(1) A staircase of n steps contains coins on some of the steps. Let (x_1, x_2, \ldots, x_n) denote the position with x_j coins on step $j, j = 1, \ldots, n$. A move of Staircase Nim consists of moving any positive number of coins from any step, j, to the next lower step, j-1. Coins reaching the ground (step 0) are removed from play. A move taking, say, x chips from step j, where $1 \le x \le x_j$, and putting them on step j-1, leaves $x_j - x$ coins on step j and results in $x_{j-1} + x$ coins on step j-1. The game ends when all coins are on the ground. Players alternate moves and the last to move wins.

Show that the SG-function of a position (x_1, x_2, \ldots, x_n) in the Staircase Nim is equal to the Nim-sum of the numbers of coins at the odd positions: $x_1 \oplus x_3 \oplus \ldots x_{2k_1}$, where $k = \frac{n+1}{2}$ if n is odd and $k = \frac{n}{2}$ if n is even.

 $20 \ points$

- (2) Player I draws a card at random from a full deck of 52 cards. After looking at the card, he bets either 1 or 3 that the card he drew is a face card (king, queen or jack, probability 3/13). Then Player II either concedes or doubles. If she concedes, she pays I the amount bet (no matter what the card was). If she doubles, the card is shown to her, and Player I wins twice his bet if the card is a face card, and loses twice his bet otherwise.
 - (a) Draw the Kuhn tree.
 - (b) Find the equivalent strategic form.
 - (c) Solve the game.

20 points

(3) Find the safety levels, maxmin strategies, and all Nash Equilibria for the game given in the matrix form by the following bi-matrix.

(1,4)	(2,7)	(3, 2)	(2,6)
(5,2)	(0,3)	(4, 3)	(6,1)
(2,3)	(3, 4)	(5, 2)	(3,5)

20 points

MAT406H5F page 6 of 11

(4) Consider a two-person cooperative game given by the following matrix

(2,0)	(3, -3)	(2, -1)	(10, -9)	(0,0)
(7,5)	(3,1)	(3,2)	(2, 1)	(-1,2)
(2,3)	(0,0)	(1, 1)	(4, 5)	(-1,4) .
$\setminus (-1,0)$	(8,7)	(5, 6)	(3,2)	(-1,5)

(a) Find all Pareto-optimal strategies

(b) Solve the game as a TU game.

(c) Find a λ -transfer solution assuming it is an NTU game.

 $20 \ points$

- (5) Consider a weighted majority game with four players with the weights 5, 10, 10, 22.
 - (a) Compute the Shapley-Shubik power index.(b) Find the Nucleolus.

 $20 \ points$

MAT406H5F page 10 of 11 $\,$

Total Marks = 100 points