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1. Introduction

This paper is a continuation of [4]. We refer to [4] for unexplained notations: Let K
be a number field of degree d + 1 with discriminant dK and ζK(s) be the Dedekind zeta 
function of K. Let K̂ be the Galois closure of K over Q. Then we have ζK(s) = ζ(s)L(s, ρ)
for some d-dimensional complex representation ρ of the Galois group Gal(K̂/Q). In [4], 
we showed that under the Artin conjecture, GRH and certain zero density hypothesis, 
the upper and lower bounds of −L′

L (1, ρ) are

log log |dK | + O(log log log |dK |), −d log log |dK | + O(log log log |dK |), resp. (1.1)

We also obtained the first moment of −L′

L (1, ρ) for some parametric families.
In this paper, we study the k-th moments of L

′

L (1, ρ) and logL(1, ρ) for each positive 
integer k for two kinds of families L(X) of L(s, ρ):

1
|L(X)|

∑
L(s,ρ)∈L(X)

(
−L′

L
(1, ρ)

)k

,
1

|L(X)|
∑

L(s,ρ)∈L(X)

(logL(1, ρ))k .

Ihara, Murty and Shimura [11] computed (a, b)-moments of logarithmic derivatives of 
Dirichlet L-functions. Namely, for a prime m, let Xm denote the set of all non-principal 
characters χ with conductor m, and P (a,b)(z) = zazb. Then

1
|Xm|

∑
χ∈Xm

P (a,b)
(
L′

L
(1, χ)

)
= (−1)a+bμ(a,b) + O(mε−1),

where μ(a,b) is a constant which has an explicit expression.
Mourtada and Murty [16] computed moments of L

′

L (1, χD), where χD is a quadratic 
character:

∑∗

0<βD≤X

(
−L′

L
(1, χD)

)k

= CkX + Ok(X
5
6+ε),

where X > 1, β = ±1 and the asterisk indicates that the sum is over fundamental 
discriminants D, and

Ck = 3
π2

∞∑
n=1

Λk(n2)
n2

∏
p|n

(
1 + 1

p

)−1

, (1.2)

where Λk(n) is defined by Λk(n) =
∑

n=n1···nk
Λ(n1) · · ·Λ(nk) for k > 0, and Λ0(n) = 0

for all n except for Λ0(1) = 1.
Our basic idea is to use a short sum approximation of −L′

L (1, ρ) and logL(1, ρ)
under the assumptions that L(s, ρ) is entire, and is zero-free in the rectangle [α, 1] ×
[−(logN)m, (logN)m], where N is the conductor of ρ and m(1 −α+1) > 3 (cf. Daileda [7]). 
2
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We use the zero density result of Kowalski–Michel [14] to show that except for O(X 1
100 )

L-functions, every L-function in L(X) has the desired zero-free region. For this, we need 
to assume the strong Artin conjecture for ρ, i.e., ρ is an automorphic representation of 
GL(d) and assume that the L-functions in L(X) are distinct.

The first family we consider is constructed by G-fields. This is done in Section 3. We 
say that a degree d + 1 extension K/Q is a Sd+1-field over Q if Gal(K̂/Q) is isomorphic 
to the symmetric group Sd+1. Define

L
(r2)
d+1(X) =

{
K | X2 < |dK | < X,K : Sd+1-field of signature (r1, r2)

}
.

Under the counting conjecture (3.2) and the strong Artin conjecture for ρ, we show that 
the k-th moment of this family is a constant and we obtain the asymptotic formula 
(Theorem 3.4). Since the counting conjecture is proved for G = S3, S4, S5 [2,20,18,6]
and the strong Artin conjecture is known for S3, S4 case, our result is unconditional for 
S3, S4. In Section 3.2, we recover the main term (1.2) for quadratic fields. In Section 3.3, 
we write down an explicit formula for the main term for cubic fields. In Section 3.4, we 
give an application of k-th moments to the distribution of −L′

L (1, ρ).
The second family is a parametric family defined by a polynomial f(x, t) ∈ Q(t)[x]

of degree d + 1 in x. Assume that the splitting field E of f(x, t) over Q(t) is a regular 
Galois extension (i.e., E∩Q = Q.). For a specialization t ∈ Z, let Kt be the number field 
obtained by adjoining a root of f(x, t) to the field of rational numbers. Under several 
assumptions, we showed in [4] that there are infinitely many number fields with the 
extreme values (1.1) in the family defined by f(x, t), and gave many examples which 
satisfy the assumptions. Let

L(X) =
{
X

2 < t < X| t ≡ sM (mod M), Gal(K̂t/Q) � G

}
,

where sM and M are carefully chosen so that −L′

L (1, ρ, t) would takes the extreme 
value −d log log |dK | +O(log log log |dK |). We show (Theorem 4.8) under the strong Artin 
conjecture for ρ and a technical assumption that the L-functions in L(X) are distinct, 
and the estimate (4.6),

1
|L(X)|

∑
L(s,ρ)∈L(X)

(
−L′

L
(1, ρ, t)

)k

= dk(log logX)k + O
(
(log logX)k−

1
2
)
.

In Section 4.3, we give three examples which satisfy the assumptions. So the above holds 
unconditionally for these examples. In fact, the above holds unconditionally for all the 
examples from [4] except possibly for A4 case.

In Section 5, we obtain the asymptotic formula of the k-th moments of logL(1, ρ)
(Proposition 5.3) and its distribution.

Acknowledgments. We thank the referee for many helpful comments.
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2. Approximation of L
′

L
(1, ρ) under zero-free region

Let L(s, ρ) =
∑∞

n=1 λρ(n)n−s =
∏

p

∏d
i=1

(
1 − αi(p)

ps

)−1
. Then we have

−L′

L
(s, ρ) =

∞∑
n=1

Λ(n)aρ(n)n−s, aρ(pk) =
d∑

j=1
αj(p)k.

Proposition 2.1. Suppose L(s, ρ) is entire and is zero free in the rectangle [α, 1] × [−x, x], 
and N is the conductor of ρ. Then

−L′

L
(1, ρ) =

∑
n<x

aρ(n)Λ(n)
n

+ Oα

(
logN log x + (log x)2

x1−α+1
2

)
. (2.2)

Proof. By Perron’s formula,

1
2πi

c+ix∫
c−ix

−L′

L
(1 + s, ρ)x

s

s
ds =

∑
n<x

aρ(n)Λ(n)
n

+ O

(
d(log x)2

x

)
,

where c = 1
log x . We move the contour to Re(s) = α+1

2 − 1 and get the residue −L′

L (1, ρ)
at s = 0. So, the left hand side is −L′

L (1, ρ) plus

1
2πi

⎛⎜⎝
α+1

2 −1−ix∫
c−ix

+

α+1
2 −1+ix∫

α+1
2 −1−ix

+
c+ix∫

α+1
2 −1+ix

⎞⎟⎠(
−L′

L
(1 + s, ρ)x

s

s

)
ds.

Let Ω = [α+1
2 , 2] × [−x, x] be a rectangular region in the complex plane. Then for s ∈ Ω, ∣∣∣−L′

L (s)
∣∣∣ �α logN + log(|s| + 1). (See page 236 in [7].) Hence the integral is

�α
logN + log x

x
+ logN log x + (log x)2

x1−α+1
2

� logN log x + (log x)2

x1−α+1
2

,

and the claim follows. �
By setting x = (logN)m with m(1 − α+1

2 ) > 3, we have

−L′

L
(1, ρ) =

∑
n<(log N)m

aρ(n)Λ(n)
n

+ O

(
1

logN

)

=
∑

m

aρ(p) log p
p

+ O (1) . (2.3)

p<(log N)
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Due to lack of GRH, we cannot use the above result directly. In [4], we extended the 
zero density result of Kowalski–Michel [14] to isobaric automorphic representations of 
GL(n). By applying Theorem 3.4 of [4] to L(X), we can show that every automorphic 
L-function in L(X) excluding exceptional O(X1/100) L-functions has a zero-free region 
[α, 1] × [−(log |dKt

|)m, (log |dKt
|)m], where m(1 − α+1

2 ) > 3. Let us denote by L̂(X), the 
set of the automorphic L-functions with the zero-free region.

3. Moments of L
′

L
(1, ρ) over Sd+1-fields

Let L(r2)
d+1(X) be the set of Sd+1-fields K of signature (r1, r2) with X

2 < |dK | < X. 
Let S = (LCp) be a finite set of local conditions, namely, LCp = Sp,C means that the 
conjugacy class of p is C. Let |Sp,C | = |C|

|G|(1+f(p)) for some function f(p) which satisfies 
f(p) = O( 1

p ). There are also several splitting types of ramified primes, which are denoted 
by r1, · · · , rw. Then LCp = Sp,ri means that the splitting type of the ramified prime p
is ri. Then there are positive valued functions c1(p), c2(p), · · · , cw(p) with 

∑w
i=1 ci(p) =

f(p), such that |Sp,ri | =
ci(p)

1+f(p) . Let |S| =
∏
p∈S

|LCp|.

Let L(r2)
d+1(X, S) be the set of Sd+1-fields K of signature (r1, r2) with X2 < |dK | < X, 

and the local condition S.
By abuse of notation, we denote Ld+1(X)r2 as a set of L-functions L(s, ρ) for K ∈

L
(r2)
d+1(X). Here we need care in order to ensure one to one correspondence between two 

sets. Two number fields K1 and K2 are said to be arithmetically equivalent if ζK1(s) =
ζK2(s). If two number fields K1 and K2 are conjugate, then they are arithmetically 
equivalent. The converse is not always true. A number field K1 is called arithmetically 
solitary if ζK1(s) = ζK2(s) implies that K1 and K2 are conjugate. It is known that 
Sd+1-fields and Ad+1-fields are arithmetically solitary. See [13, Chap. II].

We have

Conjecture 3.1.

|L(r2)
d+1(X)| = A(r2)X + O(Xδ) (3.2)

|L(r2)
d+1(X,S)| = |S|A(r2)X + O

⎛⎝(∏
p∈S

p
)γ

Xδ

⎞⎠
for some positive constant A(r2), δ < 1 and γ, and the implied constant is uniformly 
bounded for p and local conditions at p.

This conjecture is true when G = S3, S4 and S5 [20,2,21,18,6]. We give explicit con-
stants in the case of S3, following Taniguchi and Thorne [20]. Let L(X)± be the set of 
cubic fields K with 0 < ±dK < X. Then
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|L(X)±| = A±

12ζ(3)X + B± 4ζ(1/3)
5Γ(2/3)3ζ(5/3)X

5/6 + O(X7/9+ε),

where A+ = 1, A− = 3, B+ = 1, and B− =
√

3. Here, we count only one cubic field from 
three conjugate fields. Let TSp, PSp, and INp be the local conditions of p which means 
that p is totally split, partially split and inert respectively. Let S = {LCpi

|i = 1, 2, · · · , u}
be a set of local conditions at pi. Then

|LCp| =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/6
1+1/p+1/p2 if LCp = TSp,

3/6
1+1/p+1/p2 if LCp = PSp,

2/6
1+1/p+1/p2 if LCp = INp,

1/p
1+1/p+1/p2 if p is partially ramified,

1/p2

1+1/p+1/p2 if p is totally ramified,

(3.3)

and |L(X, S)±| = |S| C±

12ζ(3)X + O(ES(X)), where

ES(X) =
{
X

5
6 , if

∏u
i=1 p

ei
i < X

1
18−ε,

(
∏u

i=1 p
ei
i )X 7

9+ε, if X 1
18−ε ≤

∏u
i=1 p

ei
i ≤ X

2
9−ε,

and ei = 8
9 for unramified pi and ei = 16

9 for ramified pi. For explicit constants A(r2), LCp

in the cases of S4 and S5, see [6].
For simplicity, we write L(r2)

d+1(X) by L(X), and L(s, ρ) ∈ L
(r2)
d+1(X) by ρ ∈ L(X). 

Then, we have the following k-th moments theorem.

Theorem 3.4. Assume (3.2) and the strong Artin conjecture for ρ. Then

1
|L(X)|

∑
ρ∈L(X)

(
−L′

L
(1, ρ)

)k

(3.5)

=
∑

q1,...,qu+v

au+j ,eu+j , j=1,...,v

γ(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v))

+ O

(
1

logX

)
,

where q1, · · · , qu+v run over distinct primes and eu+j , au+j run through sets of positive 
integers such that u + |eu+1| + · · · |eu+v| = k, |au+jeu+j | ≥ 2, j = 1, ..., v. In particular, 
for k = 1,

1
|L(X)|

∑
ρ∈L(X)

(
−L′

L
(1, ρ)

)
=

∑
p, u≥2

(A(p, u, 1) + f1(p, u, 1)) log p
pu

+
∑ f1(p) log p

p
+ O

(
1

logX

)
.

p
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The precise definition of the function γ is given in (3.12). Since (3.2) is valid for 
S3, S4, S5, and the strong Artin conjecture is valid for S3, S4, we have Theorem 3.4
unconditionally for S3, S4.

Recall L̂(X) at the end of Section 2: the set of L-functions with the desired zero-free 
regions. If ρ ∈ L̂(X), by (2.3), we have

−L′

L
(1, ρ) =

∑
p≤x

aρ(p) log p
p

+ Cρ, for x = (logX)m,

where Cρ = Oα(1).
If L(s, ρ) may not have the desired zero-free region, we use the following trivial bound:

Lemma 3.6.

|L
′

L
(1, ρ)| �ε

{
|dK |ε, if K contains a quadratic subfield
(log |dK |)2, if K does not contain a quadratic subfield

.

Proof. By [19], Lemma 10, if K does not contain a quadratic subfield, L(s, ρ) does not 
have a Siegel zero, i.e., no zero in the region 1 − (16 log |dK |)−1 ≤ Re(s) ≤ 1. By [12], 
page 103, |L′

L (1, ρ)| � log |dK | +
∑

|1−
|<1
1

1−
 . By [12], page 102, the number of zeros 
such that |1 − �| < 1 is O(log |dK |). Hence |L′

L (1, ρ)| � (log |dK |)2.
If K contains a quadratic subfield F , then any possible Siegel zero of ζK(s) is that of 

ζF (s). But the Siegel zero β satisfies β < 1 − c(ε)|dF |−ε for any ε > 0 (ineffective implied 
constant) ([8], page 126). Since |dF | ≤ |dK |, we have |L′

L (1, ρ)| �ε |dK |ε. �
We note that Sd+1-fields and Ad+1-fields (d +1 ≥ 3) do not contain quadratic subfields. 

If K does not contain a quadratic subfield, the sum over the exceptional set is � X
1

100+ε

for any k. When K contains a quadratic subfield, given k, we choose ε such that 1
100 +

kε < 1. Then the sum over the exceptional set is � X
1

100+kε. Hence we can replace the 
sum 

∑
ρ∈L(X) by 

∑
ρ∈L̂(X).

3.1. Proof of Theorem 3.4

We first show that (3.5) is bounded above by a constant. Consider

(
−L′

L
(1, ρ)

)k

=
k∑

r=0

(
k
r

)
(Σρ)r Ck−r

ρ ,

where Σρ =
∑

p≤x
aρ(p) log p

p . By Cauchy–Schwartz inequality

∑
(Σρ)rCk−r

ρ �

⎛⎝ ∑
(Σρ)2r

⎞⎠ 1
2
⎛⎝ ∑

C2(k−r)
ρ

⎞⎠ 1
2

. (3.7)

ρ∈L(X) ρ∈L(X) ρ∈L(X)
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Hence we only need to estimate

∑
ρ∈L(X)

⎛⎝∑
p≤x

aρ(p) log p
p

⎞⎠r

=
∑

p1,...,pr

(log p1) · · · (log pr)
p1 · · · pr

∑
ρ∈L(X)

aρ(p1) · · · aρ(pr). (3.8)

Now by combining the same primes, we need to consider, for q1, · · · , qu distinct primes,∑
ρ∈L(X)

aρ(q1)e1 · · · aρ(qu)eu ,

where e1 + · · ·+eu = r. Let N be the number of conjugacy classes of Sd+1, w the number 
of splitting types of ramified primes. Partition the sum 

∑
ρ∈L(X) into (N + w)u sums, 

namely, given (LC1, ..., LCu), where LCi is either Sqi,Ci
or Sqi,rj , we consider the set 

of ρ ∈ L(X) with the local conditions LCi for each i. Note that in each such partition, 
aρ(q1)e1 · · · aρ(qu)eu remains a constant.

Consider the case where all ei > 1. Then, in (3.8), we would have X
∏u

i=1

(∑
qi≤x

1
q
ei
i

)
, 

which is O(X). Now assume that ei = 1 and qi is unramified for some i, say i = 1. Fix 
the splitting types of q2, · · · , qu, and let Frobq1 runs through the conjugacy classes of G. 
Then by (3.2), the sum of such N partitions is

∑
C

(
|C|aρ(q1)

|G|(1 + f(q1))
A(LC2, ..., LCu)X + O((q1 · · · qu)γXδ)

)
,

for a constant A(LC2, ..., LCu). Let χρ be the character of ρ. Then aρ(p) = χρ(g), where 
g = Frobp. By orthogonality of characters, 

∑
C |C|aρ(q1) =

∑
g∈G χρ(g) = 0. Hence the 

above sum is O((q1 · · · qu)γXδ), and it contributes O(X).
Now we are reduced to the case e1 = e2 = · · · = ei = 1, ei+1 > 1, ..., eu > 1, and 

q1, · · · , qi are all ramified. Then, the bound

∑
ρ∈L(X)

aρ(q1) · · · aρ(qi)aρ(qi+1)ei+1 · · · aρ(qu)eu � X

q1 · · · qi

implies that the contribution of this case to (3.8) is O(X). Therefore, we have proved 
that

(3.5) = O(1).

Now we obtain the asymptotic formula for (3.5). By (2.3), we have

−L′

L
(1, ρ) = Σρ + Cρ,

where Σρ =
∑

n<(log X)m
aρ(n)Λ(n) and Cρ = O

(
1

)
.
n log X
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Then

(
−L′

L
(1, ρ)

)k

= (Σρ)k +
k−1∑
r=0

(
k
r

)
(Σρ)rCk−r

ρ .

By (3.7), it is enough to consider

1
|L(X)|

∑
ρ∈L(X)

(Σρ)r, for r = 2, 4, · · · , 2k − 2, and k. (3.9)

Here

∑
ρ∈L(X)

(Σρ)r =
∑

ni<(log X)m,i=1,··· ,r

Λ(n1) · · ·Λ(nr)
n1 · · ·nr

α(n1, ..., nr), (3.10)

where α(pa1
1 , ..., par

r ) =
∑

ρ∈L(X) aρ(p
a1
1 ) · · · aρ(par

r ). Note that |α(pa1
1 , ..., par

r )| ≤
dr|L(X)|.

By combining the same prime powers, we can write (3.10) as follows: We write a =
(a1, ..., at), e = (e1, ..., et), where ai’s and ei’s are positive integers. Denote |e| = e1 +
· · · + et and |ae| = a1e1 + · · · + atet. Let

qa = max{qa1 , ..., qat}, eqa = e1q
a1 + · · · + etq

at , and

aρ(q,a, e) = aρ(qa1)e1 · · · aρ(qat)et . (3.11)

Then

(3.10) =
∑

q1,...,qu,qu+1,...,qu+v

eu+j , au+j , j=1,...,v

u∏
i=1

log qi
qi

v∏
j=1

(log qu+j)|eu+j |

q
|au+jeu+j |
u+j

·β(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v)),

where q1, · · · , qu+v run over distinct primes such that qi < (logX)m, i = 1, ..., u, qau+j

u+j <

(logX)m, j = 1, ..., v and eu+j , au+j run through sets of positive integers such that 
u + |eu+1| + · · · |eu+v| = r, |au+jeu+j | ≥ 2, j = 1, ..., v, and

β(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v))

=
∑

ρ∈L(X)

aρ(q1) · · · aρ(qu)aρ(qu+1,au+1, eu+1) · · · aρ(qu+v,au+v, eu+v).

Now as before, we partition 
∑

ρ∈L(X) into (N + w)u+v sums. We obtain that
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β(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v))

=
∑
P

u∏
i=1

aρ(qi)
v∏

j=1
aρ(qu+j ,au+j , eu+j)

⎛⎜⎜⎝ ∑
ρ∈L(X)

LC1,...,LCu+v

1

⎞⎟⎟⎠ ,

where the sum 
∑

P is over (N + w)u+v partitions. By (3.2),

∑
ρ∈L(X)

LC1,...,LCu+v

1 =
u+v∏
i=1

|LCi||L(X)| + O((q1 · · · qu+v)γXδ).

The error term contributes O
(
Xδ+ε−1) to (3.9). Now aρ(qi) and aρ(qu+j , au+j , eu+j)

remain constants in the partition and depend only on qi’s. If g = Frobq, then we can 
write them as χ(qi), χ(qu+j , au+j , eu+j), resp. Then

∑
P

χ(q1) · · ·χρ(qu)χρ(qu+1,au+j , eu+j) · · ·χρ(qu+v,au+j , eu+j)
u+v∏
i=1

|LCi|

=
u∏

i=1

(∑
C

χρ(qi)|C|
|G|(1 + f(qi))

+
w∑
l=1

χρ(qi)cl(qi)
1 + f(qi)

)

·
v∏

j=1

(∑
C

χρ(qu+j ,au+j , eu+j)|C|
|G|(1 + f(qu+j))

+
w∑
l=1

χρ(qu+j ,au+j , eu+j)cl(qu+j)
1 + f(qu+j)

)
.

By orthogonality of characters, 
∑

C |C|χρ(q) = 0. Recall that 
∑w

l=1 cl(q) = f(q). 
Here 

∑w
l=1

χρ(qi)cl(qi)
1+f(qi) , 

∑w
l=1

χρ(qu+j ,au+j ,eu+j)cl(qu+j)
1+f(qu+j) and 

∑
C

χρ(qu+j ,au+j ,eu+j)|C|
|G|(1+f(qu+j)) are in-

dependent of ρ. We denoted them by f1(qi), f1(qu+j , au+j , eu+j) and A(qu+j , au+j , eu+j), 
resp. Note that f1(q) = O(1

q ). We showed in [6] that 
∑

C |C|χρ(q)2 = |G| for each prime q. 
Similarly, 

∑
C |C|χρ(q2) = |G|.

Hence

(3.9) =
∑

q1,...,qu+v

eu+j , au+j , j=1,...,v

γ(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v))

+ O(Xδ+ε−1),

where q1, · · · , qu+v run over distinct primes such that qi < (logX)m, i = 1, ..., u, qau+j

u+j <

(logX)m, j = 1, ..., v, and

γ(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v)) (3.12)

=
u∏ log qi

qi
f1(qi)

v∏ (log qu+j)|eu+j |

q
|au+jeu+j |

(A(qu+j ,au+j , eu+j) + f1(qu+j ,au+j , eu+j)) ,

i=1 j=1 u+j
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Therefore, (3.9) is bounded by a constant independent of r and it implies that

1
|L(X)|

∑
ρ∈L(X)

(
−L′

L
(1, ρ)

)k

= 1
|L(X)|

∑
ρ∈L(X)

(Σρ)k + Ok

(
1

logX

)
.

Note that 
∑

p>(log X)m
log p
p2 � 1

(log X)m � 1
log X , and 

∑
p>(log X)m

(log p)2
p2 � m log log X

(log X)m �
1

log X . This implies that the tail of the convergent infinite series

∑
q1,...,qu+v

eu+j , au+j , j=1,...,v

γ(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v)),

is at most O( 1
log X ). Hence we proved the theorem.

3.2. Quadratic fields

We can recover the main term for quadratic fields as in (1.2). For simplicity, we 
consider only real quadratic fields. Define

L(X) =
{
X

2 < d < X | d: fundamental discriminant
}
.

It is well-known that |L(X)| = 3
2π2X + O(X1/2). (See Section 4.3.1.)

For a fundamental discriminant d with d ≡ 0 (mod 4), 2 is ramified in Q(
√
d). Hence, 

the local density for a ramified 2 is 1/3. For a fundamental discriminant d with d ≡ 1
(mod 4), 2 is unramified in Q(

√
d). If d ≡ 1 (mod 8), χd(2) =

(
d
2
)

= 1. If d ≡ 5 (mod 8), 
χd(2) =

(
d
2
)

= −1. Hence, the local densities for a totally split 2 and for an inert 2 are 

both 1
3 = 1/2

1+1/2 .
For an odd prime p, there are p−1

2 non-zero quadratic residues and p−1
2 non-zero 

quadratic non-residues. From Section 4.3.1, we can see that the local densities for a 
totally split prime p and the local density for an inert prime p are the same, and they 
are given by p−1

2 · (1 − p−2)−1 · 1
p = 1/2

1+1/p . Hence the local density for a ramified prime 

p is 1/p
1+1/p .

With these local densities, we have

|L(X,S)| = |S| 3
2π2X + O(X1/2).

For K = Q(
√
d), ρ = χd =

(
d
·
)
, which is completely multiplicative. If |ajej | is odd, 

then 
∑

C χρ(qj , aj , ej)|C| = 0. For a ramified prime p, χρ(p) = χρ(p, a, e) = 0. Note that 

for even |ae|, 
∑

C
χρ(q,a,e)|C|
|G|(1+f(q)) = 1/2

1+1/p + 1/2
1+1/p =

(
1 + 1

p

)−1
. Hence, the main term in 

Theorem 3.4 becomes
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∑
q1,··· ,qv

ej ,aj ,j=1,...,v
|ajej |:even

v∏
j=1

(log qj)|ej |

q
|ajej |
j

· 1
1 + 1

qj

=
∞∑

n=1

Λk(n2)
n2

∏
p|n

(
1 + 1

p

)−1

,

which is (1.2).

3.3. Cubic fields

For cubic fields, by (3.3),

f1(q) =
w∑
l=1

χρ(q)cl(q)
1 + f(q) = 1

q + 1 + q−1 , f1(q,a, e) =
w∑
l=1

χρ(q,a, e)
1 + f(q) = 1

q + 1 + q−1 .

It is left to find a simpler expression for A(q, a, e) =
∑

C
χρ(q,a,e)|C|
|G|(1+f(q)) to determine the 

main term.
First, we consider a totally split prime q. In this case aρ(qa) = 2 for any a ≥ 1. Hence, 

it contributes 2|e|

6(1+q−1+q−2) . For a partially split prime q, aρ(qa) = 0 for an odd a and 
aρ(qa) = 2 for an even a. For a = (a1, a2, · · · , at), if some of ai is odd, then it gives 0. If 
all of ai’s are even, then it gives 3·2|e|

6(1+q−1+q−2) . Denote it by 3·2|e|·δ
a≡0(2)

6(1+q−1+q−2) , where δa≡0(2)
is 1 if all of ai’s are even and 0 otherwise.

For an inert prime q, aρ(qa) = −1 for a ≡ 1, 2 (mod 3) and aρ(qa) = 2 for a ≡ 0
(mod 3). For a = (a1, a2, · · · , at) and e = (e1, e2, · · · , et), define Modi = {ej | aj ≡
i(mod 3)} for i = 0, 1, 2. Let |Modi| =

∑
ej∈Modi

ej . Then this case contributes 
2·(−1)|Mod1|+|Mod2|·2|Mod0|

6(1+q−1+q−2) .
For example, if all ai’s are congruent to 0 modulo 6, then

∑
C

χρ(q,a, e)|C|
|G|(1 + f(q)) = 2|e|

1 + q−1 + q−2 .

Hence, we have

γ(q1, · · · , qu, qu+1, · · · , qu+v) =
u∏

i=1

log qi
1 + qi + q2

i

v∏
j=1

(log qu+j)|eu+j |

q
|au+jeu+j |
u+j

·
(

2|eu+j | + 3 · 2|eu+j | · δau+j≡0(2) + 2 · (−1)|Mod1|+|Mod2| · 2|Mod0|

6(1 + q−1
u+j + q−2

u+j)
+ 1

qu+j + 1 + q−1
u+j

)
.

Define a set Bk of ordered pairs of positive integers:

Bk =
{

(n,m) ∈ N× N | gcd(n,m)=1, n,m: square-free, ω(nm)≤k;
}
,
if m=1, n is the product of k distinct primes
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where ω(t) is the number of prime divisors of t. We need the restriction on n for m = 1
due to the condition u + |eu+1| + · · · + |eu+v| = k. Then, we have

∑
q1,...,qu+v

au+j ,eu+j , j=1,...,v

γ(q1, ..., qu, (qu+1,au+1, eu+1), ..., (qu+v,au+v, eu+v))

=
∑

(n,m)∈Bk

∏
p|n

log p
1 + p + p2

·
[ ∑

m=q1q2···qvaq1 ,··· ,aqveq1 ,··· ,eqv

v∏
i=1

(log qi)|eqi
|

q
|aqi

eqi
|

i

(2|eqi
|(1 + 3 · δaqi

≡0(2)) + 2 · (−1)|Mod1|+|Mod2| · 2|Mod0|

6(1 + q−1
i + q−2

i )

+ 1
qi + 1 + q−1

i

)]
,

where |eq1 | + · · · + |eqv | = k − ν(n) and |aqieqi | ≥ 2 for all i.

3.4. Method of moments and distribution of −L′

L (1, ρ)

In this section, we briefly review the method of moments from [10], page 59 or [1, 
Lemma 5.1, Lemma 5.7] in order to motivate the study of k-th moments: A distribution 
function F is a real-valued, non-decreasing function such that limx→−∞ F (x) = 0 and 
limx→∞ F (x) = 1. Its characteristic function is φ(t) =

∫∞
−∞ eitxdF (x). Let {Fn(x)}

be a sequence of distribution functions, and let αr = limn→∞
∫∞
−∞ xrdFn(x) for each 

positive integer r. Then there exists a subsequence {Fnj
(x)} which converges weakly 

to a limiting distribution F (x) for which αr =
∫∞
−∞ xrdF (x) for each r. In that case, 

φ(t) =
∑∞

r=0 αr
(it)r
r! is the characteristic function of F (x).

By taking counting measures, we have the following theorem:

Theorem 3.13. Let L be a family of objects ρ ∈ L with invariant dρ ∈ Z+. For each 
ρ ∈ L, we are given α(ρ) ∈ R. Let L(X) = {ρ ∈ L | dρ ≤ X}. Suppose for each positive 
integer k, 1

|L(X)|
∑

ρ∈L(X) α(ρ)k → r(k) as X → ∞. Then

lim
X→∞

1
|L(X)|#{ρ ∈ L(X) |α(ρ) ≤ x} = F (x),

at each point of continuity of F (t), where F (t) is a distribution function whose charac-
teristic function is given by

f(t) =
∞∑
k=0

r(k)
k! (it)k.
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By Theorem 3.4,

lim
X→∞

1
|L(X)|

∑
ρ∈L(X)

(
−L′

L
(1, ρ)

)k

= r(k).

If r(k) � ck log log k for some absolute constant c > 1, the corresponding characteristic 
function f(t) is convergent for any t. Then

Corollary 3.14. Assume (3.2) and the strong Artin conjecture for ρ. Assume that r(k) �
ck log log k for some absolute constant c > 1. Then,

lim
X→∞

1
|L(X)|#

{
ρ ∈ L(X)

∣∣∣ − L′

L
(1, ρ) ≤ x

}
= F (x),

at each point of continuity of F (t), where F (t) is a distribution function whose charac-
teristic function is given by

f(t) =
∞∑
k=0

r(k)
k! (it)k.

4. Moments of L
′

L
(1, ρ) over parametric families

4.1. Regular extensions and their Galois representations

A finite extension E of the rational function field Q(t) is called regular if E ∩Q = Q. 
Suppose f(x, t) ∈ Q(t)[x] is an irreducible polynomial in x of degree d +1 with coefficients 
in Q(t), and gives rise to a regular Galois extension over Q(t) with the Galois group G. 
Let Kt be a field obtained by adjoining to Q a root of f(x, t) with a specialization t ∈ Z

and let K̂t be the Galois closure of Kt over Q. Let C be any conjugacy class of G. Recall

Theorem 4.1 (Serre [17], Section 4.6). There is a constant cf > 0 depending on f(x, t)
such that for any prime p ≥ cf , there is tC ∈ Z so that for any t ≡ tC (mod p), p is 
unramified in K̂t/Q, and Frobp ∈ C.

Let L(s, ρ, t) =
∑∞

n=1 λ(n, t)n−s = ζKt
(s)/ζ(s) be the Artin L-function attached 

to the number field Kt. Note that the conductor of L(s, ρ, t) is |dKt
|, and λ(p, t) =

N(p, t) − 1, where N(p, t) is the number of distinct solutions of f(x, t) ≡ 0 (mod p). 
Hence −1 ≤ λ(p, t) ≤ d.

By Theorem 4.1, for any prime p ≥ cf , we can choose an integer sp so that for 
any t ≡ sp (mod p), the Frobenius element of p is the identity in G. For X > 0, let 
y = log X

log log X and M =
∏

cf≤p≤y p. Let sM be an integer such that sM ≡ sp (mod p) for 
all cf ≤ p ≤ y. So if t ≡ sM (mod M), for all cf ≤ p ≤ y, p splits completely in K̂t, and 
λ(p, t) = d.
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Assume that the discriminant of f(x, t) is a polynomial in t of degree D. Then there 
is a constant A such that |dKt

| ≤ AtD. We define a set L(X) of positive integers:

L(X) =
{
X

2 < t < X | t ≡ sM (mod M), Gal(K̂t/Q) � G

}
.

By the construction of L(X), each t in L(X) corresponds to an Artin L-function 
L(s, ρ, t) with λ(p, t) = d for cf ≤ p ≤ y. By abuse of notation, we denote by L(X), the 
set of Artin L-functions L(s, ρ, t). Now we assume the strong Artin conjecture.

But it is possible that different t ∈ L(X) correspond to the same automorphic 
L-function, namely, ζKt1

(s) = ζKt2
(s). We assume that it does not happen. See the 

discussion at the beginning of Section 3. In section 4.3, we give three parametric poly-
nomials which satisfy these assumptions.

Now we consider the k-th moments

∑
L(s,ρ,t)∈L(X)

(
−L′

L
(1, ρ, t)

)k

.

Recall the definition of L̂(X) at the end of Section 2: the set of L-functions with the 
desired zero-free regions. For those L(s, ρ, t) which may not have the desired zero-free 
region, we use the trivial bound (Lemma 3.6) as in the proof of Theorem 3.4, and we 
may replace the sum L(s, ρ, t) ∈ L(X) by L(s, ρ, t) ∈ L̂(X).

For L(s, ρ, t) ∈ L̂(X), by applying Proposition 2.1 with x = (logAXD)m and y =
log X

log log X , we have ((4.4) of [4])

−L′

L
(1, ρ, t) = d log logX +

∑
y<p≤x

λ(p, t) log p
p

+ Ct, (4.2)

where Ct = O(log log logX). Here we use the fact that λ(p, t) = d for all cf ≤ p ≤ y =
log X

log log X . Hence

(
−L′

L
(1, ρ, t)

)k

= dk(log logX)k +
k−1∑
i=0

(
k
i

)
(d log logX)i

k−i∑
r=0

(
k − i
r

)
(Σt)rCk−r−i

t ,

where Σt =
∑

y<p≤x
λ(p,t) log p

p .
Hence, in order to compute the k-th moment, we need to deal with the sum, for each 

integer r, 0 ≤ r ≤ k − i, ∑
L(s,ρ,t)∈L̂(X)

(Σt)rCk−i−r
t . (4.3)

By Cauchy–Schwartz inequality,
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(4.3) �

⎛⎝ ∑
L(s,ρ,t)∈L̂(X)

(Σt)2r
⎞⎠ 1

2
⎛⎝ ∑

L(s,ρ,t)∈L̂(X)

C
2(k−i−r)
t

⎞⎠ 1
2

.

Here 
∑

L(s,ρ,t)∈L̂(X) C
2(k−i−r)
t � |L̂(X)|(log log logX)2(k−i−r). Now consider

E(r,X) =
∑

L(s,ρ,t)∈L̂(X)

(Σt)r =
∑

L(s,ρ,t)∈L̂(X)

⎛⎝ ∑
y<p≤x

λ(p, t) log p
p

⎞⎠r

(4.4)

=
∑

p1,..,pr

(log p1) · · · (log pr)
p1 · · · pr

∑
L(s,ρ,t)∈L̂(X)

λ(p1, t) · · ·λ(pr, t).

If pi = pj for some i �= j, then by the trivial estimate, the contribution of such case 
to (4.4) is � |L̂(X)|(log logX)r−1.

Now we assume that pi �= pj for each i �= j. To deal with this case, recall the following 
[4]: Suppose f(x, t) gives rise to a regular Galois extension over Q(t). For a fixed prime p, 
consider the equation f(x, t) ≡ 0 (mod p). Let Ai,p be the number of t (mod p) such that 
λ(p, t) = i, i.e., f(x, t) ≡ 0 (mod p) has i +1 roots. Then we have 

∑n−1
i=−1 Ai,p = p +O(1), 

where O(1) is bounded by D, the degree of discriminant of f(x, t). We proved in [4, (5.2)],

d∑
i=−1

iAi,p = O(√p). (4.5)

Now define Qi = {X
2 < t < X | t ∈ L(X) and t ≡ i (mod p1 · · · pr)} and write L(X) =⋃

i Qi.
Let R be a subset of {0, 1, 2, · · · , p1p2 · · · pr−1} for which k ∈ R if and only if at least 

one of p1, p2, · · · , pr is ramified for t ∈ Qk. Note that |R| < Dr. Now we assume

|Qi| = cp1···pr

|L(X)|
p1 · · · pr

+ O

(
|L(X)|

p1 · · · pr(logX) 1
2

)
for i /∈ R, (4.6)

where cp1···pr
is a constant close to 1, independent of i. We give in Section 4.3 several 

examples which satisfy (4.6). Then we have

Proposition 4.7. Assume the estimate (4.6). For distinct r primes pi with y < pi ≤ x, 
i = 1, · · · , r,

∑
L(s,ρ,t)∈L̂(X)

λ(p1, t) · · ·λ(pr, t) �
|L̂(X)|

√
p1 · · · pr

+ |L̂(X)|
(logX) 1

2
,

where the implied constant is independent of p1, · · · , pr.
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Note that in [4], we showed Proposition 4.7 for a single prime p.

Proof. Since |L̂(X)| = |L(X)| + O(X1/100), it is enough to show that

∑
L(s,ρ,t)∈L(X)

λ(p1, t) · · ·λ(pr, t) �
|L(X)|√
p1 · · · pr

+ |L(X)|
(logX) 1

2
.

If k ∈ R, ∣∣∣∣∣∣
∑

L(s,ρ,t)∈Qk

λ(p1, t) · · ·λ(pr, t)

∣∣∣∣∣∣ ≤ dr
|L(X)|
p1 · · · pr

+ O(1).

If k /∈ R, pi is unramified for all t ∈ Qk, and λ(pi, t) = j(ki) for a unique j(ki). In that 
case,

∑
L(s,ρ,t)∈Qk

λ(p1, t) · · ·λ(pr, t) = j(k1) · · · j(kr)cp1···pr

|L(X)|
p1 · · · pr

+ O

(
|L(X)|

p1 · · · pr(logX) 1
2

)
.

Hence∑
k/∈R

∑
L(s,ρ,t)∈Qk

λ(p1, t) · · ·λ(pr, t) =
∑
k/∈R

j(k1) · · · j(kr)|Qk|

= cp1···pr

|L(X)|
p1 · · · pr

∑
k/∈R

j(k1) · · · j(kr) + O

(
|L(X)|

(logX) 1
2

)

= cp1···pr

|L(X)|
p1 · · · pr

r∏
u=1

(
d∑

i=−1
iAi,pu

)
+ O

(
|L(X)|

(logX) 1
2

)
.

By (4.5),

∑
L(s,ρ,t)∈L(X)

λ(p1, t) · · ·λ(pr, t) �
|L(X)|

√
p1 · · · pr

+ |L(X)|
(logX) 1

2
. �

By Proposition 4.7 and (4.4) we have

E(r,X) � |L̂(X)|(log logX)r−1.

We summarize our discussion as

Theorem 4.8. Assume the strong Artin conjecture for L(s, ρ, t), and the L-functions in 
L(X) are distinct. Assume the estimate (4.6). Then
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1
|L(X)|

∑
L(s,ρ,t)∈L(X)

(
−L′

L
(1, ρ, t)

)k

= dk(log logX)k + O
(
(log logX)k− 1

2

)
.

4.2. Families with different moments

In the previous sections, we chose the trivial conjugacy class [e] so that λ(p, t) = d for 
cf ≤ p ≤ y. But for any conjugacy class C of G, by Theorem 4.1, there is a constant cf
depending on f such that we can choose, for any prime p ≥ cf , an integer ip,C so that for 
any t ≡ ip,C (mod p), Frobp belongs to C. Let iM,C be an integer such that iM,C ≡ ip,C
(mod p) for all cf ≤ p ≤ y. So if t ≡ iM,C (mod M), for all cf ≤ p ≤ y, Frobp belongs 
to C and λ(p, t) = χ(C), where χ is the trace of the representation ρ.

As we did before, we define a set L(X) given by

L(X) =
{
X

2 < t < X | t ≡ iM,C (mod M), Gal(K̂t/Q) � G

}
.

Then the k-th moment of −L′

L (1, ρ, t) is

1
|L(X)|

∑
ρ∈L̂(X)

(
−L′

L
(1, ρ, t)

)k

= χ(C)k(log logX)k + O
(
(log logX)k− 1

2

)
.

4.3. Examples

We recall concrete examples from [4,5].

4.3.1. Quadratic fields
Consider Kt = Q[

√
t] for t square free and t ≡ 1 (mod 4). For M = 4 

∏
3≤p≤y p, we 

define

L(X) =
{
X

2 < t < X| t square-free and t ≡ sM (mod M)
}
.

For t ∈ L(X), since the conductor for L(s, ρ, t) is t, all L-functions in L(X) is distinct. 
In this case,

Qi =
{
X

2 < t < X| t square-free, t ≡ sM (mod M), t ≡ i (mod p1p2 · · · pr)
}
.

Since pj > y for j = 1, · · · , r, (p1p2 · · · pr, M) = 1. If i �≡ 0 (mod pj) for all j, then by 
[7], p. 248, we have

|Qi| = 3
π2

∏
(1 − q−2)−1 X

M

⎡⎣ r∏
j=1

(1 − p−2
j )−1 1

pj

⎤⎦+ O(X1/2)

q|M
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= cp1···pr

|L(X)|
p1 · · · pr

+ O(X1/2),

where cp1···pr
=

∏r
j=1(1 − p−2

j )−1, which is independent of i. Since pj � (logX)m, it 
follows that X1/2 � |L(X)|

p1···pr(log X)1/2 and (4.6) is verified.

4.3.2. A5 quintic fields
Consider the polynomial f(x, t) = x5 +5(5t2−1)x −4(5t2−1), where 5t2−1 is square 

free. Here the discriminant of f(x, t) is disc(f(x, t)) = 2856t2(5t2 − 1)4.
Let

L(X) =
{
X

2 < t < X | 5t2 − 1 square-free, t even, t ≡ iM (mod M)
}
.

In [4], we showed that the splitting field of f(x, t) over Q(t) is an A5 regular extension 
and L(s, ρ, t) is a cuspidal automorphic L-functions of GL4/Q. Also it is shown that 
L(s, ρ, t)’s are distinct. Here

Qi =
{
X

2 < t < X| 5t2 − 1 square-free, t even,

t ≡ sM (mod M), t ≡ i (mod p1 · · · pr)
}
.

Let R be the set of solutions t (mod p1 · · · pr) for disc(f(x, t)) ≡ 0 (mod p1 · · · pr). 
Since pj > y for j = 1, · · · , r, (p1p2 · · · pr, M) = 1. For i /∈ R, by [9], we have

|Qi| =
∏
q�M

(
1 −

(
1 +

(
5
q

))
q−2

)
X

2M

⎡⎣ r∏
j=1

(
1 −

(
1 +

(
5
q

))
p−2
j

)−1 1
pj

⎤⎦
+ O(X2/3 logX)

= cp1···pr

|L(X)|
p1 · · · pr

+ O(X2/3 logX),

where cp1···pr
=

∏r
j=1

(
1 −

(
1 +

(
5
q

))
p−2
j

)−1
, which is independent of i. Since pj �

(logX)m, it follows that X2/3 logX � |L(X)|
p1···pr(log X)1/2 , and (4.6) is verified.

4.3.3. S5 quintic fields
In [5], we considered a parametric polynomial f(x, t) = x5 + tx + t such that 

disc(f(x, t)) = t4(256t + 3125). We showed that the splitting field of f(x, t) over Q(t) is 
a regular S5 extension. Let

L(X) =
{
X

< t < X | t square-free, t ≡ 1 (mod 5), t ≡ iM (mod M)
}
.
2
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The congruence condition t ≡ 1 (mod 5) is required to show that L(s, ρ, t) is a cuspidal 
automorphic L-function of GL4/Q using a result of Calegari [3]. We showed that all 
L(s, ρ, t)’s are distinct, and (4.6) can be verified as in the case of quadratic fields.

Remark 4.9. Theorem 4.8 is valid for all the examples in [4] except possibly for A4
examples.

5. Moments of logL(1, ρ)

Suppose L(s, ρ) is entire and is zero free in the rectangle [α, 1] × [−x, x], and N is the 
conductor of ρ. Then as in (2.3), we have

logL(1, ρ) =
∑

2≤n<x

Λ(n)aρ(n)
n log n + O

(
logN log x + (log x)2

x1−α+1
2

)
. (5.1)

This implies the following approximation of logL(1, ρ) as a sum over a short interval:

logL(1, ρ) =
∑

p≤(log N)m

aρ(p)
p

+ Oα(1), m

(
1 − α + 1

2

)
> 3. (5.2)

For those L(s, ρ) which may not have the desired zero-free region, we use an uncon-
ditional bound given by Louboutin [15]: L(1, ρ) � (log |dK |)d.

Applying (5.2) to L(s, ρ, t) ∈ L̂(X) in Section 4.1, we have

logL(1, ρ, t) = d log log logX +
∑

y≤p<(log X)m

aρ(p)
p

+ O(log log log logX).

As we did in section 4, we can show that the k-th moment for this family is

1
|L(X)|

∑
L(s,ρ,t)∈L(X)

(logL(1, ρ, t))k = dk(log log logX)k + O((log log logX)k−1/2).

For Gd+1-fields, we can show as in Sections 3,

1
|L(X)|

∑
ρ∈L(X)

(logL(1, ρ))k = O(1).

In order to obtain the asymptotic formula, we use (5.1). Write

logL(1, ρ) = Σρ + Cρ, Σρ =
∑

n<(log X)m

Λ(n)aρ(n)
n log n ,

and Cρ = O
(

1
)
. Then
log X
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∑
ρ∈L(X)

(logL(1, ρ))k =
∑

ρ∈L(X)

(Σρ)k +
∑

ρ∈L(X)

k−1∑
r=0

(
k
r

)
(Σρ)rCk−r

ρ .

As before, we can show

Proposition 5.3. Let L(X) be the set of Sd+1-fields as in Section 3. Let f1(q), f1(q, a, e), 
and A(q, a, e) be as in Theorem 3.4. Then

1
|L(X)|

∑
ρ∈L(X)

logL(1, ρ) =
∑

p, u≥2

A(p, u, 1) + f1(q, u, 1)
upu

+
∑
p

f1(p)
p

+ O

(
1

logX

)
.

For a = (a1, . . . , at) and e = (e1, . . . , et), define ae = ae11 ae22 · · · aett . Then,

1
|L(X)|

∑
ρ∈L(X)

(logL(1, ρ))k

=
∑

q1,...,qu+v

eu+j ,au+j , j=1,...,v

u∏
i=1

f1(qi)
qi

v∏
j=1

(A(qu+j ,au+j , eu+j) + f1(qu+j ,au+j , eu+j))
aeu+j

u+j q
|au+jeu+j |
u+j

+ O

(
1

logX

)
,

where q1, · · · , qu+v are as in Theorem 3.4.

We write

lim
X→∞

1
|L(X)|

∑
ρ∈L(X)

(logL(1, ρ))k = r̃(k).

Corollary 5.4. Assume (3.2) and the strong Artin conjecture for ρ. Assume that r̃(k) �
ck log log k for some absolute constant c > 1. Then,

lim
X→∞

1
|L(X)|#{ρ ∈ L(X) | logL(1, ρ) ≤ x} = F̃ (x),

at each point of continuity of F̃ (t), where F̃ (t) is a distribution function whose charac-
teristic function is given by

f̃(t) =
∞∑
k=0

r̃(k)
k! (it)k.
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