology.
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e Step 5: Choose a partition of unity { f;} subordinate to {U;}. Any closed k-form 6 equals
> [0, where f;0 is supported in U; and

[fi0] = /U fif - [Gw]

(by Step 3, because Gfw is compactly supported on U; with fU, Giw =1 —in Step 3, we
replace 3 by f6 and replace w by Giw)

=</Uifi9>-[w]

CEDSIUED S WIN®

~([ 91

This completes the proof that F': H"(M) — R given by F(a) = [},

(by Step 4). Hence

in other words [0] = 0 iff [,,6 = 0.

« is an isomorphism.

17.3 Further results about the degree
Proposition 17.11 if f: M — N and g: N — P then

deg(fg) = deg(f) - (deg(g)
Proof: This follows from Theorem 17.5.

Proposition 17.12 The degree of an orientation reversing diffeomorphism is —1. Hence an
orientation reversing diffeomorphism cannot be homotopy equivalent to the identity map.

Proof: This also follows from Theorem 17.5.

Proposition 17.13 The antipodal map of S™ is the composition of n + 1 reflections, so its
degree is (—1)"T1. So if n is even, the antipodal map is not homotopy equivalent to the identity.
If n is odd, the antipodal map is homotopy equivalent to the identity (via the flow of a nowhere
zero vector field on S™).
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Proposition 17.14 If f : S — S™ has no fized points, then deg(f) = (—1)"1.
Proof: If f(x) # x for any x, then the line
t— (1=t f(z)+t(-z), 0<t<1

does not pass through 0. So
(1—1t)f(x) —tx
| (1 =8)f(x) -tz |

defines a homotopy from from f to the antipodal map, which has degree (—1)"*1.)

fi(x) =

17.4 Applications of degree to group actions
Definition 17.15 A group G acts on a space X if there is a homomorphism G — Homeo(X).

Definition 17.16 A group acts freely on X if the homeomorphism corresponding to each non-
trivial element of G has no fized points.

Example 17.17 The rotation group SO(3) acts on R® and S?; the group U(1) acts on R? = C
by

e 2 e

Proposition 17.18 Ifn is even, then Zsy is the only nontrivial group that can act freely on S™.

Remark 17.19 Note that S* and S® are groups (see the section on Lie groups) and all Lie
groups act freely on themselves (by left or right multiplication) so there are some odd dimensional
spheres which admit a free action of a group other than Zs.

Proof: The degree of a homeomorphism must be +1. Hence a group action determines a
function D : G — {£1} which is a homomorphism (by Proposition 17.11 above). If the action
is free, D sends every nontrivial element of G to (—1)"' (using Proposition 17.14). So if n is
even, D sends all the nontrivial elements of G to —1. Hence

Ker(D) = {1}.

So since

D : G/Ker(D) = {£1},
we learn that G = {+1} = Zo.
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18 Riemannian metrics

Definition 18.1 A Riemannian metric is an assignment of an inner product on T, M for all
x € M, such that g;; :== ¢(0;,0;) are smooth functions.

Definition 18.2 The length of a curve v : [a,b] — M is

b
dy dvy.i)9
/ gv(t)(a,a) P2dt.
Proposition 18.3 The length of a curve 7 is independent of the parametrization of .

Proof:

1/2
b dy dv ., b dy dv [dt\*\ ' ds b dvy dvy
/a g gs) 48 / Do\ g ar (ds) ™ / 9oy )t

Definition 18.4 The arc length of the curve v is L(t) = f; Gy (5L, 1)1/2g

Definition 18.5 The volume element is

w = +/det gdxy A\ ... Ndz,

where det g refers to the determinant of the n X n matriz g;;.

The volume element equals w! A ... A w" if {w’} is the basis for T M dual to an orthonormal
basis {e;} of T, M. The Riemannian volume element is vdet hw! A ... Aw™ if {w'} € T(T*M)
is the dual basis to a basis of vector fieldsx {X;} . h is the matrix h;; = g(X;, X;). For example

we might write X; = %.

Proposition 18.6 The Riemannian volume element is independent of the choice of basis {X;}.

Proof: Let {Z;} € I'(T'M) be another basis of tangent vectors and let {n'} € T'(T*M) its
dual basis. Put f;; = ¢(Z;, Z;) and define a matrix v by X; = >, Zyy;. The determinant of v
must be positive because both {X;} and {Z,} are compatible with the orientation.

Then

hij = 9(Xi, X3) = > ¥Vmi9(Ze, Zom)
lm
= Z YeiYmj fem.-
Lm
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So h = ~T fv, and v/det h = det(y)y/det f. Thus evaluating on (X71,..., X,) we see that
A LA = (dety)w! AL AW

and so

\/ﬁwl/\.../\w”:\/detfnl/\.../\n".

The collection of vector fields on M will be denoted =(M).

Definition 18.7 A connection on T'M is a map V : Z(M)x Z(M) — Z(M) denoted (X,Y) —
VxY for which

1. VixY = fVXY for f a smooth function and X,Y wvector fields on M.
2. Vx(fY) = (Xf)Y + fVxY.

More generally if V' is a vector bundle over M, V : Z(M) x I'(V) — I'(V) where X € =Z(M)
and Y € I'(V).

Note that if M = R" (for smooth functions f;) there is an obvious connection Vi, (3_; f;0;) =
> j(ai f;)0; but this depends on the coordinate choice. A connection provides a way to compare
tangent vectors at different points in a manifold.

Proposition 18.8 For any connection on TM, write & = 0; and V& = > Ff]fk The Ffj
are called Christoffel symbols.

Definition 18.9 The torsion of a connection is
T(X,)Y)=VxY —-VyX — [X,Y]

We can compute that the torsion is a tensor, in other words if we multiply X or Y by a smooth
function f, T(fX,Y) = fTxY and T(X, fY) = fTxY — there is no dependence on derivatives

of f.

Proposition 18.10 V is torsion free iff in local coordinates Ffj = F;‘f’i

Definition 18.11 (Connection along a curve, or covariant derivative) Let Z(s) be the collection
of smooth maps v : [a,b] — T'M such that v(s(t)) € TswyM. The covariant derivative associated
to a connection V is V /dt : Z(s) — =(s) such that

1. V/dt is R-linear
2. V/dt(fv) = (df /dt)v + f(V/dtv)
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3. IfY € Z(M) then V/dt(Y],) = Vi (V).
Definition 18.12 A wvector field v € Z(s) is parallel along s if (V/dt)v = 0.

Definition 18.13 For a curve s in a submanifold M C R™ and a vector field Y along the curve
s, we define a covariant derivative by ((V/dt)Y) (t) = n(dY/dt), where 7 is the projection from
R™ onto Ty)M.

Define < X,Y >:=¢(X,Y)

Proposition 18.14 d/dt < v,w >=< V/dtv,w > + < v,V /dtw > In particular if v and w
are vector fields parallel along a curve s, relative to the Levi-Civita connection, they make a
constant angle with each other and have constant lengths along s.

Proof: Ifv= > v¢, w=>,w, interms of & = 9; we have Vo /dt = Y, dv"/dt&p 40"V :&.
The right hand side is

< dvt/dtg, w' > + < 0" dw'fdtg >+ <PV w'l >+ < ok, Vi >

This is the sum of the first two terms plus > v*w’s < &,& > (because V is Riemannian)

—4d
=5 <v,w>.

Theorem 18.15
<VxY,Z>-<VyX,Z >=< [X,Y],Z >
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Poincaré Duality and the Hodge Star Operator
Let M be a compact oriented manifold of dimension n.
Definition 18.16 The Hodge star operator is a linear map
0 QF (M) — Q" F(M)
which satisfies

[ )
%0 % = (—1)k("_k)

a A *a = |al*vol
where vol is the standard volume form and |a|? is the usual norm on a(x) viewed as an
element of A¥T*M.

The definition of the Hodge star operator requires the choice of a Riemannian metric on the
tangent bundle to M.

Let d be the exterior differential. Then d* := xdx is the formal adjoint of d, in the sense
that (d*a,b) = (a,db). This is because (xa, *b) = (a,b) for any a,b € Q¥M, so

(da,b) = /da*b: (—1)k/ad*b

= (—1)k("_k)(—1)k(a, xd * b)

(by Stokes’ theorem)

Definition 18.17 A k-form a on M is harmonic if da = d*a = 0.
Theorem 18.18 The set of harmonic k-forms is isomorphic to H*(M;R).

Theorem 18.19 If « is a harmonic k-form on M, its Poincare dual is represented by *c.
The pairing between an element o and its Poincare dual is nondegenerate, i.e. for any form «
fMoz/\*ozzo — a=0.
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19 Lie Groups

Definition 19.1 A Lie group is a group G which is also a smooth manifold, for which multi-
plication m : G x G — G and inversion 1 : G — G are smooth maps. The identity element is
usually denoted e.

Example 19.2 U(1): m(e",e'™) = €@+ j(¢i) = e7.

Example 19.3 GL(n,R) : m(A, B);; = Y. AiuB,j i(A);i = (D7 Ay; where Ajj is the deter-

detA
minant of the matriz obtained by striking out the i-th row and j-th column of A.

Example 19.4 GL(n,C): the definition is exactly the same as GL(n,R) with R replaced by C
Example 19.5 R: m(a,b) =a+0b, i(a) = —a

Example 19.6 O(n) = {A € M,x,(R) : AAT = 1} where 1 is the n x n identity matriz.
Example 19.7 SO(n) ={A € O(n) :det A =1}

Example 19.8 U(n) = {A € GL(n,C-AA" = 1} where AT = AT

Example 19.9 SU(n) = {A € U(n) : detA = 1}

Definition 19.10 A Lie subgroup of G is a reqular submanifold which is also a subgroup of
G.

Lie subgroups are necessarily Lie groups, with their smooth structure as submanifolds of G.
The multiplication and inversion maps are automatically smooth. Lie subgroups are necessarily
closed (Boothby, Theorem II1.6.18).

Example 19.11 1. O(n) = {A € GL(n,R) : AAT =1} is a Lie subgroup of GL(n,R).
2. 50(n) ={A € O(n) : det(A) = 1} is a Lie subgroup of GL(n,R).

3. U() = {A € GL(n,C) : AAT = 1} is a Lie subgroup of GL(n,C). (Here AT is the
conjugate of the transpose of A.)
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Example 19.12 (Sp(n)) The group

Spm = 1(a.8)i= | 3 7 b

B A
where A, B € End(C") and we insist that M (A, B) € U(2n). Equivalently

Sp(n) ={U € SU22n) : UJ = JU}

0o 1,
whereJ:{_ln 0 }

Classical groups:
o A, ... SUn+1),n>1
e B, .. 8502n+1),n>2
e C, .. Sp(n),n >3
e D, .. SO(2n),n>4

The reason for the restriction on n is to avoid duplication: for low values of n many of the
groups are isomorphic, or at least their Lie algebras are. For example SO(3) has the same Lie
algebra as SU(2).

The classical groups above and a finite list of “exceptional Lie groups” ( Ga, Fy, Eg, Er,
Eg) are basic building blocks for compact connected Lie groups.

Theorem 19.13 If Gy and G5 are Lie groups and F : G — G5 is a smooth map which is
also a homomorphism, then Ker(F) is a closed reqular submanifold which is a Lie group of
dimension dim(Gy) — rk(F).

Example 19.14 SL(n,R) is the kernel of det : GL(n,R — R ~\ {0}.

Proof: This is Boothby, , Theorem II1.6.14.

Definition 19.15 A Lie subgroup H of a Lie group G is a subgroup (algebraically) which is a
submanifold and is a Lie group (with its smooth structure as an immersed submanifold).

Proposition 19.16 A Lie subgroup that is a regular submanifold is closed. Conversely a Lie
subgroup that is closed is a regqular submanifold.
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(Recall: X C M is a regular submanifold iff there is a chart ¢ : U — R™ for which ¢(UNX) =
»(U)NR™)

Definition 19.17 Let F : N — M be a diffeomorphism and X a vector field on N, while Y is
a vector field on M. Then X is F-related to Y iff Fi(Xy,) = Yp@m) for allm € M.

Proposition 19.18 The Lie brackets of F'-related vector fields are F-related.
Proof: We have to show that if X;,Y; are F-related vector fields then
dF([X1, X5]) = Y1, V2],
We are assuming dF'(X;) =Y;. For all g € C®(V), and x € F~1(V),
(Yg)(F(x)) = (dF).(X)(g) = X(g0 F) (2)

This is equivalent to
(Yg)oF =X(goF).

If f e C>®(V), wereplace g by Yaf, and Y by Y7 in (2). This gives
Yi(Yaf) o F' = Xi((Yaf) o F).
Now apply (2) for g = f, Y = Y5. This gives
Yi(Yaf) o F' = X1(Xs(f o F)).

Likewise
Yo(Yif) o I = Xo(Xy(f o F)).

So
(Y1, Ya]f) o F' = [X1, Xo](f o F))

so [Y1,Ys] is F-related to [X7, X3].

19.1 Left invariant vector fields

For g € G define L, : G — G by Ly(h) = goh. For Y € T.G define a vector field Y by
Yé = (Lg)*Y'

Proposition 19.19 Y is a smooth vector field.

Proposition 19.20 [X,Y] is left invariant.
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Proof: For any h € G, Y is F-related to itself (where F' = Ly), so [Y1,Ys] is also F-related
to itself, in other words it is left invariant (so [V}, Ys] = Z for some Z € T.G. Hence there is
an operation [-,-] on T,G (Lie bracket). T,G equipped with [, -] is called the Lie algebra of G,
denoted Lie(G).

Proposition 19.21 The tangent bundle T'G of a Lie group G is trivial.
Proof: We have a global basis of sections given by the left invariant vector fields.

Example 19.22 T'S? is trivial, since S® = SU(2).

Theorem 19.23 For every X € T,G there is a unique smooth homomorphism ¢ : R — G with
do/dt|i—g = X

Proof: Given X, we construct the corresponding left invariant vector field X. Take the
integral curve ¢ : (—e¢,€¢) — G through e (with ¢(0) = e). Extend it to ¢ : R — G by defining

¢(t) = d(e/2) o... d(e/2)p(r)

where the number of ¢(€/2) is k and t = k(e/2) + . Then ¢ — ¢(s) - ¢(t) is an integral curve
of X passing through ¢(s) at t = 0. Also, ¢(s + t) is such an integral curve. So by uniqueness
of integral curves

¢(s+1t) = o(s) - (1)
Conversely if ¢ : R — G is a smooth homomorphism, and f : G — R is smooth, then d¢/dt
is a tangent vector to G at ¢(t). Recall

do . .. f(o(t+h)) — f(o(t))
%(f) = limy 9 h
b, FO0O(0) = F((2)
—0 h
Iu 0 f o Lo o pu)
4

So ¢ is an integral curve of X.

Definition 19.24 A one parameter subgroup of G is a homomorphism phi : R — G.
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We have thus shown that there is a bijective correspondence between left invariant vector fields
and one parameter subgroups.

Given X € Lie(G), let ¢ be the unique smooth homomorphism with fli—‘f(()) = X. Then we
define the exponential map as follows.

Definition 19.25 (Ezponential map) With the above notation,

exp(X) = ¢(1).

Clearly
exp(t; +t2) X = (expt1.X)(exp t2X)

and
exp(—tX) = (exptX)~ "

Proposition 19.26 The map exp : Lie(G) — G is smooth, and 0 is a regular value so exp
takes a neighbourhood of 0 € Lie(G) diffeomorphically onto a neighbourhood of e € G.

Proof: Define a vector field Y on Lie(G) x G by
Yixa = 06 X(a).
(Note that T(x q) (Lie(G) x G) 2 T,G ®T,G.) Then Y has a flow
a:Rx (T.GxG)—>T.GxG

which is smooth (since Y is smooth). Since exp(X) is the projection on G of (1,0 & X), exp
is smooth (as it is the composition of smooth maps).

Given v € TG, the curve ¢(t) = tv in T,.G has tangent vector v at 0.

S0

d
expy(v) = pr lo exp(tv) = v.

Hence

(dexp) |o=id.
So exp is a diffeomorphism in a neighbourhood of 0.

Proposition 19.27 If ¢ : G — H is a homomorphism then

expy ody) = 1 o exp .
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Proof: Ify:G — H, and X € T.G, then let ¢ : R — G be a homomorphism with

d
9 x

Then ¥ o ¢ : R — H is a homomorphism with

d
(0 00) limo= ¥, X.
So
exp(iX) = ¢ o §(1) = th(exp X).

Proposition 19.28 If G = GL(n,R) then Lie(G) = M,x,(R) (the vector space of n x n real
matrices) and

exp(X) =0 3)

n>0
Proof: We define a norm on Lie(G) as follows:
|X| = SUPlgi,jgn|xij|

Sp
1
[ X*[ < = (n]X])*
n

(since |AB| < n|A||B]|). Hence the series (3) converges absolutely. Also the one parameter
subgroup of GL(n,R) whose left invariant vector field has the value X at e is exp(tX) since

X
Y = id+tX +0()
n.

n>0
hence

d X
o - X,
dt =0 ; n!

Proposition 19.29 [f G = GL(n,R) and A, B € Lie(G) then

[A, B] = AB — BA.
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Proof: 9
A= ZZJ: ClijaTij,

0
2V

where a;;, b;j; are constants. Let A, B be the left invariant vector fields corresponding to A and
B. Then o o o
[A, B]f = A(Bf) — B(Af)
(by definition of the Lie bracket on vector fields).
If x € GL(n,R), then

B(z)i; = (xB)i; = » _ xiby;

SO
~ 0
A(Bf) =
( f) Zzakeﬁxw
1,7 kL
0 : o 0
= Z @irbyj %7’ + terms with %axij

Likewise

~ 5}
B(Af) = Zbirarj%f-
It follows that o o
[A, B] = AB — BA.
Proposition 19.30 If [X,Y] =0 then exp(X +Y) = exp X expY.

Proof: For matrix groups,
(X+Y)"
n!

exp(X +Y) =)

n>0

co m 1 . 1
2

m=0 p=0

=exp X expY.
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