
MAT327 - Lecture 1

Wednesday, May 8th, 2019

Office Hours: Wednesday at 4-5PM and Thursday at 1-3PM in HU1018 (This is on
the tenth floor, not the first floor.)

In prior discussions, you will have seen what are called the open intervals in R,
which look like (a, b). You will also have seen closed intervals that look like [a, b].

Recall also that a function f : Rn → Rk is said to be continuous at a point a ∈ Rn if:

∀ε > 0,∃δ > 0 such that ∀x ∈ Rn, ‖x− a‖ < δ =⇒ ‖f(x)− f(a)‖ < ε

In the one-dimensional case where we’re talking about a function f : R→ R, this
becomes:

∀ε > 0,∃δ > 0 such that ∀x ∈ R, |x− a| < δ =⇒ |f(x)− f(a)| < ε

That is, if x is close to a, then f(x) is close to f(a). Alternatively, if V ⊆ R is an
open interval, then f−1(V ) is an open interval.

We want to be able to generalize this idea to spaces that don’t have a nice notion of
distance.

Another question we want to answer in this course, what does it mean for a subset of
Rn to be “nice”? This is where we get the notion of closedness and boundedness
in Rn. We will later generalize this idea to what’s called compactness.

Definition : Topology

Given a set X, a topology on X is a specified collection of subsets T ⊆ P(X),
called a collection of open sets, with the following properties:

1. ∅ and X are both in T .

2. If U1, U2, . . . Un are in T , so is their intersection
⋂n
i=1 Ui.

a

3. Given some arbitrary subset T ′ ⊆ T, the union
⋃
T ′ =

⋃
U∈T U is also in

T.
a In a lot of the following proofs, we’ll just take two elements of T and show that their

intersection is also in T. Since we are always working with a finite number of open sets, we
can always apply an easy induction argument to extend this.

A set X together with a topology TX on X is called a topological space, denoted
(X, TX). This is similar to how we would think of a vector space as a set V , together
with a field F , with two binary operations + and · that satisfy some eight properties
we learned in kindergarten. Formally, we would write this vector space as (V, F,+, ·).
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When talking about topologies on Rn, we might simply write Rn
some topology.

We will often talk about different topologies on the same set X. If we say a set
U ⊆ X is open, we should specify which topology on X we’re talking about.

Now let’s define some topologies. The first one is one we’ve worked with before, even
if we might not have known its name.

Definition : Euclidean Metric on Rn

We define the Euclidean Metric on Rn, d : Rn × Rn → R, as:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

This is the usual notion of “distance” we are used to on Rn. Generalizing the idea of
open intervals, we can define what are called open balls in Rn.

Definition : Open Balls

Given a point x ∈ Rn, we define the open ball of radius ε centered at x as:

Bε(x) = {y ∈ Rn : d(x, y) < ε}

Note that open balls in R are just open intervals of the form (x− ε, x+ ε). This gives
us what we need to define the usual topology.

Definition : Usual Topology on Rn

We now define:

Tusual = {U ⊆ Rn : ∀x ∈ U,∃ε > 0 such that Bε(x) ⊆ U}

That this defines a topology is easy to show. The finite intersections of these sets are
again open, and so are their arbitrary unions. However, their infinite intersections are
not necessarily open. Consider for example, the following subsets of R:{(

− 1

n
,

1

n

)
: n ∈ N

}
The infinite intersection of all of these sets is just {0}, which is not open. Indeed,
there does not exist any ε > 0 such that (0− ε, 0 + ε) ⊆ {0}.
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Example : Open Sets in R

The set
(1, 3) ∪ (5, 7) ∪ (10,∞)

is open in R. We will later see that every open set in Rn is a union of open balls.

We will see later that the open balls we defined earlier (and the open intervals in R)
form what’s called a basis for the usual topology. In the same sense that a vector
space might have a basis, open balls “generate” the usual topology. We will explore
this more next time.

Now we’ll explore two extreme examples. Unlike the above topology, we can define
the following two topologies on any set X, for reasons that will soon be obvious.

Definition : Discrete Topology

Given a set X, we define the discrete topology on X as Tdiscrete = P(X).

That is, every subset of X is open.

That both ∅ and X are in Tdiscrete is immediate. It’s also not too much of a stretch
that the finite intersections of subsets of X form a subset of X, and the same goes for
arbitrary unions. In fact, even the arbitrary intersections of open sets is open in the
discrete topology. This isn’t always true.

Definition : Indiscrete Topology

We define the indiscrete topology on a set X, sometimes called the trivial
topology, as Tindiscrete = {∅, X}.

The discrete topology turns out to be pretty useful for a variety of things, but the
indiscrete topology is almost completely useless. The same way 2 ruins the conjecture
that all prime numbers are odd, the indiscrete topology ruins a lot of nice theorems
that would otherwise be true.

Now we’ll define another topology on R. This one’s both easy to define and easy to
work with, usually we’ll only have one or the other.

Definition : Ray Topology on R

We define Tray = {(a,∞) : a ∈ R} ∪ {∅,R}.

Note that we need to manually add in ∅ and R as neither of these can be written as
an interval (a,∞).

Property (1) of being a topology is immediate. Property (2) is also quite simple;
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given two non-trivial open sets (a,∞) and (b,∞), their intersection is (a,∞) if a < b
and (b,∞) if b < a. If a = b there’s nothing to do.

For arbitrary unions, let {Ui : i ∈ I} be an arbitrary collection of open sets. It
shouldn’t be too hard to convince yourself that this collection is of the form
{(i,∞) : i ∈ I} where I ⊆ R. (Where we’re assuming for simplicity that neither R
nor ∅ appear in this collection.) This is because we have at most one unique open set
for every real number.

Let U =
⋃
i∈I(i,∞). If I is unbounded below we simply have that U = R. Otherwise,

let j = inf{i ∈ I} for which we claim that U = (j,∞).

(⊆) Let x ∈ U . Then x ∈ Ui = (i,∞) for some i ∈ I. Since j ≤ i for all i ∈ I, we have
that x ∈ (j,∞).

(⊇) Now let x ∈ (j,∞). Let ε = x− j. By definition of the infimum, there exists
some i ∈ I such that:

j ≤ i < j + ε = j + (x− j) = x

implying that j ≤ i < x, so x ∈ (i,∞) = Ui.

We conclude that Tray is closed under arbitrary unions, and hence a topology on R. �

Now we’ll define two more topologies.

Definition : Co-finite Topology

Given a set X, we define the co-finite topology on X as:

{U ⊆ X : X \ U is finite} ∪ {∅}

Again, we needed to add in ∅ manually, as this set is not in the set by default.
Particularly, if X is infinite. Picturing the open sets in this topology isn’t as easy as
the previous ones, but the way I’ve found works best is to think of it as “all but
finitely many points of X”. This isn’t too bad to picture in R, for example.

To prove this is a topology, property (1) is again immediate. For finite intersection,
suppose that U and V are such that both X \ U and X \ V are finite. We need to
show that U ∩ V is open. If this intersection is empty we are done, otherwise we need
to show that X \ (U ∩ V ) is also finite. Note that:

X \ (U ∩ V ) = (X \ U) ∪ (X \ V )

Which is just a union of two finite sets, hence finite.

For arbitrary unions. Suppose {Ui : i ∈ I} is a collection of open sets with indexing
set I. Then:

X \

(⋃
i∈I

Ui

)
=
⋂
i∈I

X \ Ui
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This intersection is a subset of X \ Ui for each i ∈ I. But each X \ Ui is finite, so we
are done. A subset of a finite set is definitely finite. �

Along with this last one, we define the co-countable topology.

Definition : Co-countable Topology

We define the co-countable topology on a set X as:

{U ⊆ X : X \ U is countable} ∪ {∅}

Showing that this is a topology is essentially the same proof we just did.
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