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Abstract Let T2 (resp. T) be the Hermitian symmetric domain of Spin(2, 10) (resp. E7,3).
In previous work (Compos. Math 152(2):223–254, 2016), we constructed holomorphic cusp
forms on T from elliptic cusp forms with respect to SL2(Z). By using such cusp forms we
construct holomorphic cusp forms on T2 which are similar to Miyawaki lift constructed by
Ikeda (DukeMath J 131:469–497, 2006) in the context of symplectic groups. It is conditional
on the conjectural Jacquet–Langlands correspondence from PGSO(2, 10) to PGSO(6, 6).

Keywords Miyawaki type lift · Langlands functoriality · Ikeda lift · Tube domain associated
to orthogonal groups

Mathematics Subject Classification Primary 11F55; Secondary 11F70 · 22E55 · 20G41

1 Introduction

For a reductive group G over Q with Hermitian symmetric domain D, it is important to
construct cuspidal representations of G(A)which give rise to holomorphic cusp forms onD,
where A = AQ is the ring of adeles of Q. In general it would be difficult to construct cusp
forms directly. Sometimes, however, techniques predicted or guided by Langlands functorial-
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ity can yield indirect constructions of cusp forms or proofs of their existence. To explain a bit
more, given a smaller group H with an L-group homomorphism r : L H −→ LG, Langlands
functoriality predicts the existence of a ‘functorial lift’ from automorphic representations of
H(A) to those of G(A). This idea guides constructions of cusp forms using the trace formula
or the theta lift. These are very powerful tools, but with the following limitation. The former
never gives any explicit construction for classical forms. Further, while the latter construc-
tion can be made explicit with a careful choice of test functions, but yields only automorphic
representations which are generic, away from holomorphic forms whenever we consider the
level one form. On the other hand, Ikeda [19] gave an explicit construction of cusp forms for
the symplectic group Sp2n (with Q-rank n) attached to elliptic cusp forms of GL2(A) with
respect to SL2(Z). Such a cusp form is called Ikeda lift. In [20] Ikeda studied an integral
similar to (1.1) below, obtained by substituting the role of Eisenstein series in the usual pull-
back formula (cf. [14]) with an Ikeda lift. Then under the assumption of nonvanishing of the
integral, he showed that it gives rise to an essentially new cusp form for symplectic groups
which is called a Miyawaki lift. The existence of the Ikeda lift (resp. the Miyawaki lift) is
compatible with Arthur’s multiplicity formula ([1], Theorem 1.5.2).

In this paper we pursue an analogue of Miyawaki lift for GSpin(2, 10) by using our
previous work [24]. We now explain the main theorem. We refer to the next section (or
Section 2 of [24]) for notations which appear below.

Let G be a form of the exceptional group of type E7,3 over Q that has real rank 3 and
splits at all finite primes p, and let G ′ = GSpin(2, 10) be the spinor group with a similitude
defined in Sect. 2.1 which splits at all finite primes p. Let T2 (resp. T) be the Hermitian
symmetric domain of PGSpin(2, 10)(R)0 (resp. E7,3(R)). Elements of T and T2 can be
described in terms of Cayley numbers CC, in such a way that any g ∈ T gets represented

in the form g =
(
Z w
tw τ

)
with Z ∈ T2, w ∈ C2

C
, and τ ∈ H = {z ∈ C | Im z > 0}. Let

S2k(SL2(Z)) be the space of elliptic cusp forms of weight 2k ≥ 12 with respect to SL2(Z).
For each normalized Hecke eigenform f = ∑∞

n=1 c(n)qn, q = exp(2πτ
√−1), τ ∈ H,

in S2k(SL2(Z)), in [24], we attached to f a Hecke eigen cusp form of weight 2k + 8 with
respect to G(Z), that lives on T. Denote this form by Ff .

For a normalized Hecke eigenform h ∈ S2k+8(SL2(Z)), consider the integral

F f,h(Z) =
∫
SL2(Z)\H

Ff

(
Z 0
0 τ

)
h(τ )(Imτ)2k+6 dτ. (1.1)

We prove in Lemma 7.1 that the integral is well-defined andF f,h(Z) is a cusp form of weight
2k + 8 with respect to �2 defined by (2.2).

For each prime p, let {αp, α
−1
p } and {βp, β

−1
p } be the Satake parameters of f and h at

p, resp. Let π f and πh be the cuspidal representations attached to f and h resp., and let
L(s, π f ) and L(s, πh) be their automorphic L-functions.

For technical reasons, we assume the existence of Jacquet–Langlands correspondence
that associates to automorphic representations of PGSpin(2, 10)(A) those of its split inner
form PGSpin(6, 6)(A) (Conjecture 6.1). Since PGSpin(6, 6) = PGSO(6, 6), we can relate
automorphic representations of PGSO(6, 6)(A) to those of SO(6, 6)(A) with trivial central
character, and then we can use Arthur’s work [1] to transfer automorphic representations of
SO(6, 6)(A) toGL12(A). Therefore, under our assumption, we have the Langlands functorial
transfer of everywhere unramified automorphic representations from PGSpin(2, 10)(A) to
GL12(A): Namely, given a cuspidal automorphic representation of PGSpin(2, 10)(A) which
is unramified at every prime p, there exists an automorphic representation ofGL12(A)which
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is unramified at every prime p such that their Satake parameters correspond under the L-group
homomorphism LGSpin(2, 10) = GSO(12, C) ↪→ GL12(C). We prove

Theorem 1.1 Assume that F f,h is not identically zero. Assume Conjecture 6.1. Then

(1) The cusp form F f,h is a Hecke eigenform, and hence gives rise to a cuspidal repre-
sentation � f,h of G ′(A) with trivial central character, which is unramified at every
prime p.

(2) Let � f,h = �∞ ⊗ ⊗′
p�p. The transfer of � f,h to GL12(A) is (π f � πh) � 1GL7 � 1,

or (π f � πh) � 1GL5 � 1GL3 , where 1GLn is the trivial representation of GLn(A).

We first show (Proposition 5.1) that the multiset of Satake parameters of �p is of the form

{εp(βpαp)
±1, εp(βpα

−1
p )±1, b±1

p , (bp p)
±1, (bp p

2)±1, (bp p
3)±1},

where εp ∈ {±1} and bp ∈ C
×. Using the functorial transfer, in Sect. 7, we remove the sign

ambiguity and show bp = 1 for all p, or bp = p−1 for all p. It is expected that bp = 1 for all
p, and the transfer toGL12(A) is (π f �πh)�1GL7 �1. This would agree with Conjecture 6.2
and the classification in [8, Section 7.2.2] which would imply that � f,h would come from
the endoscopic transfer from π f � πh on PGSO(2, 2) and the trivial representation on the
anisotropic SO(8). However we are not able to prove it.

Remark 1.2 If we take h = E2k+8, the Eisenstein series of weight 2k + 8, the integral (1.1)
still makes sense (cf. Lemma 7.1) and defines a cusp form F f,E2k+8 of weight 2k + 8 with
respect to �2. If F f,E2k+8 is not zero, then it gives rise to a cuspidal representation � f,E2k+8

of GSpin(2, 10).

Remark 1.3 Here �∞ is a holomorphic discrete series of lowest weight 2k + 8. Since f and
h have different weights, they can never be equal. Therefore, L(s, π f × πh) is entire.

Remark 1.4 Note that LSpin(2, 10) = PGSO(12, C), and PGSO(12, C) does not have
a 12-dimensional representation. By Weyl’s dimension formula, the minimum possible
dimension for a nontrivial algebraic irreducible representations of PGSO(12, C) is 66. The
66-dimensional algebraic irreducible representation of PGSO(12, C) is given by

Ad : PGSO(12, C) −→ GL(Lie(PGSO(12, C)) ∼= GL66(C).

Therefore, given a cuspidal representation π of Spin(2, 10), we cannot define the degree 12
standard L-function of π . However, LGSpin(2, 10) = GSO(12, C), and GSO(12, C) has a
12-dimensional representation. Since PGSpin(2, 10) = PGSO(2, 10), our form � f,h can be
considered as a cuspidal representation of GSpin(2, 10) with the trivial central character.

This situation is similar to that of Siegel cusp forms. Given a Siegel cusp form F on a
degree 2 Siegel upper half plane, we need to consider a cuspidal representation πF of GSp4,
rather than Sp4, in order to define the degree 4 spin L-function.

Remark 1.5 Wegive a conjectural Arthur parameter for� f,h : Letφ f , φh : L −→ SL2(C) be
the hypothetical Langlands parameter attached to f, h, resp. We have the tensor product map
SL2(C)×SL2(C) −→ SO4(C). [[31], page 88. Use the identification SL2(C) = Sp1(C), and
we have a representation of SL2(C)×SL2(C) onC

2⊗C
2 
 C

4. It defines a symmetric, non-
degenerate bilinear form onC

4.] Then we have φ f ⊗φh : L −→ SO4(C). The distinguished
unipotent orbit (7, 1), or (5, 3) of SO8(C) gives rise to a map SL2(C) −→ SO8(C). (We
expect that (7, 1) is the correct one.) Hence it defines a map φu : L×SL2(C) −→ SO(8, C).
Then consider
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φ = (φh ⊗ φ f ) ⊕ φu : L × SL2(C) −→ SO4(C) × SO8(C) ⊂ GSO12(C).

We expect that φ parametrizes � f,h .

This paper is organized as follows. In Sect. 2, we recall several facts about the Hermi-
tian symmetric domain of Spin(2, 10) or PGSpin(2, 10) = PGSO(2, 10), and holomorphic
modular forms on it. In Sect. 3, we recall our previous work [24]. In Sects. 5 and 7, fol-
lowing Ikeda [20], we study the integral expression (1.1) for F f,h , which gives rise to a
cusp form on T2. We follow essentially the same strategy as Ikeda, but have to rely on roots
to describe a certain double coset space that features crucially in this strategy. Section 4
will be devoted to the calculation of these double cosets. In Sect. 6, we describe a conjec-
tural Jacquet–Langlands correspondence that associates to automorphic representations of
PGSpin(2, 10)(A) to those of its split inner form PGSpin(12, A). In Sect. 8, we compute
F f,h explicitly using the Fourier–Jacobi expansion of Ff , so as to furnish evidence that it is
nonvanishing for all f, h.

2 Preliminaries

2.1 Cayley numbers and the exceptional domain

In this section we refer to Section 2 of [24] (also [4,22]). For any field K whose characteristic
is different from 2 and 3, the Cayley numbers CK over K are an eight-dimensional vector
space over K , equipped with a basis {e0 = 1, e1, e2, e3, e4, e5, e6, e7}, and a non-associative
non-commutative multiplication satisfying the following rules:

(1) xe0 = e0x = x for all x ∈ CK ,
(2) e2i = −e0 for i = 1, . . . , 7,
(3) ei (ei+1ei+3) = (ei ei+1)ei+3 = −e0 for any i (mod 7).

For each x = ∑7
i=0 xi ei ∈ CK , the map x 
→ x̄ = x0e0 − ∑7

i=1 xi ei defines an anti-
involution on CK . The trace and the norm on CK are defined by

Tr(x) := x + x̄ = 2x0, N (x) := x x̄ =
7∑

i=0

x2i .

We denote by o a Z-submodule of CK given by the basis

α0 = e0, α1 = e1, α2 = e2, α3 = −e4, α4 = 1

2
(e1 + e2 + e3 − e4),

α5 = 1

2
(−e0 − e1 − e4 + e5),

α6 = 1

2
(−e0 + e1 − e2 + e6), α7 = 1

2
(−e0 + e2 + e4 + e7).

The elements of o are called the integral Cayley numbers. It is known that o is stable under the
operations of the anti-involution, multiplication, and addition. Further if K has characteristic
zero, we have Tr(x), N (x) ∈ Z if x ∈ o. By using this integral structure, for any Z-algebra
R, one can consider CR = o ⊗Z R so that CR inherits anti-involution and multiplication.

Let JK be the exceptional Jordan algebra consisting of elements of the form:

X = (xi j )1≤i, j≤3 =
⎛
⎝ a x y
x̄ b z
ȳ z̄ c

⎞
⎠ , (2.1)
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where a, b, c ∈ Ke0 = K and x, y, z ∈ CK .
By using integral Cayley numbers, we define a lattice

J(Z) := {X = (xi j ) ∈ JQ | xii ∈ Z, and xi j ∈ o for i �= j},
and put J(R) = J(Z)⊗Z R for any Z-algebra R. Note that J(R) is a non-associative algebra.

We define

R3(K ) = {X ∈ JK | det(X) �= 0}
and define R+

3 (K ) to be set of squares of elements in R3(K ). It is known that R+
3 (R) is an

open, convex cone in JR. We denote by R+
3 (R) the closure of R+

3 (R) in JR 
 R
27 with

respect to Euclidean topology. For any subring A of R, set

J(A)+ := J(A) ∩ R+
3 (R), J(A)≥0 := J(A) ∩ R+

3 (R).

We define the exceptional domain as follows:

T := {Z = X + Y
√−1 ∈ JC | X, Y ∈ JR, Y ∈ R+

3 (R)}
which is a complex analytic subspace of C

27.
Let G be the exceptional Lie group of type E7,3 over Q which acts on T. Then G(R) is

of real rank 3 (cf. [4]). In loc.cit. Baily constructed an integral model GZ of G over SpecZ,
and G(Qp) is a split group of type E7 for any prime p since o splits for any prime p.

The Satake diagram of E7,3 is

oβ1——•β3——•β4——•β5——oβ6——oβ7∣∣∣
•β2

The Q-root system is of type C3, and the extended Dynkin diagram of C3 is

oλ0 �⇒ oλ1——oλ2⇐�oλ3 ,

where λ1 corresponds to β1, λ2 to β6, λ3 to β7, and −λ0 is the maximal root in C3. Here
λ1, λ2 have multiplicity 8, and λ3 has multiplicity 1.

Let G1 = SL2, G2 = Spin(2, 10).1 Then (G1,G2) is a dual pair inside G = E7,3 (cf.
[10]). They are given as follows: If we remove the root λ1 in the extended Dynkin diagram,
the remaining diagram is an almost direct product G1G2. More precisely, let θ = hλ0(−1).
Then θ is an involution whose centralizer H = CE7(θ) as an algebraic group is the almost
direct productG1G2. ThenG1∩G2 = Z = 〈hλ0(−1)〉 
 {±1}. SinceG1 andG2 are simply
connected algebraic groups, one has the following exact sequence

1 −→ μ2(k) −→ G1(k) × G2(k) −→ H(k) −→ H1(Gal(ksep/k),

μ2(k)) = k×/(k×)2 −→ 1

for any field k. This means that H(k) is strictly bigger than G1(k)G2(k) ⊂ E7(k). Fur-
thermore the 2 to 1 isogeny G1 × G2 −→ H induces a natural inclusion X∗(TH ) ↪→
X∗(TG1) × X∗(TG2) of index 2 where for A = G1,G2 or H , TA is an appropriate split
maximal torus of A, and X∗(T ) stands for the character group of a torus T .

1 Since we are not dealing with the exceptional group of type G2, we hope that our notation will not cause
any confusion.
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We remark that G2(k) is a split group for any p-adic field k. The Q-root system of G2

is of type C2. It is the group L2 in [4] described from the bottom in page 527 to page 528,
and it acts on the boundary component T2 defined in Sect. 2.2. The algebraic group G2 is
obtained by an almost direct factor of the centralizer of the torus S2 (in the notation of Baily)
in E7,3. This construction in G2 also works over Z by using integral model of E7,3 and we
denote it by G2. The centralizer of S2/Fp is always reductive since so is E7,3/Fp . It follows
from Theorem 3.1 and Corollary 4.4 in [9] that the integral model G2 over Z of G2 we chose
as above is a smooth integral model of G2.

Henceforth we fix this integral model of G2 obtained as above and regard

�2 := G2(Z) (2.2)

with an arithmetic subgroup of “a level one” in G2(Q). By construction one can check that
the operations (2.3) in Sect. 2.3 are contained in �2. It is interesting to specify �2 explicitly
toward studying the classical forms but we do not pursue it in this paper.

Recall that G ′ = GSpin(2, 10) = {h0(t)} � G2 where {h0(t)} 
 GL1 is the torus for
which it gives GE7 in p. 104 of [15]. It inherits the integral structure coming from G2 and
GL1/Z, and we denote byG ′(Z) an arithmetic subgroup corresponding to the integral model.

2.2 Hermitian symmetric domain for Spin(2, 10)

For any Z-algebra R, define J2(R) as the set of all matrices of the form

X =
(
a x
x̄ b

)
, a, b ∈ R, x ∈ CR .

Wedefine the inner product on J2(R)×J2(R) by (X, Y ) := 1
2Tr(XY +Y X). For any such X ,

we define det(X) := ab−N (x). For X as above, r ∈ R, and ξ =
(

ξ1
ξ2

)
, ξi ∈ CR (i = 1, 2),

we have

(
X ξ
t ξ̄ r

)
∈ J(R). For any subring A of R, define

J2(A)+ =
{(

a x
x̄ b

)
∈ J2(A)

∣∣∣∣ a, b ∈ A ∩ R>0, ab − N (x) > 0

}
,

and

J2(A)≥0 =
{ (

a x
x̄ b

)
∈ J2(A)

∣∣∣∣ a, b ∈ A ∩ R≥0, ab − N (x) ≥ 0

}
.

We also define

T2 := {X + Y
√−1 ∈ J2(C) | X, Y ∈ J2(R), Y ∈ J2(R)+}.

It is well-known that T2 is the Hermitian symmetric domain for G2(R) which is a tube
domain of type (IV). Since Spin(2, 10)(R)/{±1} 
 SO(2, 10)(R), where {±1} is a subgroup
in the center of Spin(2, 10)(R), T2 is also the symmetric domain for SO(2, 10)(R) (See
Section 6 of Appendix in [34]). For us, it is more convenient to consider G̃ = PGSO(2, 10) =
PGSpin(2, 10). In this case, T2 is also the symmetric domain for PGSO(2, 10)(R)0. Then
modular forms on T2 can be considered as automorphic forms on GSpin(2, 10)(A) with
trivial central character.
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2.3 Modular forms on T2

Recall the integral model G of G2 = Spin(2, 10) over Z from Sect. 2.1. Then one can define
the arithmetic group �2 = G(Z) of “level one”. Recall that G ′ = GSpin(2, 10). For any
g ∈ G ′(R) and Z ∈ T2, one can define a holomorphic automorphy factor j (g, Z) ∈ C

which satisfies the cocycle condition. (See [5], page 456.) More explicitly, j (pB , Z) =
j (tU , Z) = 1 and j (ι, Z) = det(Z).

Let F be a holomorphic function on T2 which for some integer k > 0 satisfies

F(γ Z) = F(Z) j (γ, Z)k , Z ∈ T2, γ ∈ �2.

Then F is called a modular form on T2 of weight k with respect to �2. For example, F
satisfies

F(Z + B) = F(Z), F(t Ū ZU ) = F(Z), F(−Z−1) = det(Z)k F(Z), (2.3)

where B ∈ J2(Z), and where U =
(
1 u
0 1

)
for some u ∈ o.

We denote byMk(�2) the space of such forms. By Koecher principle, the holomorphy at
the cusps is automatic. For a holomorphic function F : T2 −→ C, consider, for τ ∈ H,

�F(τ ) = lim
y→∞ F

(
τ 0
0 iy

)
.

If �F = 0, F is called a cusp form. Let Sk(�2) be the space of cusp forms of weight k with
respect to �2.

By [32], Theorem 7.12, the strong approximation theorem holds with respect to S = {∞},
namely, G ′(A) = ZG ′(R)+G ′(Q)G2(R)G2(Ẑ), and �2 = G2(Z) = G ′(Q) ∩ G2(R)G2(Ẑ).
Notice that G ′(Ẑ) ⊂ ZG ′(R)+G ′(Q)G2(Ẑ). Hence one can associate a Hecke eigen cusp
form in Sk(�2) with an automorphic form on G ′(A) which is fixed by G ′(Ẑ), and then we
obtain a cuspidal automorphic representation of G ′(A) with trivial central character.

Remark 2.1 In [12], Eie and Krieg considered an arithmetic subgroup �′ ⊂ �2, generated

by the following elements. For Z ∈ T2, let Z =
(
z1 w

w̄ z2

)
, where z1, z2 ∈ H, and w =

x + y
√−1 with x, y ∈ CR, and w̄ = x̄ + ȳ

√−1. Let det (Z) = z1z2 − ww̄:

(1) pB : Z 
→ Z + B, B ∈ J2(Z);

(2) tU : Z 
→ t Ū ZU , U =
(

0 1
−1 0

)
or U =

(
1 u
0 1

)
for u ∈ o;

(3) ι : Z 
→ −Z−1, where Z−1 = 1
det(Z)

(
z2 −w

−w̄ z1

)
.

If we consider�′ as a subgroup ofG(Z), pB is the element pB′ in [24] with B ′ =
(
0 0
0 B

)

and B ∈ J2(Z); and ι = ιe2 ιe3 in [24]. Also for U =
(
1 u
0 1

)
, tU equals mue23 ∈ M(Z) in

the notation of [24]. If U =
(

0 1
−1 0

)
, tU equals me23m−e32me23 .

It is likely that �′ = �2, but we have not shown it yet.
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3 Ikeda type lift for E7,3

In this section we recall the Ikeda type construction for G = E7,3 in [24]. Let P = MN
be a Siegel parabolic subgroup of G so that the derived group MD = [M, M] of the Levi
subgroup M is of type E6. Let ν : M −→ GL1 be the similitude character (see Section 2
of [24]). It can be naturally extended to P . In [4], Baily used the set o of the integral Cayley
numbers to define an arithmetic subgroup of G(R). Denote this subgroup by � = G(Z).
Let f = ∑

n≥1 c(n)qn ∈ S2k(SL2(Z)) be a nonzero Hecke eigen cusp form, where k ≥ 6.
To f , we associated in [24] a nonzero Hecke eigen cusp form Ff (Z) in S2k+8(�). Let us
briefly recall the construction of Ff : For a positive integer k ≥ 6, let E2k+8 be the Siegel
Eisenstein series onT of weight 2k+8 with respect to�. Then it has the Fourier expansion of
form

E2k+8(Z) =
∑

T∈J(Z)+
a2k+8(T ) exp(2π

√−1(T, Z)), Z ∈ T,

a2k+8(T ) = C2k+8 det(T )
2k−1
2

∏
p| det(T )

f̃ pT

(
p

2k−1
2

)
,

where C2k+8 = 215
∏2

n=0
2k+8−4n
B2k+8−4n

, and f̃ pT (X) is a Laurent polynomial over Q in X that
depends only on T and p.

Let S2k(SL2(Z)) be the space of elliptic cusp forms of weight 2k ≥ 12 with respect to
SL2(Z). For eachnormalizedHecke eigenform f = ∑∞

n=1 c(n)qn, q = exp(2π
√−1τ), τ ∈

H in S2k(SL2(Z)) and each rational prime p, we define the Satake p-parameter {αp, α
−1
p } by

c(p) = p
2k−1
2 (αp + α−1

p ). For such f , consider the following formal series on T:

Ff (Z)=
∑

T∈J(Z)+
A(T ) exp(2π

√−1(T, Z)), Z ∈ T, A(T )=det(T )
2k−1
2

∏
p| det(T )

f̃ pT (αp).

Here note that f̃ pT (X) = f̃ pT (X−1) by Corollary 6.2 of [24] and therefore f̃ pT (αp) does not
depend on the choice of αp . Then we showed

Theorem 3.1 [24] The function F f (Z) is a non-zero Hecke eigen cusp form on T of weight
2k + 8 with respect to �.

We call Ff the Ikeda type lift of f . Then F = Ff gives rise to a cuspidal automorphic
representation πF = π∞ ⊗ ⊗′

pπp of G(A). Then π∞ is a holomorphic discrete series of
the lowest weight 2k + 8 associated to −(2k + 8)�7 in the notation of [7] (cf. [25], page
158). For each prime p, πp is unramified. In fact, πp turns out to be a degenerate principal
series

πp 
 Ind
G(Qp)

P(Qp)
|ν(g)|2sp , (3.1)

where psp = αp (see Section 11 of [24]). Let L(s, π f ) = ∏
p(1 − αp p−s)(1 − α−1

p p−s)

be the automorphic L-function of the cuspidal representation π f of GL2(A) attached to f .
Then
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Theorem 3.2 [24] The degree 56 standard L-function L(s, πF , St) of πF is given by

L(s, πF , St) = L(s,Sym3π f )L(s, π f )
2

4∏
i=1

L(s ± i, π f )
2

8∏
i=5

L(s ± i, π f ),

where L(s,Sym3π f ) is the symmetric cube L-function.

4 Double coset decomposition

In order to prove Theorem 1.1, following [20], we need to compute a suitable set of
representatives of the double coset space over a p-adic field related to the unwinding
method.

This section is mainly due to R. Lawther. We thank him for very detailed notes [28].
He gave an explicit double coset space related to what we need, but he worked over an
algebraically closed field because he relied on the results in [27]. In what follows we mod-
ify his argument so that it would work over any p-adic field. Let p be any rational prime,
and G a split simply-connected algebraic group of type E7 over a p-adic field k. For sim-
plicity, let G = G(k), G1 = G1(k), and G2 = G2(k). Let T be a fixed maximal torus
of G. Let B be the standard Borel subgroup containing T . Let {β1, . . . , β7} be the set
of simple roots of T in B, numbered as in Bourbaki [7]. Write roots of E7 as strings of
coefficients of simple roots, so that for example, the highest root is β̃ = 2234321. Let �

(resp. �+) be the set of all roots (resp. all positive roots). The extended Dynkin diagram
is

o−β̃——oβ1——oβ3——oβ4——oβ5——oβ6——oβ7∣∣∣
oβ2

Let θ = hβ7(−1). Then θ is an involutionwhose centralizer H = CE7(θ) is of the form A1D6.
Explicitly, the roots whose root subgroups lie in H are those whose β6-coefficient is even. In
Lawther’s notes [28], Lawther decided to take the simple roots of the D6 consisting of positive
roots of E7, namely, γ1 = 0112221, and γ2 = β1, γ3 = β3, γ4 = β4, γ5 = β2, γ6 = β5,
and that of the A1 is β7. (We could take −β̃ instead of γ1. It will not affect our result
since we would be dealing with a conjugate subgroup.) Then Z := G1(k) ∩ G2(k) =
〈hβ7(−1))〉 
 {±1}. Note that hγ1(−1)hγ3(−1)hγ6(−1) = hβ7(−1) and H(k) contains
G1G2 
 G1(k) × G2(k)/Z .

For the readers’ convenience we summarize positive roots for G2 = Spin(12) in E7. All
positive roots (total 30 roots) are
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γ1 0112221
γ1 + γ2 1112221

γ1 + γ2 + γ3 1122221
γ1 + γ2 + γ3 + γ4 1123221

γ1 + γ2 + γ3 + γ4 + γ5 1223221
γ2 1000000

γ2 + γ3 1010000
γ2 + γ3 + γ4 1011000

γ2 + γ3 + γ4 + γ5 1111000
γ3 0010000

γ3 + γ4 0011000
γ3 + γ4 + γ5 0111000

γ4 0001000
γ4 + γ5 0101000

γ5 0100000
γ1 + γ2 + γ3 + γ4 + γ6 1123321

γ2 + γ3 + γ4 + γ6 1011100
γ3 + γ4 + γ6 0011100

γ4 + γ6 0001100
γ6 0000100

γ1 + 2(γ2 + γ3 + γ4) + γ5 + γ6 2234321
γ1 + γ2 + 2(γ3 + γ4) + γ5 + γ6 1234321
γ1 + γ2 + γ3 + 2γ4 + γ5 + γ6 1224321
γ1 + γ2 + γ3 + γ4 + γ5 + γ6 1223321
γ2 + 2(γ3 + γ4) + γ5 + γ6 1122100
γ2 + γ3 + 2γ4 + γ5 + γ6 1112100
γ2 + γ3 + γ4 + γ5 + γ6 1111100

γ3 + 2γ4 + γ5 + γ6 0112100
γ3 + γ4 + γ5 + γ6 0111100

γ4 + γ5 + γ6 0101100

We set γ7 = β7.

4.1 Double coset space

Wechoose aChevalley system forG, i.e., for each rootα, choose a collection of isomorphisms
xα : Ga 
−→ root subgroup for α satisfying Chevalley commutator relations. Put

nα = xα(1)x−α(−1)xα(1), yα = xα(1)nαxα

( 1
2

)
, and

hα(c) = xα(c)x−α(−c−1)xα(c)n−1
α , c ∈ k×.

Put hi = hβi for simplicity.
Let P be the Siegel parabolic subgroup of G corresponding to {β1, . . . , β6} which is of

type E6T1U27 over an algebraic closed field where Ti denotes an i-dimensional torus, andUj

is a unipotent group of dimension j . For each element g ∈ G(k), put Qg = g−1P(k)g∩H(k)
and we denote by Tg the maximal split torus included in the standard Borel subgroup of H .
Then we have the following lemma.

Lemma 4.1 The double coset space P(k)\G(k)/H(k) is a finite set. For any g ∈ G(k),
there exists g′ so that P(k)gH(k) = P(k)g′H(k), and g′Qg′g′−1 coincides with yQy y−1,
and Tg′ = Ty for some y ∈ {1, n, yβ7n, yγ1 yβ7n}, where n = nβ6+β7 .
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The proof of this lemma involves several steps that feature lengthy computations. It is not
clear to us if the natural map P(k)\G(k)/H(k) −→ P(k̄)\G(k̄)/H(k̄) is injective. If it is,
then the finiteness of the double coset space would follow from known results (cf. [18]). Let
C be the complete system of the representatives of the Weyl group W = N (k)/T (k) which
are given in terms of words of reflections.

Lemma 4.2 Acomplete systemof representatives of the double coset space B(k)\G(k)/H(k)
is a finite set and it consists of the elements of form

yαr · · · yα1n′, α1, . . . , αr ∈ �+, 0 ≤ r ≤ 7

where α1, . . . , αr are mutually orthogonal and n′ ∈ N = NG(k)(T (k)) runs over the set
(
{1} ∪ {n′ ∈ C | n′

θ := n′θn′−1 �= θ}
)

∩ {n′ ∈ C | (α1, . . . , αr ) : admissible for n′
θ}.

Here the admissibility condition of (α1, . . . , αr ) for n′
θ is given at the middle part of p. 118

in [27].

Proof The proof is almost same as in Section 3 of [27] but we have to take into consideration
that the base field is not algebraically closed; the results in [27] are stated for which the base
field is algebraically closed.

Put S = {gθ(g)−1 | θ(g) := θgθ, g ∈ G(k)}. Define the action of G(k) on S by

g ∗ s = gsθ(g)−1 s ∈ S, g ∈ G(k).

Let us define a bijective map

B(k)\G(k)/H(k) −→ {OB(k)(s) | s ∈ S}, BxH 
→ OB(k)(xθ(x)−1)

where OB(k)(s) stands for the orbit of s for B(k) with respect to the action ∗ as above. By
Proposition 6.6 of [18], OB(k)(s) ∩ N �= ∅, hence there exists b ∈ B(k) such that b ∗ s ∈ N .
Since θ ∈ N , if s = xθ(x)−1 we also have (b ∗ s)θ = bxθ(bx)−1 =: bxθ ∈ N which is
an involution (hence (bxθ)2 = 1). Take another b′ ∈ B(k) so that b′ ∗ s ∈ N if exists. Put
g1 = bb′−1 ∈ B(k). Then bxθ is conjugate by g1 to b′xθ . By using Bruhat decomposition,
bxθ is conjugate by an element of T (k) to b′xθ . Hence bxθ is unique up to conjugation by
T (k). This way, for any given x , we choose a b ∈ B(k) such that bxθ ∈ N , and in fact denote
such a b by bx to indicate its dependence on x . Summing up we have an injective map

B(k)\G(k)/H(k) ↪→ {n ∈ N | n2 = 1}/ T∼, BxH 
→ bx xθ

where
T∼ stands for the equivalence relation of the conjugation by elements in T . We now

describe the image of this map. Let g = bx xθ ∈ N be an involution for some x ∈ G(k) and
bx ∈ B(k). Then by the proof of Lemma 2 of [27] (noting that n−α = n−1

α = nαt for some
t ∈ T (k)), there exists θ ′ ∈ T (k) and t ∈ T (k) (t = t2t1 for t1 at line 3, p. 119 of [27] and t2
at line 11,p. loc.cit.) such that

t g = θ ′nα1 · · · nαr , 0 ≤ r ≤ 7

such that α1, . . . , αr ∈ �+ are mutually orthogonal and (α1, . . . , αr ) is admissible for θ ′.
We now descend t to an element in T (k). Put n = nα1 · · · nαr . Let ZT (k)(g) be the

centralizer of the involution g in T (k) as an algebraic group over k. Since g is of finite order,
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it is diagonalizable and it has eigenvalues ±1. It follows from this that ZT (k)(g) is a split

torus. We define a one-cocycle on Gal(k/k) takes the values in ZT (k)(g) by

σ 
→ t (t−1)σ .

Since H1(Gal(k/k), ZT (k)(g)) = 1 by Hilbert Theorem 90, there exists s ∈ ZT (k)(g) such

that t (t−1)σ = s(s−1)σ for any σ ∈ Gal(k/k). This means that s−1t ∈ T (k) and we have

s−1t g = (s−1t)g(t−1s) = t (s−1gs)t−1 = tgt−1 = t g = θ ′n.

On the other hand θ ′ is conjugate to θ since θ ′n = yαr ···yα1 θ ′ by the admissibility condition.
It follows that they have to be conjugate by some n′ ∈ N , hence θ ′ = n′

θ . This gives us the
claim. The finiteness is then clear from the above description. ��
Remark 4.3 The proof of Lemma 4.2 shows that Corollary 3 of [27] holds for any field k.

We are ready to prove Lemma 4.1.

Proof The finiteness follows from the natural surjection B(k)\G(k)/H(k) −→
P(k)\G(k)/H(k) and Lemma 4.2.

Henceforth we will make use of the mathematica code implemented by [30]. By direct
computation n′ runs over the set R = {1} ∪ {nα | α ∈ X} where

X = {0000010, 0000110, 0000011, 0001110, 0000111, 0101110, 0011110, 0001111,
1011110, 0111110, 0101111, 0011111, 1111110, 1011111, 0112110, 0111111,

1112110, 1111111, 0112210, 0112111, 1122110, 1112210, 1112111, 0112211,

1122210, 1122111, 1112211, 1123210, 1122211, 1223210, 1123211, 1223211}.
In fact, the condition that nα θ = nαh7(−1)n−1

α = h7(−1)hα((−1)〈β7,α〉) �= h7(−1) = θ

is equivalent to the condition that 〈β7, α〉 is odd. Here we used α(hβ(t)) = t 〈α,hβ 〉 where
〈α, hβ〉 = 2〈α,β〉

〈β,β〉 .
At first we discard all elements among the yα1 . . . yαr n

′, n′ ∈ R which never satisfy both
of orthonormality and admissibility. Then next we seek g′ in the statement.

Recall that E6(k) ⊂ P(k) (resp. H ) consists of roots generated by β1, . . . , β6 (resp.
γ1, γ2 = β1, γ3 = β3, γ4 = β4, γ5 = β5, γ6 = β2, β7).

Assume r = 0.We further assume that P(k)nαH(k) �= P(k)H(k) for α ∈ R. Recall from
the statement of the lemma that n = nβ6+β7 . Using the aforementioned mathematica code,
we compute nβnn

−1
β as β ranges over�+, and find that for one such β we have nα = nβnn

−1
β

and P(k)nαH(k) = P(k)nH(k).
Assume r = 1. For α = ∑7

i=1 aiβi ∈ �+, clearly yα ∈ P(k) if a7 = 0. Therefore we
may assume that a7 > 0. For each n′ ∈ R we compute the set R1(n′) consisting of α so that
a7 > 0 and α(n

′
θ) = −1 (see p. 118 of [27]). For example,

R1(1) = {0000011, 0000111, 0001111, 0101111, 0011111, 1011111, 0111111, 1111111,
0112111, 1112111, 0112211, 1122111, 1112211, 1122211, 1123211, 1223211}.

By direct calculation for any n′ ∈ R and α ∈ R1(n′) one checks that there exists g′ ∈ G(k)
such that

P(k)g′H(k) = P(k)yαn
′H(k) and Qg′ = Qy7n .
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Let us give an example. For n′ = 1 and α = 0000011 we see that

g := yα = n6y7n
−1
6 ≡ y7n6 ≡ y7n6n7 ≡ y7nn6 mod (P(k), H(k)),

where ni = nβi . (Here a ≡ b mod (P(k), H(k)) means P(k)aH(k) = P(k)bH(k).)
We used the relation n = nα = n6n7n

−1
6 . Put g′ = y7nn6. Then one can check that

g′Qg′g′−1 = yQy y−1 and Tg′ = Ty for y = y7n. This is done by using explicit realization
in GL56 given by positive roots given before.

The remaining cases for 2 ≤ r ≤ 7 are done similarly. These are routine and lengthy
computations, and are hence omitted. ��
4.2 An explicit structure of Qg

By Lemma 4.1 we may focus on the following four elements to consider Qg = g−1P(k)g ∩
H(k), g ∈ G(k). The following table is made by Lawther. Here we put H(k) = CG(k)(θ)

and Ti , i = 1, 2 in the table means a split torus of dimension i .
Let g = yαr · · · yα1n be an element in Table 1. Let us consider

gQgg
−1 = P(k) ∩ gH(k)g−1 = CP(k)(

gθ) = CP(k)(
nθnα1 · · · nαr ).

Let TB (resp.UP ) be the maximal split torus contained the standard Borel subgroup B (resp.
the unipotent radical of P(k)) of G(k) andUg be the unipotent radical of gQgg−1. Here B is
defined by the positive roots fixed in [30]. LetCTB (nθnα1 · · · nαr ) (resp.CUP (nθnα1 · · · nαr ))

be the centralizer of nθnα1 · · · nαr in TB (resp. UP ). By using mathematica code we can
compute these spaces easily and hence one can check each type which is given in Table 1.

For i = 0, 1, 2, 3, put Qi = g−1
i P(k)gi ∩ H(k). Let Qi = Mi Ni be the Levi decomposi-

tion so that Ni is included in the unipotent subgroup defined by the positive roots of H given
at the beginning of Sect. 4.1 and Ti themaximal split torus inMi (no confusion should happen
with a diagonal torus of dimension i just mentioned before). By the computation explained
as above we would know Ti , Ni by conjugate, and the values of the modulus character δQi

(resp. the modulus character δP(k)) on Ti (resp. on gi Ti g
−1
i ⊂ P(k)).

In what follows we denote by | · | the normalized valuation of k so that |� | = q−1 for a
uniformizer � of k where q stands for the cardinality of the residue field of k.

4.2.1 Case Qg = Q0

In this case the maximal split torus is given by means of simple roots and therefore we have

T0 = {hγ1(t1)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) | t1, . . . , t7 ∈ k×}

Table 1 Double coset
representatives g ∈ G(k) g−1P(k)g ∩ H(k)

g0 = 1 D5T2U11

g1 = n A5A1T1U15

g2 = yβ7n A4T2U21

g3 = yγ1 yβ7n B3A1T1U17
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and N0 = {∏α∈�0
xα(cα) | cα ∈ Ga}, where

�0 = {0000001, 0112221, 1112221, 1122221, 1123221, 1123321, 1223221, 1223321,
1224321, 1234321, 2234321}.

Then for t = hγ1(t1)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) one has

δQ0(t) = |t1|10|t2|2 and δP(k)(t) = |t1t7|18.
Since δP(k)(t) = |ν(t)|18 (see Section 6 of [24]), one concludes ν(t) = t1t2u for some
unit u in Ok . In particular ω ◦ ν(t) = ω(t1t2) for any unramified character ω of k× where
ν : P −→ GL1 is the similitude character.

It is easy to see thatG1∩T0 = {hγ7(t7) t7 ∈ k×} andG2∩T0 = {hγ1(t1) · · · hγ6(t6) | t1, . . . ,
t6 ∈ k×}.

4.2.2 Case Qg = Q1

In this case we have

T1 = {hγ1(t1)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) | t1, . . . , t7 ∈ k×}
and N1 = {∏α∈�1

xα(cα) | cα ∈ Ga}, where
�1 = {0000100, 0001100, 0101100, 0011100, 1011100, 0111100, 1111100, 0112100,

1112100, 1122100, 1123321, 1223321, 1224321, 1234321, 2234321}.
Then for t = hγ1(t1)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) one has

δQ1(t) = |t5|10 and δP(k)(g1tg
−1
1 ) = |t5|18.

As seen before ω ◦ ν(g1tg
−1
1 ) = ω(t5) for any unramified character ω of k×. We also have

G1 ∩ T1 = {hγ7(t7) t7 ∈ k×} and G2 ∩ T1 = {hγ1(t1) · · · hγ6(t6) | t1, . . . , t6 ∈ k×}.

4.2.3 Case Qg = Q2

In this case we have

T2 = {hγ1(t5t7)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) | t2, . . . , t7 ∈ k×} (4.1)

and N2 = {∏α∈�2
xα(cα) | cα ∈ Ga}, where

�2 = {−0000001, 0000100, 0001100, 0101100, 0011100, 1011100, 0111100, 1111100,

0112100, 1112100, 1122100, 0112221, 1112221, 1122221, 1123221, 1223221,

1123321, 1223321, 1224321, 1234321, 2234321}.
Then for t = hγ1(t5t7)hγ2(t2)hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) one has

δQ2(t) = |t5|14|t7|4 and δP(k)(g2tg
−1
2 ) = |t5|18.

As seen before, ω ◦ ν(g2tg
−1
2 ) = ω(t5) for any unramified character ω of k×. We also have

G1 ∩ T2 = 1 and G2 ∩ T2 = 1.
The Levi subgroup of Q2 is of type A4T2 [here T2 means a 2-dimensional torus but it

is regarded with (4.1)] and the simple roots for Q2 that contains T2, with respect to T2, are
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restriction to T2 of β1, γ3 = β3, γ4 = β4, γ6 = β2. One can check that the centralizer
ZT2(A4) = {t ∈ T2 | tg = gt for any g ∈ A4} is given by

T := {hT (a) := hγ1(a
2)hγ2(a

2)hγ3(a
2)hγ4(a

2)hγ5(a)hγ6(a)

hγ7(a) | a ∈ k×} ⊂ G1G2 = H.

We see that GL1 is diagonally embedded in H via � : GL1 −→ T, a 
→ hT (a). Put
T ′ := {hγ1(t7)hγ2(t2)hγ3(t3)hγ4(t4)hγ6(t6)hγ7(t7)} and T ′′ := {hγ1(t)hγ7(t) | t ∈ k×}. Then
T ′A4 = T ′′

� A4 makes up GL5 and it is given explicitly by using mathematica code. Then
the natural projection T ′A4 −→ T ′′ 
 GL1 corresponds to the determinant.

4.2.4 Case Qg = Q3

The situation is a little bit more complicated than the other cases. Let us first observe that

P(k) ∩ g3H(k)g−1
3 = P(k) ∩ g3CG(k)(θ)g−1

3 = CP(k)(g3θg
−1
3 ) = CP(k)(

nθnγ1nβ7).

By direct computation explained before we get dimN3 = 17. On the other hand let U17

denote the unipotent subgroup of P ∩ gHg−1 defined as the product of the following 17
copies of Ga . For 16 of the 17 root groups in U17, there is then a 1-dimensional unipotent
group diagonally embedded in the product of the two root groups, of the form

{xα(t)g′xα(t)g′−1 : t ∈ k} = {xα(t)xg′(α)(±t) : t ∈ k},
where the sign in the second term is determined by the structure constants. The 17th root
subgroup is simply the root subgroup corresponding to the highest root 2234321. The 16
pairs of positive roots α, g′(α) interchanged by g′ are as follows:

α g′(α) α g′(α) α g′(α) α g′(α)

1000000 1112221 1011110 1011111 1010000 1122221 1111110 1111111
1011000 1123221 1112110 1112111 1011100 1123321 1122110 1122111
1111000 1223221 1112210 1112211 1111100 1223321 1122210 1122211
1112100 1224321 1123210 1123211 1122100 1234321 1223210 1223211

By matching dimensions we have g−1
3 U17g3 = N3 since one can check g−1

3 U17g3 ⊂ N3

by mathematica code. On the other hand we have

T3 = {hγ1(t5t7)hγ2(t
2
5 )hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) | t3, . . . , t7 ∈ k×}.

Then for t = hγ1(t5t7)hγ2(t
2
5 )hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)hγ7(t7) one has

δQ3(t) = |t5|18 and δP(k)(g3tg
−1
3 ) = |t5|18.

As seen before, ω ◦ ν(g3tg
−1
3 ) = ω(t5) for any unramified character ω of k×. We also have

G1 ∩ T3 = {hγ7(t7) | t7 ∈ k×}. We also have G1 ∩ T2 = 1 and G2 ∩ T2 = 1. Finally we
remark that G1 = SL2 is a common subgroup of G1 and G2, hence there exists a 2 to 1
homomorphism

� : SL2 −→ G1 × G2 −→ H (4.2)
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onto the imagegivenbyon thediagonal torus,� sendsdiag(a, a−1) to (hγ7(a), hγ1(a)hγ7(a)).

Let ι : SL2 −→ SL2 be the isomorphism defined by
(

α β

γ δ

)

→

(
α −β

−γ δ

)
. The image of

� is naturally isomorphic to

{(γ, ι(γ )) | γ ∈ SL2}/{±(I2, I2)}. (4.3)

The situation is similar to the case of the symplectic groups in [20].

5 Computation of Satake parameters

In this section, we prove Proposition 5.1 below, which is key to the proof of Theorem 1.1. It is
an analogue of Proposition 3.1 of [20]. Recall that G1 = SL2(Qp) and G2 = Spin(12)(Qp).
Let π ′

2 be a spherical representation of G ′ = GSpin(12)(Qp) with trivial central character.
Since the group G2 appears as a subgroup of E7, we need to consider the restriction π2 =
π ′
2|Spin(12). Since LGSpin(12) = GSO(12, C), the Satake parameters of π ′

2 is of the form

(b1, b2, . . . , b6, b
−1
6 b0, . . . , b

−1
2 b0, b

−1
1 b0) ∈ GSO(12, C)

for some b1, . . . , b6 ∈ C
×, and where b0 = ωπ ′

2
(p). Since the central character is trivial,

b0 = 1.
Let πi , i = 1, 2, be a spherical representation of Gi . Then πi , i = 1, 2, is a subquotient

of an unramified principal series representation of Gi , i.e., Ind
Gi
Bi

χi , where B1, B2 are the
standard Borel subgroups of G1,G2, resp. and χi : Bi −→ C

× is an unramified quasi-
character. Here “Ind” stands for normalized induction andwewill denote by “c-Ind” compact
normalized induction. The modulus character of each Bi is given by

δB1(hγ7(t7)) = |t7|2, δB2(hγ1(t1) · · · hγ6(t6)) =
6∏

i=1

|ti |2.

We may write the Satake parameters of π1 as {β±1}, where
χ1(hγ7(p

−1)) = β2. (5.1)

Also we have

χ2(hγi (p
−1)) = bi

bi+1
, 1 ≤ i ≤ 4, χ2(hγ6(p

−1)) = b5
b6

, χ2(hγ5(p
−1)) = b5b6.

(5.2)
Recall that H = CG(θ) 
 (G1 × G2)/Z where Z 
 {±1} is diagonally embedded in both
centers. Let φ : G1 × G2 −→ H be the isogeny. As seen before φ(G1(Qp) × G2(Qp)) is
a finite index subgroup of H(Qp). Let BH be a Borel subgroup of H . Let χ be a character
of BH and let π(χ) be the spherical subquotient of IndHBH

χ . Let χ̃ = χ ◦ φ, so that χ̃ is a

character of B1 × B2 and let π(χ̃) be the spherical subquotient of IndG1×G2
B1×B2

χ̃ . Thus we have
a surjective map between unramified L-packets:

�(H(Qp)) −→ �(G1(Qp) × G2(Qp)), π(χ) 
→ π(χ̃).

Given χ1, χ2, unramified characters of B1, B2, resp., there exist finitely many characters χ

of BH such that χ1 ⊗ χ−1
2 = χ̃ . Let πH = π(χ) for any such χ . Then πH is a subquotient

of Ind
H(Qp)

φ(G1(Qp)×G2(Qp))
π1 ⊗ π̃2, where πi is the spherical subquotient of Ind

Gi
Bi

χi , i = 1, 2,
and π̃2 stands for the contragredient of π2; if π1 ⊗ π̃2 is unitary, then πH is unitary (Lemma
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2.3 of [29]). We call πH a lift of π1 ⊗ π̃2 by abuse of notation. Let ω : Q
×
p → C

× be an
unramified unitary character and let α = ω(p−1).

Proposition 5.1 Assume that π1 ⊗ π̃2 is unitary. If HomH (IndGP (ω−2 ◦ ν)|H , πH ) �= 0 for
some lift πH of π1 ⊗ π̃2, then as a multiset, {b1±1, . . . , b6±1} is equal to the following:

{ε(βα)±1, ε(βα−1)±1, b±1, (bp)±1, (bp2)±1, (bp3)±1},
where ε ∈ {±1}, and b ∈ C

×.

Proof As in Sect. 4.2, we take coset representatives {g′
i }ri=1 of P(k)\G(k)/H(k) so that

Qi = g′
i
−1Pg′

i ∩ H . For g′ ∈ Qi , let ωi (g) = δ
1
2
P(k)(g

′
i gg

′
i
−1

)ω−2 ◦ ν(g′
i gg

′
i
−1

). Then in the
Grothendieck group of the category of admissible representations of H we have

IndGP (ω−1 ◦ ν)|H =
r∑

i=0

mi

(
c-IndHQi

ωiδ
− 1

2
Qi

)
, mi ∈ Z≥0.

For i = 0, 1, 2, 3 put g′
i = gi where gi is the element in Table 1. Then by assumption we

may assume that there exists i , i = 0, 1, 2, 3,

0 �= HomH

(
c-IndHQi

ωiδ
− 1

2
Qi

, πH

)

= HomH

(
π̃H , IndHQi

ω−1
i δ

1
2
Qi

)

= HomQi (π̃H |Qi , ω
−1
i ) (by Frobenius reciprocity)

In the case of Q0, we observe the action of hγ7(p
−1) ∈ Q0 on both spaces. Then one

has β2 = p−9 which contradicts to the unitarity of π1. Similarly we observe the action of
hγ7(p

−1) for Q1. Then it gives a contradiction that pβ2 = 1.
In the case of Q2, applying (5.1) and (5.2) to the following elements

hγ2(p
−1), hγ3(p

−1), hγ4(p
−1), hγ6(p

−1), hγ1(p
−1)hγ5(p

−1), hγ1(p
−1)hγ7(p

−1) ∈ T2

respectively, we have

p
b2
b3

= 1, p
b3
b4

= 1, p
b4
b5

= 1, p
b5
b6

= 1,
(
p
b1
b2

)
(pb5b6) = p9α2

p, (p−1β−2)

(
p
b1
b2

)
= 1. (5.3)

From this, we obtain the Satake parameters

{ε(βα)±1, ε(βα−1)±1, ε(βα−1 p)±1, ε(βα−1 p2)±1, ε(βα−1 p3)±1, ε(βα−1 p4)±1}
(5.4)

for some ε ∈ {±1}.
Finally we consider the case of Q3. For t = hγ1(t5t7)hγ2(t

2
5 )hγ3(t3)hγ4(t4)hγ5(t5)hγ6(t6)

hγ7(t7), we seeω−1
3 (t) = ω2(t5)|t5|9δ

1
2
B2

(t) = ∏6
i=1 |ti |. In this case, applying (5.1) and (5.2)

to the following elements

hγ3(p
−1), hγ4(p

−1), hγ6(p
−1), hγ1(p

−1)hγ2(p
−2)

hγ5(p
−1)hγ6(p), hγ1(p

−1)hγ7(p
−1) ∈ T3
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respectively, we have

p
b3
b4

= 1, p
b4
b5

= 1, p
b5
b6

= 1, p3
b1b2b26
b23

= p9α2, (p−1β−2)

(
p
b1
b2

)
= 1. (5.5)

From the first four equalities, we have b1b2 = α2. From the last equation,
b1
b2

= β2. Hence

b21 = (αβ)2. Hence b1 = εαβ and b2 = ε
α

β
, where ε = ±1.

It follows from (5.5) that

b4 = pb3, b5 = p2b3, b6 = p3b3, (5.6)

where b3 ∈ C
×. Hence the Satake parameters of π ′

2 are

{ε(αβ)±1, ε(αβ−1)±1, (bp3)±1, (bp2)±1, (bp)±1, b±1},
where ε ∈ {±1} and b ∈ C

×. Now (5.4) is a special case of when b = εβα−1 p. ��

6 Jacquet–Langlands correspondence

In this section we give a conjectural description of Jacquet–Langlands correspondence which
is expected to hold in conjunction with Arthur’s classification for automorphic representa-
tions. For any connected reductive group G over Q, we denote by

∏
(G) (resp.

∏◦
(G)) the

set of isomorphism classes of automorphic (resp. cuspidal) representations of G(A). By [1]
we have a map ι : ∏

(PGSO(6, 6))◦ −→ ∏
(GL12) so that unramified local components go

to unramified components.
We expect the Jacquet–Langlands correspondence which is a map from

∏
(PGSO(2, 10))

to
∏

(PGSO(6, 6)) so that unramified local components go to unramified components. Let
us formulate it as the following conjecture:

Conjecture 6.1 There exists a map J L : ∏◦
(PGSO(2, 10)) −→ ∏◦

(PGSO(6, 6)) so that
for any π = ⊗′

pπp ∈ ∏
(PGSO(2, 10))◦, J L(π) = ⊗′

p�p satisfies that �p is unramified if
πp is unramified.

Then we have the map ι ◦ J L : ∏◦
(PGSO(2, 10)) −→ ∏

(GL12).
Furthermore, according to the calculation of Satake parameters, it seems natural to expect

that the cuspidal representation � f,h on PGSpin(2, 10) we constructed in the next section,
comes from ((π f � πh), 1PGSO(8)) on PGSO(2, 2) × PGSO(8) by an endoscopic transfer,
where 1PGSO(8) is the trivial representation of PGSO(8). This agrees with [8, Section 7.2.2].
(Note from Remark 1.5 the tensor product map from PGL2 × PGL2 to PGSO(2, 2), and
PGSO(2, 2) is isogeneous to PGL2 × PGL2.)

We formulate a conjecture on the endoscopic transfer map:

Conjecture 6.2 There exists a transfer E : ∏◦
(PGSO(2, 2) × PGSO(8)) −→∏

(PGSO(2, 10)) such that if π1, π2 are cuspidal representations of PGL2, and τ is a
cuspidal representation of PGSO(8), then ι ◦ J L ◦ E((π1, π2), τ ) = (π1 � π2) � �, where
� is the image of τ under the map

∏◦
(PGSO(8)) −→ ∏

(GL8), which is the composition
of

∏◦
(PGSO(8)) −→ ∏◦

(PGSO(4, 4)) and
∏◦

(PGSO(4, 4)) −→ ∏
(GL8).
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7 Proof of Theorem 1.1

For f ∈ S2k(SL2(Z)) and h ∈ S2k+8(SL2(Z)), let F f,h be defined by the integral (1.1).

Lemma 7.1 The integral is well-defined and F f,h(Z) is a cusp form of weight 2k + 8 with
respect to �2 defined by (2.2).

Proof By Theorem 3.1, Ff is a cusp form of weight 2k + 8 with respect to �. Hence for a

fixed Z ∈ T2, Ff

(
Z 0
0 τ

)
is a cusp form of weight 2k + 8 with respect to SL2(Z). Hence the

integral is well-defined. Also if we replace h by the Eisenstein series E2k+8, the integral is
still well-defined. The modularity and cuspidality are clear. ��

Let H(Gi (A f )) (i = 1, 2) be the Hecke algebra for the finite adele group Gi (A f ).
Then H(G1(A f )) · h and H(G2(A f )) · F f,h are the finite part of the cuspidal automorphic
representations ofG1(A) andG2(A) generated by h andF f,h , resp. HereH(G1(A f ))·h is an
irreducible representation ofG1(A f ). Letπ1 be the p-component ofH(G1(A f ))·h. Thenπ1

is an unramifiedprincipal series representationwith theSatake parameters {β±1
p }. On the other

hand, sinceF f,h(Z) is a cusp form, the representationH(G ′(A f )) ·F f,h ofG ′(A f ) is unitary
and of finite length (cf. [6, Proposition 4.5]), where we recall that G ′ = GSpin(2, 10). We
consider the restriction to G2(A f ), and let π2 be the p-component of some irreducible direct
summand of that restriction. Then π2 is also an unramified principal series representation.

Note that det(ImZ)−10dZ is the invariant measure on G ′(Z)\T2 (cf. [37, p. 250]). Then
if F f,h �= 0,

∫
G ′(Z)\T2

∫
SL2(Z)\H

F

(
Z 0
0 τ

)
h(τ )F f,h(Z)(Im τ)2k+6 det(Im Z)2k−2 dZdτ

= 〈F f,h,F f,h〉 �= 0.

It follows from this that for each prime p,

0 �= HomH(Qp)

(
Ind

G(Qp)

P(Qp)
(ω−2

p ◦ det)|φ(G1(Qp)×G2(Qp)), π1 ⊗ π̃2

)

= HomH(Qp)

(
Ind

G(Qp)

P(Qp)
(ω−2

p ◦ det)|H(Qp), Ind
H(Qp)

φ(G1(Qp)×G2(Qp))
π1 ⊗ π̃2

)

and this implies

HomH(Qp)

(
Ind

G(Qp)

P(Qp)
(ω−2

p ◦ det)|H(Qp), πH

)
�= 0

for some lift πH to H(Qp) of π1 ⊗ π̃2 defined as in Proposition 5.1, where ωp : Q
×
p −→ C

×
is the unramified character determined byωp(p−1) = αp . By Proposition 5.1, any irreducible
component of H(G ′(A f )) · F f,h has the Satake p-parameter

{εp(βpαp)
±1, εp(βpα

−1
p )±1, (bp p

3)±1, (bp p
2)±1, (bp p)

±1, b±1
p },

where εp = ±1 and bp ∈ C
×.

Now we assume Conjecture 6.1. Let � f,h be an irreducible component of the cuspidal
representation of G ′(A) generated by F f,h . Then it is unramified at every prime p. Let � be
the transfer of � f,h to GL12(A). Then � is unramified at all p by the property of Langlands
functoriality. By the classification of automorphic representations of GLN [21], � is the
Langlands quotient of

σ1| det |r1 � · · · � σk | det |rk � σk+1 � · · · � σk+l � σ̃k | det |−rk � · · · � σ̃1| det |−r1 ,
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where r1 ≥ r2 ≥ · · · ≥ rk > 0, and σ1, . . . , σk+l are unitary (irreducible) cuspidal represen-
tations of GLni (A). Note also that if {c1p, . . . , cmp} is the multiset of Satake p-parameters

of a cuspidal representation π ofGLm(A), p− 1
2 < |cip| < p

1
2 for each i (cf. [21], page 554).

Now we recall the classification of spherical unitary representations of GLN (Qp) [36]:
For an unramified unitary character χ , let χ(detn) be the representation g 
−→ χ(detn(g)) of

GLn(Qp). It is a quotient of I nd
GLn
B χ |·| n−1

2 ⊗χ |·| n−1
2 −1⊗· · ·⊗χ |·|− n−1

2 . Letπ(χ(detn), α)

be the representation of GL2n(Qp) induced from χ(detn)| det |α ⊗ χ(detn)| det |−α , where
0 < α < 1

2 . Then any spherical unitary representation of GLN (Qp) is induced from

χ1(detn1) ⊗ · · · ⊗ χq(detnq ) ⊗ π(μ1(detm1), α1) ⊗ · · · ⊗ π(μr (detmr ), αr ),

where n1 + · · · + nq + 2(m1 + · · · + mr ) = N , 0 < α1, . . . , αr < 1
2 , and

χ1, . . . , χq , μ1, . . . , μr are unramified unitary characters. Hence by comparing the Satake
parameters, we can see that bp = 1 for all p, or bp = p−1 for all p.

Therefore, � should be either �1 � 1GL7 � 1, or �1 � 1GL5 � 1GL3 , where �1 is an
automorphic representation of GL4, and 1GLn denotes the trivial representation of GLn .

Now we can see easily that ∧2�1 = Sym2(π f ) ⊕ Sym2(πh). Then by [2], �1 is of the
form �1 = σ1 � σ2 for σ1, σ2, cuspidal representations of GL2(A). Since ∧2(σ1 � σ2) =
Ad(σ1) ⊗ ωσ1ωσ2 � Ad(σ2) ⊗ ωσ1ωσ2 , ωσ1ωσ2 = 1, Ad(σ1) = Ad(π f ) and Ad(σ2) =
Ad(πh). By [33], σ1 = π f ⊗ χ1 and σ2 = πh ⊗ χ2 for some characters χ1, χ2. Hence
�1 = (π f � πh) ⊗ χ1χ2. Since the central character of � is trivial, χ1χ2 = 1. Therefore,
�1 = π f � πh , and εp = 1 for all p. This shows that � = (π f � πh) � 1GL7 � 1, or
(π f �πh)� 1GL5 � 1GL3 . However by the classification in [8, Section 7.2.2], the latter case
cannot happen under Conjecture 6.2.

TheSatake parameters at p behave uniformly and it follows from this thatH(G ′(A f ))·F f,h

is isotypic. Since it is generated by the class one vector F f,h , it is irreducible. It follows that
F f,h is a Hecke eigenform and gives rise to a cuspidal representation � f,h of G ′(A). We
have also shown that the degree 12 standard L-function of � f,h is

L(s,� f,h) = L(s, π f × πh)ζ(s)2ζ(s ± 1)ζ(s ± 2)ζ(s ± 3),

or

L(s,� f,h) = L(s, π f × πh)ζ(s)2ζ(s ± 1)2ζ(s ± 2),

where the first L-function is the Rankin–Selberg L-function.

8 Remark on non-vanishing hypothesis

Recall

F f,h(Z) =
∫
SL2(Z)\H

Ff

(
Z 0
0 τ

)
h(τ )(Imτ)2k+6 dτ.

We consider the question of nonvanishing of F f,h . We have a Fourier–Jacobi expansion of
Ff ;

Ff

(
Z w
tw τ

)
=

∑
S

FS(τ, w)e2πTr(ZS)
√−1, (8.1)
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where S ∈ J2(Z)+ and FS is a Fourier–Jacobi coefficient of index S as in [24]. Here

FS(τ, w) =
∑
λ∈�

θ[λ](S; τ,w)FS,λ(τ ),

where θ[λ](S; τ,w) is a theta series and FS,λ(τ ) is a vector-valued modular form, which is
obtained from a suitable compatible family of Eisenstein series. (See Section 8 in [24].)

Lemma 8.1 We have the estimate:

|FS(τ, 0)| � y−(2k+8)Tr(S)2(2k+8), y = Im(τ ).

Proof Let Z = X + Y
√−1. Then

FS(τ, 0)e
−2πTr(Y S) =

∫
Ff

(
Z 0
0 τ

)
e−2π iT r(XS) dX,

where the integral is over J2(R)/J2(Z). Set Y = 1
Tr(S)

I2. Then

|FS(τ, 0)| � y−(2k+8)Tr(S)2(2k+8).

��
By the above lemma, for a fixed Z ,∑

S

|FS(τ, 0)e
2πTr(ZS)

√−1| = y−(2k+8)
∑
S

T r(S)2(2k+8)e−2πTr(Y S).

Now Tr(Y S) ≥ cY Tr(S) for a constant cY > 0. Hence∑
S

T r(S)2(2k+8)e−2πTr(Y S) ≤
∑
S

T r(S)2(2k+8)e−2πcY Tr(S),

which is bounded. Therefore

F f,h(Z) =
∫
SL2(Z)\H

(∑
S

FS(τ, 0)e
2πTr(ZS)

√−1

)
h(τ )Im(τ )2k+6 dτ.

converges absolutely. So we can interchange the sum and integral. We write

F f,h(Z) =
∑
S

AS e
2πTr(ZS)

√−1,

where

AS =
∫
SL2(Z)\H

FS(τ, 0)h(τ )Im(τ )2k+6 dτ.

Here FS(τ, 0) is a modular form of weight 2k + 8. Hence AS is the Petersson inner product
of FS(τ, 0) and h. In order that F f,h is identically zero, we need AS = 0 for all S. As S runs
over J2(Z)+, it is very likely that FS(τ, 0) will span the whole space S2k+8(SL2(Z)). So we
expect that AS �= 0 for some S, and F f,h is not identically zero.
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