Here are some practice problems in number theory. The earlier problems tend to be easier.

- 1. Show that the sequence 11, 111, 1111, ...does not contain any perfect square.
- 2. Show that $2^{70} + 3^{70}$ is divisible by 13.
- 3. How many zeros are at the end of $2008! = 1 \cdot 2 \cdots 2007 \cdot 2008?$
- 4. (a) Find all natural numbers n such that $7 \mid 2^n 1$.
 - (b) Show that there is no natural number n such that $7 \mid 2^n + 1$.
- 5. Find the last two digits of 7^7 , where the tower consists of seven 7's.
- 6. If gcd(a,b) = 1 show that $gcd(a-b,a+b) \le 2$ and $gcd(a^2-ab+b^2,a+b) \le 3$.
- 7. Let $a_n = 10 + n^2$ for $n \ge 1$. For each n, let d_n denote the gcd of a_n and a_{n+1} . Find the maximum value of d_n as n ranges through the positive integers. (If you can do that, what about $a_n = d + n^2$, where d is any natural number?)
- 8. Show there exist three consecutive integers, each of which is divisibly by the 100th power of an integer bigger than 1.
- 9. (a) Show that there are infinitely many primes of the form 6n-1. (Hint: if there are only finitely many, p_1, \ldots, p_r , consider $6(p_1 \ldots p_r)^2 1$ and obtain a contradiction.)
 - (b) Show that there are infinitely many primes of the form 4n 1.
- 10. A triangular number is a positive integer of the form n(n+1)/2. Show that m is a sum of two triangular numbers iff 4m + 1 is a sum of two squares. (A-1, Putnam 1975)
- 11. Suppose n > 1 is an integer. Show that $n^4 + 4^n$ is not prime.
- How many primes among the positive integers, written as usual in base 10, are alternating 1's and 0's, beginning and ending with 1? (A-1, Putnam 1989)
- 13. Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.) (A-1, Putnam 2005)
- 14. For positive integers n define $d(n) = n m^2$, where m is the greatest integer with $m^2 \leq n$. Given a positive integer b_0 , define a sequence b_i by taking $b_{k+1} = b_k + d(b_k)$. For what b_0 do we have b_i constant for sufficiently large i? (B-1, Putnam 1991)

- 15. d, e and f each have nine digits when written in base 10. Each of the nine numbers formed from d by replacing one of its digits by the corresponding digit of e is divisible by 7. Similarly, each of the nine numbers formed from e by replacing one of its digits by the corresponding digit of f is divisible by 7. Show that each of the nine differences between corresponding digits of d and f is divisible by 7. (A-3, Putnam 1993)
- 16. Define the sequence of decimal integers a_n as follows: $a_1 = 0$; $a_2 = 1$; a_{n+2} is obtained by writing the digits of a_{n+1} immediately followed by those of a_n . When is a_n a multiple of 11? (A-4, Putnam 1998)
- 17. If p is a prime number greater than 3 and $k = \lfloor 2p/3 \rfloor$, prove that the sum

$$\binom{p}{1} + \binom{p}{2} + \dots \binom{p}{k}$$

of binomial coefficients is divisible by p^2 . (A-5, Putnam 1996)

- 18. Find all positive integers a, b, m, n with m relatively prime to n such that $(a^2 + b^2)^m = (ab)^n$. (A-3, Putnam 1992)
- 19. Suppose the positive integers x, y satisfy $2x^2 + x = 3y^2 + y$. Show that x y, 2x + 2y + 1, 3x + 3y + 1 are all perfect squares.
- 20. Find all solutions of $x^{n+1} (x+1)^n = 2001$ in positive integers x and n. (A-5, Putnam 2001)