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Let C be a conjugacy class of Sn and K an Sn-field. Let nK,C be the smallest prime, which

is ramified or whose Frobenius automorphism Frobp does not belong to C. Under some

technical conjectures, we show that the average of nK,C is a constant. We explicitly

compute the constant. For S3- and S4-fields, our result is unconditional. Let NK,C be the

smallest prime for which Frobp belongs to C. We obtain the average of NK,C under some

technical conjectures. When C is the union of all the conjugacy classes not contained in

An and n = 3, 4, our result is unconditional.

1 Introduction

For a fundamental discriminant D, let χD(·) = (D
· ), and let ND,±1 be the smallest

prime such that χD(p) = ±1, resp. Let nD,±1 be the smallest prime such that χD(p) �=
±1, resp. We can interpret ND,1 (ND,−1) as the smallest prime that splits completely

(inert, resp.) in a quadratic field Q(
√

D). Under the assumption of the Generalized

Riemann Hypothesis (GRH) for L(s, χD), one can show easily that ND,±1, nD,±1 � (log D)2.

Erdös [16] considered the average of those values over a family limX→∞
∑

2<p≤X Np,−1

π(X)
=

∑∞
k=1

pk
2k = 3.67464..., where p runs through primes, and pk is the k-th prime. Pollack
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[29] generalized Erdös’ result to all fundamental discriminants:

lim
X→∞

∑
|D|≤X ND,±1
∑

|D|≤X 1
=

∑

q

q2

2(q + 1)

∏

p<q

p + 2

2(p + 1)
= 4.98094 . . . ,

where p and q denote primes. (In [25], the value 4.98094... is misquoted as 4.98085.)

Pollack [30] also computed the average of the least inert primes over cyclic number fields

of prime degree.

We generalize this problem to the setting of general number fields. We call a

number field K of degree n, an Sn-field if its Galois closure K̂ over Q is an Sn Galois

extension. Let L(r2)
n (X) be the set of Sn-fields K of signature (r1, r2) with |dK | ≤ X, where

dK is the discriminant of K.

Let C be a conjugacy class of Sn. For an unramified prime p, denote by Frobp, a

Frobenius automorphism of p. Define nK,C to be the smallest prime p, which is ramified

in K or for which Frobp �∈ C. Similarly define NK,C to be the smallest prime p such that

Frobp ∈ C. Under GRH, we can show that nK,C, NK,C � (log |dK |)2. (We have nK,C, NK,C �
(log |dK̂ |)2 (cf. [1], [26]), but we have log |dK̂ | 
 log |dK | (cf. [28, Lemma 3.4]).)

In this paper we consider the average value of nK,C and NK,C over L(r2)
n (X). First,

we prove the following:

Theorem 1.1. Let n = 3, 4, 5. When n = 5, we assume either the strong Artin conjecture,

or Conjecture 3.2. Then,

1

|L(r2)
n (X)|

∑

K∈L
(r2)
n (X)

nK,C =
∑

q

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O
(

1

log X

)

, (1.1)

where p and q denote primes, and f (p) is a certain function of primes that satisfies

f (p) = O( 1
p ). See Section 2 for a precise form for each n.

For S3-fields, Martin and Pollack [25] computed (1.1) for C = {1}, [(123)]. The

main key ingredient was counting S3-fields with finitely many local conditions, which

is a recent result of Taniguchi and Thorne [34]. In [10], we were able to count S4- and

S5-fields with finitely many local conditions using a result of Belabas, Bhargava, and

Pomerance [2], and a result of Shankar and Tsimerman [33]. In Section 2, we review

counting number fields with finitely many local conditions, which is the main tool for

the proof.

Our key idea is to use the unique quadratic subextension F = Q[
√

dK ], which we

call the quadratic resolvent. For unconditional bounds on nK,C, we use the inequality
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The Average of the Smallest Prime 3

nK,C ≤ nF,1 ≤ NF,−1 or nK,C ≤ nF,−1 ≤ NF,1 depending on whether C ⊂ An or C �⊂ An. We

have unconditional bounds of NF,±1 by Norton [27] and Pollack [31]. We review this in

Section 3.1.

Let χF = χdF , where dF is the discriminant of F. By using the zero-free region of

L(s, χF), we can get conditional bounds on nK,C. This is done in Section 3.2. Here we need

to count the number of Sn-fields with the same quadratic resolvent. For S3-fields, Cohen

and Morra [11] found a formula for the number of S3-fields having the same quadratic

resolvent F. However, the dependence on F of the error term is not explicit, which makes

it unsuitable for our purpose. Using a result of Cohen and Thorne [12], we obtain a bound

on the number of S3-fields having the same quadratic resolvent for which the implied

constant is independent of F. But for n ≥ 4, we could not find it in the literature. We

state it as Conjecture 3.2. In Section 4, we establish (4.2) (a general version of (1.1) under

the counting Conjectures (2.1) and (2.2) and Conjecture 3.2.) See Theorem 4.1 and tables

below it for the average values, which were computed by using the computer algebra

system PARI/GP.

In Section 5, for n = 3, 4, 5, we prove (1.1) without Conjecture 3.2. Instead we

use the strong Artin conjecture. Since the strong Artin conjecture is true for n = 3, 4,

Theorem 1.1 is unconditional for n = 3, 4. In this case, we need zero-free regions of

different Artin L-functions for each conjugacy class.

In Martin and Pollack [25, Theorem 4.8], the average of NK,C for S3-

fields was studied under GRH. For NK,C, we have conditional bounds NK,C �
ec(log log |dK |) 5

3 +ε

for some constant c [28, Theorem 1.1] under the zero-free region

[α, 1] × [−(log |dK̂ |)2, (log |dK̂ |)2] of ζK̂(s)
ζ(s) . In Section 6.1, we obtain a better bound

NK,C � (A(1 − α) log |dK̂ |) 1
1−α for some positive constant A. However, we do not have

good unconditional bounds for NK,C as we do for nK,C. The best bound at the moment is

NK,C � |dK̂ |40 [36]. In Section 6, we compute the average of NK,C under the assumption

that NK,C � |dK | 1
2 −εn for some constant 0 < εn < 1/2. Tables for the average values of

NK,C for Sn, n = 3, 4, 5, are provided.

Theorem 1.2. Let n = 3, 4, 5. When n = 5, we assume the strong Artin conjecture. When

n = 4, 5, we assume Conjecture 3.2. Under the assumption that NK,C � |dK | 1
2 −εn , we have

1

|L(r2)
n (X)|

∑

K∈L
(r2)
n (X)

NK,C =
∑

q

q(|C|/|Sn|)
1 + f (q)

∏

p<q

1 − |C|/|Sn| + f (p)

1 + f (p)
+ O

(
1

log X

)

, (1.2)

where p and q denote primes.
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In Section 6.4, we obtain an unconditional result for the average of NK,Cu , where

Cu is the union of all the conjugacy classes not in An, since in this case we have a good

unconditional bound. In particular, we have

Theorem 1.3. For S3-fields and C = [(12)], and S4-fields and Cu = [(1234)] ∪ [(12)], we

have an unconditional result for the average of NK,Cu . For S3-fields and C = [(12)], the

average value of NK,C is 5.36802 . . . . For S4-fields and Cu = [(1234)] ∪ [(12)], the average

value of NK,Cu is 5.821569 . . . .

Under the strong Artin conjecture, it is true for S5-fields: for Cu = [(12)(345)] ∪
[(12)] ∪ [(1234)], the average value of NK,Cu is 5.9733589 . . . .

In the Appendix, using a result of Cohen and Thorne [13], we count the number

of S4-fields with the given cubic resolvent. In Section 5, this result is used to compute

the average of nK,C, C = (123) for S4-fields.

2 Counting Number Fields with Local Conditions

Let K be a Sn-field for n ≥ 3. Let S = (LCp) be a finite set of local conditions; LCp = Sp,C

means that p is unramified and the conjugacy class of Frobp is C. Define |Sp,C| =
|C|

|Sn|(1+f (p))
for some function f (p), which satisfies f (p) = O( 1

p ). There are also several

splitting types of ramified primes, which are denoted by r1, r2, . . . , rw; LCp = Sp,rj means

that p is ramified and its splitting type is rj. We assume that there are positive-valued

functions c1(p), c2(p), . . . , cw(p) with
∑w

i=1 ci(p) = f (p) and define |Sp,ri | = ci(p)
1+f (p)

. Let

|S| = ∏
p |LCp|.

Conjecture 2.1. Let L(r2)
n (X;S) be the set of Sn-fields K of signature (r1, r2) with |dK | < X

and the local conditions S. Then

|L(r2)
n (X)| = A(r2)X + O(Xδ), (2.1)

|L(r2)
n (X;S)| = |S|A(r2)X + O

⎛

⎝
( ∏

p∈S

p
)γ

Xδ

⎞

⎠ (2.2)

for some positive constants A(r2), δ < 1 and γ , and the implied constant is uniformly

bounded for p and local conditions at p.

This conjecture is true for S3-, S4- and S5-fields. See below for precise values

of A(r2) for n = 3, 4, 5. For S3-fields, we use a result of Taniguchi and Thorne [34]. Let
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f (p) = p−1 + p−2. Put

|Sp,rj | = p−1

1 + f (p)
,

p−2

1 + f (p)
,

for rj = (121), (13), respectively. Then

Theorem 2.2. [34] Let D0 = 1
12ζ(3)

, D1 = 3
12ζ(3)

.

|L(r2)
3 (X,S)| = |S|Dr2X + O

⎛

⎜
⎝

⎛

⎝
∏

p∈S
p

⎞

⎠

16
9

X
5
6

⎞

⎟
⎠ .

For S4-fields, take f (p) = p−1 + 2p−2 + p−3. For a conjugacy class C of S4, let

|Sp,C| = |C|
24(1 + f (p))

.

Put

|Sp,rj | = 1/2 · 1/p

1 + f (p)
,

1/2 · 1/p

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/p2

1 + f (p)
, and

1/p3

1 + f (p)

for rj = (1211), (122), (1212), (22), (131), (14), respectively. By using the results of [2], [35],

we showed the following:

Theorem 2.3. [10] Let Di = di
∏

p(1+p−2 −p−3 −p−4), and d0 = 1
48 , d1 = 1

8 , and d2 = 1
16 .

|L(r2)
4 (X,S)| = |S|Dr2X + Oε

⎛

⎜
⎝

⎛

⎝
∏

p∈S
p

⎞

⎠

2

X
143
144 +ε

⎞

⎟
⎠ .

For S5-fields, take f (p) = p−1 + 2p−2 + 2p−3 + p−4. For a conjugacy class C of S5,

let

|Sp,C| = |C|
120(1 + f (p))

.

Put

∣
∣
∣Sp,rj

∣
∣
∣ = 1/6 · 1/p

1 + f (p)
,

1/2 · 1/p

1 + f (p)
,

1/3 · 1/p

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/2 · 1/p2

1 + f (p)
,

1/p3

1 + f (p)
,

1/p3

1 + f (p)
, and

1/p4

1 + f (p)
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for rj = (12111), (1212), (123), (12121), (221), (1311), (132), (1312), (141), (15), respectively.

By using the result of [33], we showed

Theorem 2.4. [10] Let Di = di
∏

p(1 + p−2 − p−4 − p−5) and d0, d1, d2 are 1
240 , 1

24 , and 1
16 ,

respectively.

|L(r2)
5 (X,S)| = |S|Dr2X + Oε

⎛

⎝
( ∏

p∈S
p
)2−ε

X
199
200 +ε

⎞

⎠ .

3 Bounds on nK,C

Recall that nK,C is the smallest prime, which is ramified in K or for which Frobp does

not belong to C. Now K̂ has the quadratic field F fixed by An, that is, F = Q[
√

dK ]. Let dF

be the discriminant of F. Then clearly, |dF | ≤ |dK |. By abuse of language, we call such F

the quadratic resolvent of K.

If C ⊂ An and Frobp ∈ C, then p splits in F. Hence, nK,C ≤ nF,1.

If C �⊂ An and Frobp ∈ C, then p is inert in F. Hence, nK,C ≤ nF,−1.

3.1 Unconditional bounds of nK,C

By Norton [27], NF,−1 �ε |dF |
1

4
√

e
+ε �ε |dK |

1
4
√

e
+ε

. Since nF,1 ≤ NF,−1,

nK,C �ε |dF |
1

4
√

e
+ε �ε |dK |

1
4
√

e
+ε

for C ⊂ An.

By Pollack [31], NF,1 �ε |dF | 1
4 +ε �ε |dK | 1

4 +ε . Since nF,−1 ≤ NF,1,

nK,C �ε |dF | 1
4 +ε �ε |dK | 1

4 +ε for C �⊂ An.

3.2 Conditional bounds of nK,C

We obtain conditional bounds on nF,C under the zero-free region of L(s, χF), where

χF(p) = (dF
p ). Suppose L(s, χF) is zero-free on [α, 1] × [−(log |dF |)2, (log |dF |)2].

Then by [8],

−L′

L
(σ , χF) =

∑

p<(log |dF |)16/(1−α)

χF(p) log p

pσ
+ O(1),

for 1 ≤ σ ≤ 3/2. Hence, it implies that

∣
∣
∣
∣−

L′

L
(σ , χF)

∣
∣
∣
∣ ≤ 16

(1 − α)
log log |dF | + O(1).
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The Average of the Smallest Prime 7

Now for C ⊂ An, consider ζF(s) = ζ(s)L(s, χF). We obtain

∑

p

(1 + χF(p)) log p

pσ
= 1

σ − 1
− L′

L
(σ , χF) + O(1).

For a while, we assume that nK,C ≥ 3. For each prime p < nK,C, the prime p splits

in the quadratic resolvent F. (i.e., χF(p) = 1 for all p < nK,C.)

Then
∑

p<nK,C

2 log p

pσ
≤ 1

σ − 1
− L′

L
(σ , χF) + O(1).

By taking σ − 1 = λ
log nK,C

, we have

1 − 2e−λ

2λ
log nK,C ≤ 16

(1 − α)
log log |dF | + O(1).

Hence,

nK,C � (log |dF |) 16
(1−α)A � (log |dK |) 16

(1−α)A ,

where A = supλ≥0
1−2e−λ

λ
, which is 0.37... when λ = 1.678.... When nK,C = 2, it clearly

satisfies the above inequality. Hence, we can remove the assumption nK,C ≥ 3.

Now for C �⊂ An, consider

∑

p

(1 − χF(p)) log p

pσ
= 1

σ − 1
+ L′

L
(σ , χF) + O(1).

For each prime p < nK,C, the prime p is inert in F. (i.e., χF(p) = −1 for all p < nK,C.) We

have the inequality

∑

p<nK,C

2 log p

pσ
≤ 1

σ − 1
+ L′

L
(σ , χF) + O(1).

Hence,

nK,C � (log |dF |) 16
(1−α)A � (log |dK |) 16

(1−α)A . (3.1)

(Here we implicitly assume that nK,C ≥ 3 and remove the restriction after we obtain the

upper bound.)

Because we lack the GRH, we cannot use the above bound directly. In [7], we

extended the result of Kowalski and Michel [22] to isobaric automorphic representations

of GL(n).
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8 P. J. Cho and H. H. Kim

Let n = n1 + n2 + · · · + nr, and let S(X) be a set of isobaric representations π =
π1�π2�· · ·�πr, where each πj is a cuspidal automorphic representation of GL(nj)/Q and

satisfies the Ramanujan-Petersson conjecture at the finite places. Suppose S(X) satisfies

the following conditions:

(1) There exists e > 0 such that for π = π1 � π2 � · · · � πr ∈ S(X),

Cond(π1) · · · Cond(πr) ≤ Xe;

(2) There exists d > 0 such that |S(X)| ≤ Xd;

(3) The �-factors of πj are of the form
∏nj

k=1 �(s/2 + αk) where αk ∈ R;

(4) Given two representations π , π ′ ∈ S(X), for each j, πj is not equivalent to any

π ′
k if nj = nk.

For α ≥ 3/4 and T ≥ 2, let

N(π ; α, T) = |{ρ : L(ρ, π) = 0, Re(ρ) ≥ α, |Im(ρ)| ≤ T}| .

Then, clearly N(π ; α, T) = N(π1; α, T) + · · · + N(πr; α, T).

Theorem 3.1. ([7, Theorem 3.4]) Let S(X) be as above. Then for some B ≥ 0,

∑

π∈S(X)

N(π ; α, T) ≤ TBXc0(1−α)/(2α−1).

One can choose any c0 > c′
0, where c′

0 = 5n′e/2 + d with n′ = max{ni}1≤i≤r.

In application of Theorem 3.1 to a family S(X), it is very important to estimate the

size of the set of L-functions L(s, π) coming from S(X). Our L-functions in consideration

are Artin L-functions associated with Sn-fields. To show that they are all distinct,

arithmetic equivalence of number fields is used. Two number fields K and F are

arithmetically equivalent if ζK(s) = ζF(s). We say that a number field K is arithmetically

solitary if ζK(s) = ζF(s) implies that K and F are conjugate. It is known that Sn-fields are

arithmetically solitary [20, Chapter II].

Let

L(X)± = {F| F : quadratic field, ±dF ≤ X}.
We may treat L(X)± as families of quadratic Dirichlet L-functions L(s, χF). We apply

Theorem 3.1 to L(X)± with d = e = 1, T = log X, and q = X. Since distinct fundamental

discriminants give distinct L-functions L(s, χF), |L(X)±| = c±X +O(
√

X) for some positive

constants c±. For any ε > 0, by choosing α close to 1 so that c0(1 − α)/(2α − 1) < ε. Then
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The Average of the Smallest Prime 9

we can show that every L-function in L(X)± is zero-free on [α, 1] × [−(log X)2, (log X)2]

except for O(Xε) L-functions. In Section 5, we will apply Theorem 3.1 to various families

of L-functions.

In order to use this result, we need to count the number of Sn-fields with the

common quadratic resolvent. Let F be a quadratic field, and let QRn(X, F) be the set

of Sn-fields with the common quadratic resolvent F and the absolute value of the

discriminant bounded by X. Since dK = dFm2 for some m ∈ Z+, by the counting

Conjecture (2.1), it is expected that |QRn(X, F)| � (X/|dF |)1/2. For our purpose, a weaker

bound is enough.

Conjecture 3.2. There exist constants αn > 0, 0 < βn < 1/2 such that

|QRn(X, F)| � X
1
2 (log X)αn |dF |− 1

2 +βn ,

where the implied constant is independent of F.

When n = 3, Cohen and Morra [11] found a formula for the number of S3-fields

having the same quadratic resolvent F. However, in their result, the dependence on F

of the error term is not explicit, which makes it unsuitable for our purpose. We use a

result of Cohen and Thorne [12]: given a quadratic field F, let

�F(s) = 1

2
+

∑

K∈F(F)

1

f (K)s ,

where dK = dFf (K)2, and F(F) is the set of all cubic fields K with the quadratic resolvent

field F. Let D be a fundamental discriminant, and D∗ = −3D if 3 � D, and D∗ = −D
3 if 3|D.

Define L3(D) = LD∗ ∪ L−27D, where LN is the set of cubic fields of discriminant N. By

Theorem 2.5 in [12],

�F(s) =
|L3(dF )+1|∑

i=1

�i(s), �i(s) =
∞∑

n=1

ai(n)

ns ,

and ai(n) ≤ 2ω(n) �2
log n

log log n �nε . Hence, each �i(s) is absolutely convergent for Re(s) > 1.

We also have �i(1 + c + it) � (
ζ(1+c)
ζ(2+2c)

)2 � 1
c2 with an absolute implied constant. Now we
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10 P. J. Cho and H. H. Kim

apply Perron’s formula to each �i(s). For c = 1
log x ,

∑

n<x

ai(n) =
∫ 1+c+ix

1+c−ix
�i(1 + c + it)

xs

s
ds + O

(
xε

)
,

with an absolute implied constant. Since �i(1 + c + it) � (log x)2, the integral is

majorized by x(log x)3. So
∑

n<x ai(n) � x(log x)3. By [15], |LN | � |N| 1
3 +ε . Hence,

|{K ∈ F(F)|f (K) ≤ x}| =
|L3(dF )+1|∑

i=1

∑

n<x

ai(n) � |dF | 1
3 +εx(log x)3.

Therefore,

|{K ∈ F(F) | f (K) ≤ x}| � x(log x)3|dF | 1
3 +ε .

Hence, we have proved

Proposition 3.3.

|QR3(X, F)| � X
1
2 (log X)3|dF |− 1

6 +ε ,

where the implied constant is independent of F.

Remark 3.4. Martin and Pollack [25] obtained a bound |QR3(X, F)| �ε X
5
6 +ε |dF |− 1

2 ,

which is enough in computing the average of nK,C for S3-fields, but not enough for NK,C.

Remark 3.5. A recent preprint by Pierce, Turnage-Butterbaugh, and Wood [28] gener-

alizes Theorem 3.1. Essentially what they do is to replace the condition (4) with the

following weaker condition [28, (6.6)]: for any i and any π ∈ S(X),

∣
∣{π ′ ∈ S(X) | π ′

i is equivalent to πi}
∣
∣ � Xτ (3.2)

for some positive constant τ < d. For K ∈ L(r2)
n (X), write

ζK̂(s)

ζ(s)
= L(s, χF)

∏
ψ L(s, ψ)ψ(1),

where F is the quadratic resolvent of K, and ψ runs over the irreducible characters of

Sn such that ψ(1) > 1. When we consider

S(X) =
{

ζK̂(s)

ζ(s)
| K ∈ L(X)

}

,

Conjecture 3.2 is a refinement of Condition (3.2) when πi = χF .
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The Average of the Smallest Prime 11

4 Average Value of nK,C

In this section, we prove Theorem 4.1 (Theorem 1.1) under Conjecture 3.2, and the

counting Conjectures (2.1) and (2.2).

For simplicity of notation, we denote L(r2)
n (X) by L(X). Take y = 1−δ

4γ
log X, where

δ and γ are the constants in (2.1) and (2.2). Then

∑

K∈L(X)

nK,C =
∑

K∈L(X), nK,C≤y

nK,C +
∑

K∈L(X), nK,C>y

nK,C.

Here nK,C = q means that for all primes p < q, Frobp ∈ C and q is ramified or

Frobq �∈ C. By the counting conjectures, there are

1 − |C|/|Sn| + f (q)

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

A(r2)X + O
(
X

1+3δ
4

)

such number fields in L(X). Hence,

∑

K∈L(X), nK,C≤y

nK,C =
∑

q≤y

q
∑

K∈L(X), nK,C=q

1

= A(r2)X
∑

q≤y

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O
(
y2X

1+3δ
4

)

= A(r2)X
∑

q

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O

⎛

⎝X
∑

q>y

q
∏

p<q

(|C|/|Sn|) + (log X)2X
1+3δ

4

⎞

⎠ .

Since

∑

q>y

q
∏

p<q

(|C|/|Sn|) ≤
∑

q>y

q
( |C|

|Sn|
)π(q)

� 1

log X
,

we have

∑

K∈L(X), nK,C≤y

nK,C = A(r2)X
∑

q

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O
(

X

log X

)

.

Now we divide the sum
∑

|dK |≤X, nK,C>y nK,C into two subsums. Let E(X) be the set

of Sn-fields K in L(X) for which the quadratic L-function L(s, χF), where F is the quadratic
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12 P. J. Cho and H. H. Kim

resolvent of K, may not have the desired zero-free region [α, 1] × [−(log X)2, (log X)2]. If

K /∈ E(X), L(s, χF) has no zeros in [α, 1] × [−(log |dF |)2, (log |dF |)2].

∑

K∈L(X), nK,C>y

nK,C =
∑

nK,C>y, K �∈E(X)

nK,C +
∑

nK,C>y, K∈E(X)

nK,C. (4.1)

To handle the first sum, we use the conditional bound on nK,C in Section 3.2.

∑

nK,C>y, K �∈E(X)

nK,C � (log X)
16

(1−α)A
∑

nK,C>y

1

� (log X)
16

(1−α)A

⎛

⎝X
∏

p<y

(|C|/|Sn|) + Xδ

⎛

⎝
∏

p<y

p

⎞

⎠

γ ⎞

⎠

� X(log X)
16

(1−α)A

( |C|
|Sn|

)π(y)

+ X
1+δ

2 .

We use the fact that (
|C|
|Sn| )

π(y) � e− log X
log log X � (log X)−k for any k.

Let’s deal with the second sum. From the unconditional bound in Section 3.1,

nK,C � |dF |
1

4
√

e
+ε

or |dF | 1
4 +ε depending on whether C ⊂ An or C �⊂ An. In any case

nK,C � |dF | 1
4 +ε . By Conjecture 3.2, we have at most O(X

1
2 (log X)αn |dF |− 1

2 +βn) Sn-fields

with the same quadratic resolvent F. In Section 3.2, we showed that there are at

most Xε quadratic fields F, which may not have the desired zero-free region. Hence,

|E(X)| � X
1
2 +2ε . Therefore,

∑

nK,C>y, K∈E(X)

nK,C � X
1
2 +2εX

1
4 +ε � X

3
4 +3ε .

Our discussion is summarized as follows:

Theorem 4.1. Let L(r2)
n (X) be the set of Sn-fields K of signature (r1, r2) with |dK | < X.

Assume the counting Conjectures (2.1) and (2.2) and Conjecture 3.2. Let C be a conjugacy

class of Sn and nK,C be the least prime with Frobp �∈ C. Then,

1

|L(r2)
n (X)|

∑

K∈L
(r2)
n (X)

nK,C =
∑

q

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O
(

1

log X

)

, (4.2)

where the sum and the product are over primes.
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The Average of the Smallest Prime 13

For S3-fields, the counting Conjectures (2.1) and (2.2) and Conjecture 3.2 are true.

Hence, the above theorem holds unconditionally. For S4- and S5-fields, the counting

Conjectures (2.1) and (2.2) are true. Hence, under Conjecture 3.2, Theorem 4.1 holds for

S4- and S5-fields.

The tables below show average values of nK,C for S3-, S4-, and S5-fields. The

computations are done by PARI.

Remark 4.2. From the tables above, we can see that the average value of nK,C is close

to 2 and nK,C < nK,C′ if |C| < |C′|. In fact, it is expected from the formula for the average

value of nK,C. The probability for nK,C to be 2 is 1−|C|/|Sn|+f (2)
1+f (2)

, which happens to most

of the number fields. For example, for S5-fields, the probability for nK,[e] to be 2 is

0.996396....

Remark 4.3. Let L(X)± be the set of real/complex quadratic extension F with ±dF ≤ X.

For the sake of completeness, we record the average of nF,±1. It is easy to check that

the probabilities for a prime p is to ramify, split, or be inert are 1
p+1 , p

2(p+1)
, or p

2(p+1)
,

respectively. Hence,

lim
X→∞

∑
±dF≤X nF,±1

|L(X)±| =
∑

q

q2 + 2q

2(q + 1)

∏

p<q

p

2(p + 1)
= 2.83264 . . . .

5 Alternative Proof of Theorem 1.1 without Conjecture 3.2

In this section, we show how we can avoid using Conjecture 3.2, which is necessary to

estimate (4.1). Instead we assume the strong Artin conjecture and use various Artin L-

functions, depending on the conjugacy class. We consider Sn-fields for n = 3, 4, 5. Since

the strong Artin conjecture is known for S3- and S4-fields [6], our result is unconditional
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14 P. J. Cho and H. H. Kim

for S3- and S4-fields. We show, by a case by case analysis on each C,

∑

K∈L(X), nK,C>y

nK,C = O
(

X

log X

)

.

We still divide it into two subsums

∑

K∈L(X), nK,C>y

nK,C =
∑

nK,C>y, K �∈E(X)

nK,C +
∑

nK,C>y, K∈E(X)

nK,C.

However, the exceptional set E(X) will be different for each C, since we consider zero-

free regions of different Artin L-functions. The second sum is estimated by using the

unconditional bounds of nK,C in Section 3.1. For the first sum, we need conditional

bounds, conditional on zero-free regions of various Artin L-functions. We use the

following formula as in [24]: for a conjugacy class C of Sn, define, for σ > 1,

FC(σ ) = − |C|
|Sn|

∑

ψ

ψ(C)
L′

L
(σ , ψ , K̂/Q), (5.1)

where ψ runs over the irreducible characters of Sn and L(s, ψ , K̂/Q) is the Artin L-

function attached to the character ψ . By orthogonality of characters,

FC(σ ) =
∑

p

∞∑

m=1

θ(pm) log p

pmσ
, (5.2)

where for a prime p unramified in K̂,

θ(pm) =
{

1 if (Frobp)m ∈ C,

0 otherwise.

and 0 ≤ θ(pm) ≤ 1 if p ramifies in K̂.

5.1 S4-fields

Here, we follow the notations in [14] for characters of S4: χ4 is a degree 3 representation,

and χ5 = χ4 ⊗ χ2, where χ2 is the sign character.
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5.1.1 Case 1. C=[(1234)]

From (5.2),

∑

p∈C

log p

pσ
= 1

4
· 1

σ − 1
− 1

4

(

−L′

L
(s, χ2) − L′

L
(σ , χ4) + L′

L
(σ , χ5)

)

+ O(1).

Here

−L′

L
(σ , χ2) − L′

L
(σ , χ4) =

∑

p

χ2(p) + χ4(p)

pσ
+ O(1) ≥ −2

∑

p∈C

log p

pσ
+ O(1).

Hence, we have

1

2

∑

p∈C

log p

pσ
≤ 1

4
· 1

σ − 1
− 1

4

L′

L
(σ , χ5) + O(1). (5.3)

Since χ5 = χ4 ⊗ χ2, the conductor of χ5 is at most |dK |3. Since χ4 is modular [6],

χ5 is modular, that is, L(s, χ5) is a cuspidal automorphic L-function of GL3/Q. Consider

a family of Artin L-functions:

L̃(X) = {L(s, χ5) | K ∈ L(X)}.

Then all L-functions in L̃(X) are distinct because L(s, χ4)’s are distinct since K is

arithmetically solitary. Hence, the size of L̃(X) is the same with that of L(X). By applying

Theorem 3.1 to L̃(X) with T = (log X3)2 and α close to 1, every L-function in the family is

zero-free on [α, 1] × [−(3 log X)2, (3 log X)2] except for O(Xε) L-functions.

For a L-function with such a zero-free region,

− L′

L
(σ , χ5) ≤ 16 · 3

(1 − α)
log log dK + O(1), (5.4)

for 1 ≤ σ ≤ 3/2. (See (5.1) in [8]). Plugging (5.4) into (5.3), and taking σ = 1 + λ
log nK,C

, we

obtain 1−2e−λ

4λ
log nK,C ≤ 12

(1−α)
log log |dK | + O(1). Hence,

nK,C � (log |dK |) 48
(1−α)A , (5.5)

where A = supλ≥0
1−2e−λ

λ
.
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16 P. J. Cho and H. H. Kim

Let Eχ5(X) be the set of K ∈ L(X) such that L(s, χ5) may not have the desired

zero-free region. Then |Eχ5(X)| � Xε . Then

∑

K∈L(X), nK,C>y

nK,C =
∑

K �∈Eχ5 (X), nK,C>y

nK,C +
∑

K∈Eχ5 (X), nK,C>y

nK,C

� (log X)
48

(1−α)A
∑

K∈L(X)r2 , nK,C>y

1 + X1/4+ε · Xε

� (log X)
48

(1−α)A

(

X
( |C|

|S4|
)π(y)

+ X
1+δ

2

)

� X

log X
.

5.1.2 Case 2. C=[(12)(34)]

From (5.2)

∑

p∈C

log p

pσ
= 1

8
· 1

σ − 1
− 1

8

(
L′

L
(σ , χ2) + 2

L′

L
(σ , χ3) − L′

L
(σ , χ4) − L′

L
(σ , χ5)

)

+ O(1).

Since

−L′

L
(σ , χ2) − 2

L′

L
(σ , χ3) ≤ 5

∑

p

log p

pσ
+ O(1) = 5

σ − 1
+ O(1),

we have
∑

p∈C

log p

pσ
≤ 6

8
· 1

σ − 1
+ 1

8

(
L′

L
(σ , χ4) + L′

L
(σ , χ5)

)

+ O(1).

Now consider a family of Artin L-functions:

L′(X) = {L(s, χ4) | K ∈ L(X)}.

Since S4-fields are arithmetically solitary, |L′(X)| = |L(X)|. By applying

Theorem 3.1 to L′(X), we obtain the exceptional set Eχ4(X), which is the set of K ∈ L(X)

such that L(s, χ4) may not have the desired zero-free region. Let E(X) be the union of

Eχ4(X) and Eχ5(X). Then if K /∈ E(X), L(s, χ4) and L(s, χ5) are simultaneously zero-free on

[α, 1] × [−(3 log |dK |)2, (3 log |dK |)2]. So we have

∣
∣
∣
∣−

L′

L
(σ , χ4)

∣
∣
∣
∣ ,

∣
∣
∣
∣−

L′

L
(σ , χ5)

∣
∣
∣
∣ ≤ 16 · 3

(1 − α)
log log |dK | + O(1).

With this conditional bound, as we did in Case 1, we can show

∑

K∈L(X), nK,C>y

nK,C = O
(

X

log X

)

.
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5.1.3 Case 3. C=[(12)]

From (5.2),

∑

p∈C

log p

pσ
= 1

4
· 1

σ − 1
− 1

4

(

−L′

L
(σ , χ2) + L′

L
(σ , χ4) − L′

L
(σ , χ5)

)

+ O(1).

Here

−L′

L
(σ , χ2) − L′

L
(σ , χ5) ≥ −2

∑

p∈C

log p

pσ
+ O(1).

Hence, we have

1

2

∑

p∈C

log p

pσ
≤ 1

4
· 1

σ − 1
− 1

4
· L′

L
(σ , χ4) + O(1).

In Case 2, we showed that every L(s, χ4) except for O(Xε) L-functions satisfies

∣
∣
∣
∣−

L′

L
(σ , χ4)

∣
∣
∣
∣ ≤ 16 · 3

(1 − α)
log log |dK | + O(1).

From this we have
∑

K∈ L(X), nK,C>y

nK,C = O
(

X

log X

)

.

5.1.4 Case 4. C = [(123)]

From (5.2),
∑

p∈C

log p

pσ
= 1

3
· 1

σ − 1
− 1

3

(
L′

L
(σ , χ2) − L′

L
(σ , χ3)

)

+ O(1).

Since

−L′

L
(σ , χ2) ≤ 1

σ − 1
+ O(1),

we have,
∑

p∈C

log p

pσ
≤ 2

3
· 1

σ − 1
+ 1

3
· L′

L
(σ , χ3) + O(1).

Here L(s, χ3) = ζM (s)
ζ(s) , where M is the cubic resolvent of K. Note that M is an

S3-field. Let

LCR(X) = {L(s, χ3) | M: S3-field, |dM | ≤ X}.

By arithmetically solitary property, |LCR(X)| is the same as the number of S3-fields for

which |dM | ≤ X. By applying Theorem 3.1 to LCR(X) with T = (log X)2, we can see that
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18 P. J. Cho and H. H. Kim

every L(s, χ3) in LCR(X) except for O(Xε) L-functions satisfies

∣
∣
∣
∣−

L′

L
(σ , χ3)

∣
∣
∣
∣ ≤ 16 · 3

(1 − α)
log log |dK | + O(1),

and with this bound, we have nK,C � (log |dK |) 16
(1−α)A , where A = supλ≥0

1−3e−λ

3λ
= 0.10...

when λ = 2.29....

Let Eχ3(X) be the set of K ∈ L(X) such that L(s, χ3) may not have the desired zero-

free region. Note that there are at most O(X
1
2 +ε) S4-fields in L(X) that have the common

cubic resolvent M. (See the Appendix.) Hence, |Eχ3(X)| � XεX
1
2 +ε . Then

∑

K∈L(X), nK,C>y

nK,C =
∑

K �∈Eχ3 (X), nK,C>y

nK,C +
∑

K∈Eχ3 (X), nK,C>y

nK,C

� (log X)
16

(1−α)A
∑

K∈L(X), nK,C>y

1 + X1/4+ε · Xε · X
1
2 +ε = O

(
X

log X

)

.

5.1.5 Case 5. C = {1}
In [8], we showed that if L(s, χ4) = ζK(s)/ζ(s) is entire and zero-free on [α, 1] ×
[−(log |dK |)2, (log |dK |)2], then nK,e � (log |dK |) 16

(1−α)A , where A = supλ≥0
1− 4

3 e−λ

λ
= 0.5...

when λ = 0.96... (there is a typographical error in [8, Theorem 1.1]). Since every field K

in L(X) except for O(Xε) fields has such upper bound,

∑

K∈L(X), nK,C>y

nK,C = O
(

X

log X

)

.

5.2 S5-fields

We assume the strong Artin conjecture for S5 fields, and follow notations in [14] for

characters of S5. Then L(s, χ3) = ζK(s)/ζ(s), and L(s, χ5) = ζH(s)/ζ(s), where H is the

sextic resolvent of K. For the sign character χ2,

χ4 = χ3 ⊗ χ2, χ6 = χ5 ⊗ χ2, and χ7 = ∧2χ3.

Then, the conductor of L(s, χ4) is bounded by |dK ||dK |4 = |dK |5. The conductor of

L(s, χ5) is |dH | = (16|dK |)3. (See page 76 in [3].) The conductor of L(s, χ6) is bounded

by |dH ||dK |5 ≤ 212|dK |8. The conductor of L(s, χ7) is bounded by |dK |7. ([4]; G. Henniart

noted in a private communication that it can be improved to |dK | 3
2 .)
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5.2.1 Case 1. C = [(12345)]

From (5.2),

∑

p∈C

log p

pσ
= 1

5
· 1

σ − 1
− 1

5

(
L′

L
(σ , χ2) − L′

L
(σ , χ3) − L′

L
(σ , χ4) + L′

L
(σ , χ7)

)

+ O(1).

Since

L′

L
(σ , χ3) + L′

L
(σ , χ4) ≤ 2

∑

p∈C

log p

pσ
+ O(1), −L′

L
(σ , χ2) ≤ 1

σ − 1
+ O(1),

we have

3

5

∑

p∈C

log p

pσ
≤ 2

5
· 1

σ − 1
− 1

5
· L′

L
(s, χ7) + O(1).

Define L1(X) = {L(s, χ7) | K ∈ L(X)}. We show that every L-function in L̃(X) is

distinct.

Lemma 5.1. Let L(s, χ7) = L(s, χ7, K̂/Q) and L(s, χ ′
7) = L(s, χ ′

7, K̂′/Q). Suppose L(s, χ7) =
L(s, χ ′

7). Then K and K′ are conjugate.

Proof. Recall the following from [5]: χ3 = As(σ ), the Asai lift of σ , where σ is a degree 2

representation of Ã5 over F = Q[
√

dK ]. Let π be the cuspidal representation of GL2/F

corresponding to σ , and let � be the cuspidal representation of GL4/Q corresponding to

χ3 by the strong Artin conjecture. Then ∧2� � IQF (Sym2π).

Let π ′, �′ be defined by K′. Suppose L(s, �, ∧2) = L(s, �′, ∧2). Then L(s, Sym2(π)) =
L(s, Sym2(π ′)). By Ramakrishnan [32], π ′ � π ⊗ χ for a quadratic character of F. Then

by Krishnamurthy [23], As(π) � As(π ′). Hence, � � �′. Therefore, L(s, χ3, K/Q) =
L(s, χ3, K′/Q). Since K is arithmetically solitary, K and K′ are conjugate. �

Hence, |L1(X)| = |L(X)|. By applying Theorem 3.1 to L1(X) with T = (log X7)2, we

can show that every L(s, χ7) in L1(X) except for O(Xε) L-function satisfies

∣
∣
∣
∣−

L′

L
(σ , χ7, K̂/Q)

∣
∣
∣
∣ ≤ 16 · 28

(1 − α)
log log |dK | + O(1).

Hence,
∑

K∈L(X), nK,C>y

nK,C = O
(

X

log X

)

.
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5.2.2 Case 2. C=[(1234)]

From (5.2),

∑

p∈C

log p

pσ
= 1

4
· 1

σ − 1
−

4

(

−L′

L
(σ , χ2) + L′

L
(σ , χ5) − L′

L
(σ , χ6)

)

+ O(1).

Since

L′

L
(σ , χ2) + L′

L
(σ , χ6) ≤ 2

∑

p∈C

log p

pσ
,

we have

1

2

∑

p∈C

log p

pσ
≤ 1

4
· 1

σ − 1
− 1

4
· L′

L
(σ , χ5).

Define L2(X) = {L(s, χ5) | K ∈ L(X)}. We show that every L-function in L2(X) is

distinct.

Lemma 5.2. Let L(s, χ5) = L(s, χ5, K̂/Q) and L(s, χ ′
5) = L(s, χ ′

5, K̂′/Q). Suppose L(s, χ5) =
L(s, χ ′

5). Then K and K′ are conjugate.

Proof. It is easy to see (cf. [17, p. 28]) ∧2χ5 = χ3 ⊗ χ2 ⊕ ∧2χ3. Now let χ ′
3, χ ′

5 be defined

by K′, and suppose χ5 � χ ′
5. Then ∧2χ5 � ∧2χ ′

5. Hence, χ3 ⊗ χ2 ⊕ ∧2χ3 � χ ′
3 ⊗ χ ′

2 ⊕ ∧2χ ′
3.

By strong multiplicity one, ∧2χ3 � ∧2χ ′
3. Hence, by Lemma 5.1, χ3 � χ ′

3. �

Since L(s, χ5)’s in L2(X) are all distinct, we can conclude that |L2(X)| = |L(X)|. By

applying Theorem 3.1 to L2(X) with T = (log(16X)4)2, we proceed as in Case 1.

5.2.3 Case 3. C = [(12)(345)]

From (5.2),

∑

p∈C

log p

pσ
= 1

6
· 1

σ − 1
− 1

6

(

−L′

L
(σ , χ2) − L′

L
(σ , χ3) + L′

L
(σ , χ4) − L′

L
(σ , χ5) + L′

L
(σ , χ6)

)

+O(1).

Since

L′

L
(σ , χ2) + L′

L
(σ , χ3) + L′

L
(σ , χ5) ≤ 3

∑

p∈C

log p

pσ
,

we have

1

2

∑

p∈C

log p

pσ
≤ 1

6
· 1

σ − 1
− 1

6
· L′

L
(σ , χ4) − 1

6

L′

L
(σ , χ6).
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Since χ6 = χ5 ⊗ χ2 and L-functions L(s, χ5) are all distinct, L(s, χ6) are also all

distinct. Since the dimensions of χ4 and χ6 are different, the isobaric sums χ4 � χ6

coming from L(X) satisfy the conditions for Theorem 3.1. Apply Theorem 3.1 to L3(X) =
{L(s, χ4)L(s, χ6) | K ∈ L(X)}, and we proceed as in Case 1.

5.2.4 Case 4. C = (12)(34)

From (5.2),

∑

p∈C

log p

pσ
= 1

8
· 1

σ − 1
− 1

8

(
L′

L
(σ , χ2) + L′

L
(σ , χ5) + L′

L
(σ , χ6) − 2

L′

L
(σ , χ7)

)

+ O(1).

Since

L′

L
(σ , χ7) ≤ 2

∑

p∈C

log p

pσ
+ O(1), −L′

L
(σ , χ2) ≤ 1

σ − 1
+ O(1),

we have

1

2

∑

p∈C

log p

pσ
≤ 1

4
· 1

σ − 1
− 1

8

(
L′

L
(σ , χ5) + L′

L
(σ , χ6)

)

.

Define L4(X) = {L(s, χ6) | K ∈ L(X)}. Then every L-function in L4(X) is distinct, and

|L4(X)| = |L(X)|. Applying Theorem 3.1 to L4(X), every L-function L(s, χ6) in L4(X) except

for O(Xε) has the desired zero-free region. Hence, together with L2(X) in Case 2, we see

that L(s, χ5) and L(s, χ6) are simultaneously zero-free in the desired region except for

O(Xε) fields. Then we proceed as in Case 1.

5.2.5 Case 5. C = [(12)].

We use the L-function L(s, χ3):

−L′

L
(σ , χ3) =

∑

p

χ3(p) log p

pσ
+ O(1).

Note that χ3(p) = 2 if Frobp ∈ C, and 1 + χ3(p) ≥ 1. Then,

3
∑

p<nK,C

log p

pσ
≤ −ζ ′

ζ
(σ ) − L′

L
(σ , χ3) + O(1).

By applying Theorem 3.1 to the set L5(X) = {L(s, χ3) | K ∈ L(X)}, we see that every L(s, χ3)

in L5(X) except for O(Xε) L-function satisfies

−L′

L
(σ , χ3) ≤ 64

1 − α
log log |dK | + O(1).
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Hence, by taking σ −1 = λ
log nK,C

, we have nK,C ≤ (log |dK |) 64
(1−α)A , where A = supλ>0

2−3e−λ

λ
.

We obtain
∑

K∈L(X), nK,C>y

nK,C = O
(

X

log X

)

.

5.2.6 Case 6. C = [(123)]

Since χ3(p) = 1 if Frobp ∈ C, we can use L(s, χ3). This case is similar to the case C = (12).

5.2.7 Case 7. C = {1}
Since χ3(p) = 4 if Frobp ∈ C, we can use L(s, χ3). This case is similar to the case C = (12).

5.3 S3-fields

For the sake of completeness, we include the case of S3. Here, we follow the notations in

[14] for characters of S3.

5.3.1 Case 1. C = [(123)]

From (5.2),
∑

p∈C

log p

pσ
= 1

3
· 1

σ − 1
− 1

3

(
L′

L
(σ , χ2) − L′

L
(σ , χ3)

)

+ O(1).

Then
∑

p<nK,C

log p

pσ
≤ 2

3
· 1

σ − 1
+ 1

3
· L′

L
(σ , χ3) + O(1).

Since L(s, χ3) = ζK(s)
ζ(s) , L(s, χ3) is modular, i.e., L(s, χ3) is a cuspidal automorphic

L-function of GL2/Q. This case is similar to S4, C = (1234).

5.3.2 Case 2. C = [(12)]

From (5.2),
∑

p∈C

log p

pσ
= 1

2
· 1

σ − 1
+ 1

2
· L′

L
(σ , χ2) + O(1).

This case was done in Section 3.2.

5.3.3 Case 3. C = {1}
This case is similar to S4, C = {1}.

We summarize our discussions as

Theorem 5.3. Theorem 1.1 holds unconditionally for S3- and S4-fields. Under the

strong Artin conjecture, Theorem 1.1 holds for S5-fields.
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Remark 5.1. The above method can be generalized to Sn-fields and a special conjugacy

class: Let K be an Sn-field, and let L(s, χ) = ζK(s)
ζ(s) . Let C be a conjugacy class of Sn

such that χ(C) ≥ 1. Then under the counting conjectures (2.1)–(2.2) and the strong Artin

conjecture for L(s, χ), we have

1

|L(r2)
n (X)|

∑

K∈L
(r2)
n (X)

nK,C =
∑

q

q(1 − |C|/|Sn| + f (q))

1 + f (q)

∏

p<q

|C|/|Sn|
1 + f (p)

+ O
(

1

log X

)

.

6 Average Value of NK,C

In this section, we compute the average of NK,C.

6.1 Conditional bounds of NK,C

For NK,C, we have conditional bounds NK,C � ec(log log |dK |) 5
3 +ε

for some constant c by

[28, Theorem 1.1] under the zero-free region [α, 1] × [−(log |dK̂ |)2, (log |dK̂ |)2]. We obtain

a better bound.

Proposition 1.20. Let C be any conjugacy class. We assume that for all nontrivial

irreducible character ψ , the strong Artin conjecture holds for L(s, ψ) = L(s, ψ , K̂/Q)

and it is zero-free in [α, 1] × [−(log |dK̂ |)2, (log |dK̂ |)2]. Then there exists an absolute

constant A and a prime p such that Frobp ∈ C, and p � (A(1 − α) log |dK̂ |) 1
1−α . Hence,

NK,C � (A(1 − α) log |dK̂ |) 1
1−α .

Proof. We follow [26, p. 140] and the proof of [9, Proposition 4.2]: For 1 < x < y,

k(s, x, y) =
(

ys−1−xs−1

s−1

)2
, consider

1

2π i

∫

(2)

FC(s)k(s, x, y) ds,

where FC(s) is in (5.1). Then, its inverse Mellin transform is given by

k̂(u, x, y) = 1

2π i

∫

(2)

k(s, x, y)u−sds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if u > y2 ,

u−1 log y2

u if xy < u < y2,

u−1 log u
x2 if x2 < u < xy,

0 if u < x2.
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By (5.2), it is

∑

Frobp∈C

log p · k̂(p, x, y) + O
(

log y

x log x
log

y

x

)

.

On the other hand, by moving contours to the left, it is

|C|
|G|

(
log

y

x

)2
− |C|

|G|
∑

ψ

ψ(C)
∑

ρψ

k(ρψ , x, y),

where ρψ runs over all zeros of L(s, ψ). In the proof of [9, Proposition 4.2], we showed

that, for N = |dK̂ |,

k(ρψ , x, y) � x−2(log N)2 + x−2(1−α)(1 − α)−1 log N,

when L(s, ψ , K̂/Q) has the above zero-free region in the proposition.

Let’s assume that Frobp �∈ C for all primes p < y2. Then, we obtain that

(
log

y

x

)2
� x−2(1−α)(1 − α)−1 log N + x−2(log N)2 + log y

x log x
log

y

x
.

For B with B(1−α) log N ≥ 1, take x = (B3(1−α) log N)
1
2 (1−α)−1

and y = B
1
2 (1−α)−1

x.

Then y ≤ x3/2 and log y/ log x ≤ log(y/x) for such y and x. With our choice of x and y,

for sufficiently large B, it is easy to show that the above inequality is not consistent. �

Remark 6.2. The proposition also implies the conditional bounds (3.1): nK,C �α

(log |dK̂ |) 1
1−α .

6.2 Unconditional bounds of NK,C

We do not have good unconditional bounds on NK,C. Currently the best bound is NK,C �
|dK̂ |40 [36].

We have the following bound on dK̂ by [28, Lemma 3.4]: c1|dK |(n−1)! ≤ |dK̂ | ≤
c2|dK | n!

2 for some constants c1, c2. Hence, log |dK̂ | 
 log |dK |. (In Section 5, we showed

|dK̂ | � |dK |an for some an for n ≤ 5 by case by case analysis, using the conductor-

discriminant formula, log |dK̂ | = ∑
ψ ψ(1) log Aψ , where Aψ is the conductor of L(s, ψ).)

We make the following conjecture:

Conjecture 6.3. NK,C � |dK | 1
2 −εn for some constant 0 < εn < 1/2.
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Remark 6.4. The referee brought to our attention a recent result of Ge, Milinovich,

and Pollack [18]. They show in our notations that under subconvexity bounds of ζK̂(s),

ζK̂(s) � |s|A|dK̂ | 1
4 −θ for Re(s) = 1

2 , one has NK̂,C � |dK̂ | 1
2 −2θ+ε for C = {1}. By using the

well known fact that p splits completely in K if and only if p splits completely in K̂

(cf. [19]), we have NK̂,C = NK,C. Since |dK̂ | � |dK | n!
2 , we have NK,C � |dK | n!

4 −n!θ+ε . In

particular, when n = 3, we have θ = 1
1889 [18, Example 1]. Hence, NK,C � |dK | 3

2 − 6
1889 +ε for

C = {1}.

6.3 Proof of Theorem 1.2

Since the idea of proof is similar to the case of nK,C, we omit some details. Consider

∑

K∈L(X)

NK,C =
∑

K∈L(X), NK,C≤y

NK,C +
∑

K∈L(X), NK,C>y

NK,C.

Here NK,C = q means that for all primes p < q, Frobp /∈ C and Frobq ∈ C. By the

counting conjectures, there are

|C|/|Sn|
1 + f (q)

∏

p<q

1 − |C|/|Sn| + f (p)

1 + f (p)
A(r2)X + O

(
X

1+3δ
4

)
.

such number fields in L(X). Hence,

∑

K∈L(X), NK,C≤y

NK,C =
∑

q≤y

q
∑

K∈L(X), NK,C=q

1

= A(r2)X
∑

q≤y

q(|C|/|Sn|)
1 + f (q)

∏

p<q

1 − |C|/|Sn| + f (p)

1 + f (p)
+ O

(
y2X

1+3δ
4

)

= A(r2)X
∑

q

q(|C|/|Sn|)
1 + f (q)

∏

p<q

1 − |C|/|Sn| + f (p)

1 + f (p)
+ O

(
X

log X

)

.

In order to estimate the second sum
∑

K∈L(X), NK,C>y NK,C, we divide the sum into

two subsums:

∑

K∈L(X), NK,C>y

NK,C =
∑

NK,C>y, K �∈E(X)

NK,C +
∑

NK,C>y, K∈E(X)

NK,C, (6.1)

where E(X) is the union of Eψ(X), and Eψ(X) is the exceptional set in which L(s, ψ) may

not have the desired zero-free region in [α, 1] × [−(log |dK̂ |)2, (log |dK̂ |)2].
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We proceed as in nK,C case; the first sum is estimated by using conditional

bounds in Section 6.1. For the second sum,
∑

NK,C>y, K∈E(X) NK,C � X
1
2 −εn |E(X)|. Hence,

we need to estimate |E(X)|. We consider case by case, using the same notations as in

Section 5:

n = 3: We can show |Eχ3(X)| � Xεn , and |Eχ2(X)| � X
1
2 + 1

2 εn .

n = 4: We showed that |Eχ4(X)|, |Eχ5(X)| � Xεn , and |Eχ3(X)| � X
1
2 + 1

2 εn . By

Conjecture (3.2), |Eχ2(X)| � X
1
2 + 1

2 εn .

n = 5: We showed that |Eχi(X)| � Xεn for i = 3, . . ., 7. By Conjecture 3.2, |Eχ2(X)| �
X

1
2 + 1

2 εn .

Hence, we have proved Theorem 1.2.

The tables below show average values of NK,C for S3-, S4-, and S5-fields. The

computations are done by PARI. The average values of NK,C for S3 are given in [25].

6.4 Unconditional result on NK,Cu

Let Cu be the union of all the conjugacy classes not contained in An and NK,Cu be the

smallest prime for which Frobp ∈ Cu. Then we have an unconditional bound for NK,Cu :

Since dK = dFm2 for some integer m, if Frobp ∈ Cu, then p is inert in F. (i.e., (dF
p ) =

(dK
p ) = −1.) Conversely, if p is inert in F and p � dK (i.e., (dK

p ) = −1), then Frobp is in Cu.

Hence, NK,Cu is the smallest prime such that (dK
p ) = −1. Hence, by Norton [27],

NK,Cu � |dK |
1

4
√

e
+ε

.

(Norton’s result is valid for imprimitive characters.)
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Hence, combining with the conditional bound in Section 6.1, we have the

following:

Theorem 6.5. Assume the counting conjectures (2.1)–(2.2). Assume the strong Artin

conjecture. Then

1

|L(r2)
n (X)|

∑

K∈L
(r2)
n (X)

NK,Cu =
∑

q

1
2q

1 + f (q)

∏

p<q

1
2 + f (p)

1 + f (p)
+ O

(
1

log X

)

.

Since the assumptions in Theorem 6.5 hold for S3- and S4-fields, we have

Theorem 1.3.

7 Appendix: S4-fields with the Same Cubic Resolvent

Given a noncyclic cubic field M, let

�M(s) = 1 +
∑

K∈F(M)

1

f (K)s ,

where dK = dMf (K)2, and F(M) is the set of all S4-fields K with the cubic resolvent field

M. Let L(M, n2) be the set of quartic fields whose cubic resolvents are isomorphic to

M and whose discriminants are n2dM , and Ltr(M, 64) the subset of L(M, 64), where 2 is

totally ramified. Define L2(M) = L(M, 1)∪L(M, 4)∪L(M, 16)∪Ltr(M, 64). By Klüners [21],

|L(M, n)| � (n2|dM |) 1
2 +ε , hence |L2(M)| � |dM | 1

2 +ε .

By Theorem 1.4 in Cohen and Thorne [13],

�M(s) =
|L2(M)+1|∑

i=1

�i(s), �i(s) =
∞∑

n=1

ai(n)

ns ,

and ai(n) ≤ 3ω(n) � 3
log n

log log n � nε . We also have

�i(1 + c + it) �
(

ζ(1 + c)

ζ(2 + 2c)

)3

� 1

c3 .

By applying Perron’s formula to each �i(s) for i = 1, 2, . . . , |L2(M) + 1|, we can

obtain that

|{K ∈ F(M) | f (K) ≤ x}| � x(log x)4|dM | 1
2 +ε .

Hence, we have proved the following:
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Proposition 7.1. Let CR4(X, M) be the set of S4-fields K with the given cubic resolvent

M and |dK | ≤ X. Then

|CR4(X, M)| � X
1
2 (log X)4|dM |ε ,

where the implied constant is independent of M.
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