\renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\erf}{\operatorname{erf}} \newcommand{\dag}{\dagger} \newcommand{\const}{\mathrm{const}} \newcommand{\arcsinh}{\operatorname{arcsinh}}
Problem 1.
Consider wave equation in dimension 2: \begin{equation} u_{tt}-\Delta u=0 \label{eq-9.P.1} \end{equation} in the disk {r\le a,\ 0\le \theta \le 2\pi}.
We consider solution in the form u=v(r,\theta)e^{i\omega t}. Then v satisfies Helmholtz equation \begin{equation} (\Delta +\omega^2)v=0. \label{eq-9.P.2} \end{equation}
Separate variables v=R(r)\Theta(\theta).
Problem 2.
Consider Laplace equation \Delta u=0 in the cylinder {r\le a,\ 0<z<b,\ 0\le \theta \le 2\pi}.
Separate variables u=R(r)Z(z)\Theta(\theta).
Problem 3.
Consider wave equation (\ref{eq-9.P.1}) in the cylinder {r\le a,\ 0< z <h,\ 0\le \theta \le 2\pi}.
We consider solution in the form u=v(r,z,\theta)e^{i\omega t}. Then v satisfies Helmholtz equation (\ref{eq-9.P.2})
Separate variables v=R(r)Z(z)\Theta(\theta).
Problem 4.
Consider wave equation (\ref{eq-9.P.1}) in the ball {\rho\le a,\ 0<\phi <\pi,\ 0\le \theta \le 2\pi}.
We consider solution in the form u=v(\rho,\phi,\theta)e^{i\omega t}. Then v satisfies Helmholtz equation (\ref{eq-9.P.2})
Separate variables v=P(\rho)\Phi(\phi)\Theta(\theta).
Hint. In the spherical coordinates \begin{equation*} \Delta u= u_{\rho\rho}+2\rho^{-1}u_\rho + \rho^{-2}\bigl(\Phi'' +\cot (\phi)\Phi'\bigr) + \rho^{-2}\sin^{-2}(\phi)u_{\theta\theta} \end{equation*}
Remark. "Solve" everywhere means "write down solution without justification".