Mathematical Introduction to Game Theory

Assignment 7, due November 20

Problem 1 of 5. Find the point of the optimal agreement for the two-person cooperative TU game given by the following bi-matrix.

(2,0)	(5, 5)	(2, 1)	(10, 9)	(8,8)
(4, 4)	(5, 4)	(3, 3)	(2, 1)	(3,2)
(2, 3)	(0, 0)	(1, 1)	(4, 5)	(6, 4)
(-1,0)	(9, 8)	(5, 6)	(3, 2)	(2,2)

Problem 2 of 5. Consider a two-person cooperative game given by the following matrix

(2,0)	(3, -3)	(2, -1)	(10, -9)	(0,0)	
(7,5)	(3, 1)	(3, 2)	(2, 1)	(-1,2)	
(2,3)	(0,0)	(1, 1)	(4, 5)	(-1,4)	•
(-1,0)	(8,7)	(5, 6)	(3, 2)	(-1,5)	

Solve the game as a TU game.

Problem 3 of 5. Find the Nash solution of the game from a previous problem played as an NTU game with disagreement point (0, 0).

Problem 4 of 5. Sometimes it appears a player would prefer to play a game without cooperating with the other player. The payoff matrix for a two-person non-zero-sum game is:

$$\begin{pmatrix} (3,8) & (4,4) \\ (2,0) & (0,6) \end{pmatrix}.$$

Find all its equilibrium pairs when considered as a non-cooperative game. Then find the solution of the game considered as a TU cooperative game. Which game would II prefer to play?

Problem 5 of 5. Find the NTU-solution and the equilibrium exchange rate of the following game without a fixed threat point.

$$\begin{pmatrix} (3,8) & (4,4) \\ (4,0) & (0,6) \end{pmatrix}.$$