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Abstract

In a family of Sd+1-fields (d = 2, 3, 4), we obtain the conjectured upper and lower bounds
of the residues of Dedekind zeta functions except for a density zero set. For S5-fields, we
need to assume the strong Artin conjecture. We also show that there exists an infinite family
of number fields with the upper and lower bounds, resp.

1. Introduction

For a quadratic extension K = Q(
√

D) with a fundamental discriminant D,
Ress=1ζK (s) = L(1, χD), where χD = ( D

· ) is the quadratic character. In this case, Lit-
tlewood [11] obtained the bound(

1

2
+ o(1)

)
ζ(2)

eγ log log |D| � L(1, χD) � (2 + o(1))eγ log log |D|

under GRH, where γ is the Euler–Mascheroni constant. Under the same hypothesis, he also
constructed an infinite family of quadratic fields with L(1, χD) � (1 + o(1))eγ log log |D|
and an infinite family of quadratic fields with L(1, χD) � (1 + o(1)) ζ(2)

eγ log log |D| . Later,
Chowla [3] established the latter omega result unconditionally. It has been conjectured that
the true upper and lower bounds are (1 + o(1))eγ log log |D| and (1 + o(1)) ζ(2)

eγ log log |D| , resp.
In [12], Montgomery and Vaughan considered the distribution of L(1, χD) via random vari-
ables which take ±1 with equal probability. They proposed three conjectures which sup-
port the expected bounds. In [5], some of the conjectures were proved by Granville and
Soundararajan.

For a number field K of degree d+1, the lower bound and the upper bound of Ress=1ζK (s)

† This work was supported by the 2016 Research Fund(Project Number 1.150147.01) of UNIST(Ulsan
National Institute of Science and Technology).

‡ Partially supported by an NSERC grant.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000019
Downloaded from https:/www.cambridge.org/core. University of Toronto, on 17 Feb 2017 at 13:51:57, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000019
https:/www.cambridge.org/core


2 PETER J. CHO AND HENRY H. KIM

under GRH and the strong Artin conjecture for ζK (s)/ζ(s) are(
1

2
+ o(1)

)
ζ(d + 1)

eγ log log |DK | � Ress=1ζK (s) � (2 + o(1))d(eγ log log |DK |)d, (1·1)

where DK is the discriminant of a number field K . The proof of (1·1) is given in Section 3
since at least the upper bound is well known but it is hard to find its proof in the literature.

As in the quadratic extension case, we may conjecture that (1 + o(1))(eγ log log |DK |)d

and (1 + o(1)) ζ(d+1)

eγ log log |DK | are the true upper and lower bounds, resp. In this paper, we show
that it is the case except for a density zero set in a family of number fields. A number field K
of degree d +1 is called a Sd+1-field if its Galois closure over Q is an Sd+1 Galois extension.
For a Sd+1-field K , we have a decomposition of ζK (s):

ζK (s) = ζ(s)L(s, ρ, K̂/Q),

where K̂ is the Galois closure of K over Q and ρ is the standard representation of Sd+1. For
simplicity, we denote L(s, ρ, K̂/Q) by L(s, ρ). Hence Ress=1ζK (s) = L(1, ρ). Then, our
first main theorem is

THEOREM 1·1. Let L(X) be a set of Sd+1-fields with X/2 � |DK | � X, d + 1 = 3, 4
and 5. For S5-fields, we assume the strong Artin conjecture for L(s, ρ). Then, except for

O(Xe−c′ log X
log log X log log log X

) L-functions for some constant c′ > 0,

(1 + o(1))
ζ(d + 1)

eγ log log |DK | � L(1, ρ) � (1 + o(1))(eγ log log |DK |)d .

where o(1) = O
(

1
(log log |DK |)1/2

)
.

Secondly, under the same hypothesis, we construct an infinite family of Sd+1-fields with
extreme residue values.

THEOREM 1·2. Let d + 1 = 3, 4, and 5. For d + 1 = 5, we assume the strong Artin
conjecture. Then:
(i) the number of Sd+1-fields K of signature (r1, r2) with X

2 � |DK | � X for which

L(1, ρ) = (eγ log log |DK |)d

(
1 + O

(
1

(log log |DK |)1/2

))
is � A(r2)X exp

(
− log |Sd+1| · log X

log log X − log log log X
)

;

(ii) the number of Sd+1-fields K of signature (r1, r2) with X/2 � |DK | � X for which

L(1, ρ) = ζ(d + 1)

eγ log log |DK |
(

1 + O

(
1

(log log X)1/2

))
is � A(r2)X exp

(
− log |Sd+1|

d+1 · log X
log log X − log log log X

)
,

where A(r2) is a constant which occurs in Conjecture 2·1. (Note that Conjecture 2·1 is
proved when d + 1 = 3, 4, 5.)

We also construct an infinite family of Sd+1-fields with bounded residues.

THEOREM 1·3. Let d + 1 = 3, 4, and 5. For d + 1 = 5, we assume the strong Artin
conjecture.
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Extreme residues of Dedekind zeta functions 3

Then the number of Sd+1-fields K of signature (r1, r2) with X/2 � |DK | � X for which

L(1, ρ) =
{

ζ(2)
d
2 (1 + o(1)), if d is even,

ζ(2)
d−3

2 ζ(3)(1 + o(1)), if d � 3 is odd.

is � A(r2)X exp
(
− log |Sd+1|

|C | · log X
log log X − log log log X

)
, where

C =
{

(1, 2)(3, 4) · · · (d − 1, d), if d is even,

(1, 2)(3, 4) · · · (d − 4, d − 3)(d − 2, d − 1, d), if d is odd.

This work is motivated by the work of Lamzouri [9, 10], who constructed primitive char-
acters χ with large values of L(1, χ). Basically, we follow [5, 9, 10, 12]. The arguments in
[9] are easily extended. However, obtaining an analogue of [9, proposition 2·4] is a main
obstacle to extend his method. It is resolved in Proposition 4·2.

2. Counting number fields with local conditions

Let K be a Sd+1-field of signature (r1, r2) for d + 1 � 3. We assume that we can count
Sd+1-fields with finitely many local conditions. Namely, let S = (LC p) be a finite set of
local conditions: LC p = Sp,C means that p is unramified and the conjugacy class of Frobp

is C . Define |Sp,C | = |C |
|Sn |(1+ f (p))

for some positive valued function f (p) which satisfies

f (p) = O(1/p). More explicitly [2], we have f (p) = p−1 + p−2 if d + 1 = 3; f (p) =
p−1+2p−2+ p−3 if d+1 = 4; f (p) = p−1+2p−2+2p−3+ p−4 if d+1 = 5. There are also
several splitting types of ramified primes, which are denoted by r1, r2, . . . , rw: LC p = Sp,r j

means that p is ramified and its splitting type is r j . We assume that there are positive valued
functions c1(p), c2(p), . . . , cw(p) with

∑w

i=1 ci (p) = f (p) and define |Sp,ri | = ci (p)

1+ f (p)
.

We define the local condition LC p = Sp,r which means that p is ramified, i.e, r = r j for
some j . Define |Sp,r | = f (p)

1+ f (p)
. Let |S| = ∏

p |LC p|.
Let L(X)r2 be the set of Sd+1-fields K of signature (r1, r2) with X/2 < |DK | < X , and

let L(X;S)r2 be the set of Sd+1-fields K of signature (r1, r2) with X/2 < |DK | < X and the
local conditions S. It is noted that we pick up only one number field K from d +1 conjugate
number fields.

Then we have:

CONJECTURE 2·1. For some positive constants δ < 1 and κ ,

|L(X)r2 | = A(r2)X + O(X δ), (2·1)

|L(X;S)r2 | = |S|A(r2)X + O

⎛⎝(∏
p∈S

p
)κ

X δ

⎞⎠ ,

where the implied constant is uniformly bounded for p and local conditions at p, and see
[2] for the precise value of A(r2) when d + 1 = 3, 4, 5.

It is worth noting here that we can control only all the primes up to c log X , where c <

(1 − δ)/κ . If we impose local conditions for all p � c′ log X with c′ � (1 − δ)/κ , the error
term in Conjecture 2·1 would be larger than the size of L(X)r2 .

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000019
Downloaded from https:/www.cambridge.org/core. University of Toronto, on 17 Feb 2017 at 13:51:57, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000019
https:/www.cambridge.org/core


4 PETER J. CHO AND HENRY H. KIM

For S3-fields, the conjecture was shown by Taniguchi and Thorne [14]. In [2]1, we proved
that Conjecture 2·1 is true for S4 and S5-fields.

By abuse of notation, we denote L(X)r2 and L(X;S)r2 as sets of L-functions
L(s, ρ, K̂/Q) = ζK (s)/ζ(s). Here we need care in order to ensure one to one correspond-
ence between two sets. Two number fields K1 and K2 are said to be arithmetically equivalent
if ζK1(s) = ζK2(s). If two number fields K1 and K2 are conjugate, then they are arithmetic-
ally equivalent. The converse is not always true. A number field K1 is called arithmetically
solitary if ζK1(s) = ζK2(s) implies that K1 and K2 are conjugate. It is known that Sn-fields
and An-fields are arithmetically solitary. See [7, chapter II].

To ease the notations, throughout the article, we denote L(X)r2 , L(s, ρ, K̂/Q) by L(X),
L(s, ρ) resp. if there is no danger of confusion.

3. Formula for L(1, ρ) under a certain zero-free region

In this paper, we assume the strong Artin conjecture, namely that the Artin L-function
L(s, ρ) is an automorphic representation of GLd . This is true for S3-fields and S4-fields. It
implies the Artin conjecture, namely, L(s, ρ) is entire. For this section, we only need the
Artin conjecture. However, in Section 4, we need the strong Artin conjecture in order to use
Kowalski–Michel zero density theorem [8]. We find an expression of L(1, ρ) as a product
over small primes under the assumption that L(s, ρ) has a certain zero-free region. Here all
the implicit constants only depend on the degree d of L(s, ρ).

For Re(s) > 1, L(s, ρ) has the Euler product:

L(s, ρ) =
∏

p

d∏
i=1

(
1 − αi(p)

ps

)−1

.

Then, for Re(s) > 1,

log L(s, ρ) =
∞∑

n=2

	(n)aρ(n)

ns log n
,

where aρ(pk) = α1(p)k + · · · + αd(p)k . First, we show that when L(s, ρ) has a certain
zero-free region, the value log L(1, ρ) is determined by a short sum.

PROPOSITION 3·1. If L(s, ρ) is entire and is zero-free in the rectangle [α, 1] × [−x, x],
where x = (log N )β , β(1 − α) > 2, and N is the conductor of ρ, then

log L(1, ρ) =
∑
n<x

	(n)aρ(n)

n log n
+ O((log N )−1). (3·1)

Proof. By Perron’s formula (cf. [13, theorem 4·1·4]), if x is not an integer,

1

2π i

∫ c+i x

c−i x
log L(1 + s, ρ)

xs

s
ds =

∑
n<x

	(n)aρ(n)

n log n

+ O

( ∞∑
n=1

( x

n

)c
∣∣∣∣	(n)aρ(n)

n log n

∣∣∣∣ min

(
1,

1

x
∣∣log x

n

∣∣
))

1 In [2], we used the Greek letter γ in place of κ . However, γ is taken for the Euler–Mascheroni constant
in this article.
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Extreme residues of Dedekind zeta functions 5

where c = 1/log x . If x is an integer, in the above error term, the sum is over n � x and we
add an error term O( 1

x log x ). In any case, we can show the error term is O(
log x

x ) by controlling
the terms with x/2 � n � 3x/2 and the other terms separately. See [13, theorem 4·2·9] for
the details.

Now move the contour to Re(s) = α − 1 + 1/log x . We get the residue log L(1, ρ) at
s = 0. So the left hand side is log L(1, ρ) plus

1

2π i

(∫ α−1+c−i x

c−i x
+

∫ α−1+c+i x

α−1+c−i x
+

∫ c+i x

α−1+c+i x

)
log L(1 + s, ρ)

xs

s
ds.

In order to estimate | log L(s, ρ)| for α + c � Re(s) � 1 + c, we follow [6, lemma 8·1]:
consider the circles with centre 2 + i t and radii r = 2 − σ < R = 2 − α. By the as-
sumption, log L(s, ρ) is holomorphic inside the larger circle. By Daileda [4, page 222], for
1/2 < Re(s) � 3/2, |L(s, ρ)| � N

1
2 (|s| + 1)

d
2 . Hence Re log L(s, ρ) = log |L(s, ρ)| �

log N + log(|s| + 1). Clearly, if Re(s) � 3/2, | log L(s, ρ)| = O(1). By the Borel–
Carathéodory theorem,

| log L(s, ρ)| � 2r

R − r
max

|z−(2+i t)|=R
Re log L(z, ρ) + R + r

R − r
| log L(2 + i t, ρ)|

� (log x)(log N + log(|s| + 1)).

Hence the integral is majorized by xα−1(log N )(log x)2. Since β(1 − α) > 2,
xα−1(log N )(log x)2 � (log N )−1.

Remark 3·2. Assume that L(s, ρ) satisfies GRH. Take α = 1/2+ε2 and β = 2+ε. Then,
from the above proof, we can see that

log L(1, ρ) =
∑

n<(log N )2+ε

	(n)aρ(n)

n log n
+ O

(
log log N

(log N )
ε
2 −(2ε2+ε3)

)
,

for any ε > 0.

Now, using Proposition 3·1, we express L(1, ρ) as a product over small primes. We omit
p from αi(p) for simplicity.∑

n<x

	(n)aρ(n)

n log n
=

∑
k,pk<x

αk
1 + · · · + αk

d

kpk
=

∑
p<x

d∑
i=1

∑
k<

log x
log p

1

k
(αi p−1)k . (3·2)

Here ∑
k<

log x
log p

1

k
(αi p−1)k = − log(1 − αi p−1) + Ap,

where

|Ap| �
∑

k� log x
log p

1

k
p−k � log p

log x
· p− log x

log p

1 − p−1
.

Here p
log x
log p = x . Hence

(3·2) = −
∑
p<x

d∑
i=1

log(1 − αi p−1) + d
∑
p<x

Ap.
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6 PETER J. CHO AND HENRY H. KIM

Here ∑
p<x

|Ap| � 1

x log x

∑
p<x

log p

1 − p−1
� 2

log x
.

Therefore, it is summarized as follows:

PROPOSITION 3·3. If L(s, ρ) is entire and is zero-free in the rectangle [α, 1] × [−x, x],
where x = (log N )β , β(1 − α) > 2, and N is the conductor of ρ, then

L(1, ρ) =
∏
p<x

d∏
i=1

(1 − αi p−1)−1

(
1 + O

(
1

log x

))
. (3·3)

Furthermore, if L(s, ρ) satisfies GRH, then

L(1, ρ) =
∏

p<(log N )2+ε

d∏
i=1

(1 − αi p−1)−1

(
1 + O

(
1

log log N

))
.

In order to find the upper and lower bound of L(1, ρ), we examine the Euler product:
Let C be a conjugacy class of Sd+1, and let C be a product of d1, . . . , dk cycles, where
di � 1 for all i and d1 + · · · + dk = d + 1. Then if Frobp ∈ C , (1 − X)

∏d
i=1(1 − αi X) =

(1 − Xd1) · · · (1 − Xdk ). Hence

d∏
i=1

(1 − αi p−1)−1 = (1 − p−1)(1 − p−d1)−1 · · · (1 − p−dk )−1.

Now we use Mertens’ theorem:∏
p�y

(1 − p−1)−1 = eγ (1 + o(1)) log y.

Also
∏

p�y(1 − p−n)−1 = ζ(n)(1 + O( 1
y log y )) if n � 2.

Hence the upper bound of
∏d

i=1(1 − αi p−1)−1 is when C = 1, and it is (1 − p−1)−d . The
lower bound is when C = (1, · · · , d + 1), and it is (1 − p−1)(1 − p−d−1)−1. Moreover,∏d

i=1(1 − αi p−1)−1 takes only the values (1 − p−e1)−a1 · · · (1 − p−el )−al (1 − p−1)a0 , where
e1, ..., el � 2, and −d � a0 � 1. Here a0 = 1 only when a1e1 + · · · + alel = d + 1. We
summarise it as

(1 − p−1)(1 − p−d−1)−1 �
d∏

i=1

(1 − αi p−1)−1 � (1 − p−1)−d . (3·4)

We note that (3·4) is true even if p is ramified, i.e., when some of αi ’s are zero. Hence
by the above proposition, under GRH and the strong Artin conjecture for L(s, ρ), for any
ε > 0,

ζ(d + 1)

(2 + ε)eγ log log N
(1 + o(1)) � L(1, ρ) � (eγ (2 + ε) log log N )

d
(1 + o(1)) .

Since ε is arbitrarily small, we have shown(
1

2
+ o(1)

)
ζ(d + 1)

eγ log log N
� L(1, ρ) � (2 + o(1))d(eγ log log N )d .
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Extreme residues of Dedekind zeta functions 7

4. Extreme residue values

4·1. Proof of Theorem 1·1
Let y = c1 log X with c1 > 0. Recall that in Proposition 3·1, the conductor of L(s, ρ) is

|DK |, and X/2 < |DK | < X , and x = (log X)β for some β.

In this section we show that except for O(Xe−c′ log X
log log X log log log X

) in L(X), the lower bound
and upper bound on L(1, ρ) are

(1 + o(1))
ζ(d + 1)

eγ (log log |DK |) , (1 + o(1))(eγ log log |DK |)d, resp.

We apply Kowalski–Michel zero density theorem [8] to the family L(X). Then except

for O
(
(log X)β B X ( 5d

2 +1) 1−α
2α−1

)
L-functions, every L-function L(s, ρ) in L(X) is zero-free on

[α, 1] × [−(log X)β, (log X)β] with β(1 − α) > 2. Here B is a constant depending on the
family L(X). We refer to [1] for the details.

Since except for O
(
(log X)β B X ( 5d

2 +1) 1−α
2α−1

)
L-functions, the L-functions in L(X) have the

desired zero-free region, we apply Proposition 3·3 to the L-functions in L(X) to obtain

L(1, ρ) =
∏
p<x

d∏
i=1

(1 − αi p−1)−1

(
1 + O

(
1

log x

))
.

Since ∑
y<p<x

1

p2
�

∑
p>y

1

p2
� 2

y log y
,

we can show

∏
y<p<x

d∏
i=1

(1 − αi p−1)−1 = exp

( ∑
y<p<x

aρ(p)

p

)(
1 + O

(
1

y log y

))
.

We prove

PROPOSITION 4·1. Let y = c1 log X with c1 > 0. Then except for

O(Xe−c′ log X
log log X log log log X

) L-functions in L(X) for some constant c′ > 0, L-functions in
L(X) satisfy ∣∣∣∣∣ ∑

y<p<x

aρ(p)

p

∣∣∣∣∣ � 1

(log log X)1/2
. (4·1)

Hence, for L-functions which have the desired zero-free region and satisfy (4·1),

L(1, ρ) =
∏
p�y

d∏
i=1

(
1 − αi p−1

)−1
(

1 + 1

(log log |DK |)1/2

)
.

This and (3·4) imply immediately Theorem 1·1.
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8 PETER J. CHO AND HENRY H. KIM

In order to prove Proposition 4·1, we follow the idea in [9]. Namely we prove

PROPOSITION 4·2. Let y = c1 log X and r � c2
log X

log log X for some positive constants c1

and c2. Then,

∑
L(s,ρ)∈L(X)

( ∑
y<p<x

aρ(p)

p

)2r

� 22r−1(d Nd)
2r (2r)!

r !
22r

(y log y)r
X,

with an absolute implied constant, where Nd is the number of splitting types in Sd+1-fields.

By Stirling’s formula,

22r−1(d Nd)
2r (2r)!

r !
22r

(y log y)r
�

(
cd2 N 2

d r

y log y

)r

for some constant c.

Here N1 = 3, N2 = 5, N3 = 11, N4 = 17 (cf. [2]).

Proof. By the multinomial formula, the left hand side is

∑
L(s,ρ)∈L(X)

2r∑
u=1

1

u!
∑(1)

r1,...,ru

(2r)!
r1! · · · ru!

∑(2)

p1,...,pu

aρ(p1)
r1 · · · aρ(pu)

ru

pr1
1 · · · pru

u
, (4·2)

where
∑(1)

r1,...,ru
means that the sum is over the ordered u-tuples (r1, ..., ru) of positive integers

such that r1 + · · · + ru = 2r , and
∑(2)

p1,...,pu
means the sum over the u-tuples (p1, ..., pu) of

distinct primes such that y < pi < x for each i . Each ordered u-tuple (r1, ..., ru) gives a
composition of 2r . Here a composition means an ordered partition.

Write

(4·2) =
2r∑

u=1

∑(1)

r1,...,ru

(2r)!
r1! · · · ru!

1

u!
∑(2)

p1,...,pu

1

pr1
1 · · · pru

u

⎛⎝ ∑
L(s,ρ)∈L(X)

aρ(p1)
r1 · · · aρ(pu)

ru

⎞⎠ .

We will show that for any composition r1 + r2 + · · · + ru = 2r ,

(2r)!
r1! · · · ru!

1

u!
∑(2)

p1,...,pu

1

pr1
1 · · · pru

u

⎛⎝ ∑
L(s,ρ)∈L(X)

aρ(p1)
r1 · · · aρ(pu)

ru

⎞⎠
� (d Nd)

2r X
(2r)!

r !
22r

(y log y)r
. (4·3)

Since the number of compositions of 2r is 22r−1, it implies that

(4·2) � 22r−1(d Nd)
2r (2r)!

r !
22r

(y log y)r
X.

First, we consider compositions with ri � 2 for all i . Then by using the trivial bound,

∑(2)

p1,...,pu

1

pr1
1 · · · pru

u

⎛⎝ ∑
L(s,ρ)∈L(X)

aρ(p1)
r1 · · · aρ(pu)

ru

⎞⎠
� d2r X

( ∑
y<p1<x

1

pr1
1

)
· · ·

( ∑
y<pu<x

1

pru
u

)
� d2r X

22r

(y log y)r

(
log y

y

)r−u

.
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Hence (4·3) is proved once we show that for any r1, ..., ru such that r1 + · · · + ru = 2r ,
and ri � 2 for all i

1

u!r1! · · · ru!
(

log y

y

)r−u

� 1

r ! ,

or equivalently

r !
u!r1! · · · ru! �

(
y

log y

)r−u

. (4·4)

Since ri � 2 for all i = 1, 2, . . . , u, we have u � r . Since y = c1 log X and r � c2
log X

log log X ,
r � y/log y for sufficiently small c2. Then

r !
u!r1! · · · ru! � r !

u! = r(r − 1) . . . (r − u + 1) � rr−u �
(

y

log y

)r−u

.

Next, suppose ri = 1 for some i . We may assume that r1 +· · ·+rm +rm+1 +· · ·+ru = 2r ,
r1 = · · · = rm = 1, and rm+1 > 1, . . . , ru > 1. First, we need a technical combinatorial
lemma.

LEMMA 4·3. Let ri ’s be as above. Then

1

u! · 1

r1!r2! . . . rm !rm+1! . . . ru! · yu

ym+r
· (log y)r

(log y)u
� 1

r ! . (4·5)

Proof. First, we assume that m is even. Then since rm+1, . . . , ru � 2, and rm+1+· · ·+ru =
2r − m, by (4·4), (

2r−m
2

)!
(u − m)!rm+1! . . . ru! �

(
y

log y

)(r−m/2)−(u−m)

�
(

y

log y

)r+m/2−u

.

Hence

1

rm+1! . . . ru! � (u − m)!
(r − m/2)!

(
y

log y

)r+m/2−u

.

So

1

u! · 1

r1!r2! . . . rm !rm+1! . . . ru!
yu

ym+r

(log y)r

(log y)u

� (u − m)!
u!

1

(r − m/2)!
(

y

log y

)r+m/2−u yu

ym+r

(log y)r

(log y)u

� (u − m)!
u!

1

(r − m/2)!
1

(y log y)m/2

Since r < y and (u−m)!
u! < 1,

r !
(r − m

2 )!
(u − m)!

u! � (y log y)m/2.

This implies
(u − m)!

u!
1

(r − m/2)!
1

(y log y)m/2
� 1

r ! .

Hence we have (4·5).
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When m is odd, we consider a composition of 2r − m + 3 of the form:

r ′
m+1 = rm+1, r ′

m+2 = rm+2, . . . , r ′
u = ru, and r ′

u+1 = 3.

With this composition, by (4·4),(
2r−m+3

2

)!
(u − m + 1)!rm+1! . . . ru!3! =

(
2r−m+3

2

)!
(u − m + 1)!r ′

m+1! . . . r ′
u!r ′

u+1!
�

(
y

log y

)r+m/2+1/2−u

.

As we did for the case of even m, since r < y and (u−m+1)!
u! � 1, we have

r !
(r − m−3

2 )!
(u − m + 1)!

u! � 1

6
(y log y)

m−1
2 log y.

This implies (4·5).

Recall that we are treating a composition r1 + r2 + · · · + ru = 2r with r1 = r2 = · · ·
= rm = 1. Consider ∑

L(s,ρ)∈L(X)

aρ(p1)
r1 · · · aρ(pu)

ru . (4·6)

Let N be the number of conjugacy classes of G. Recall that there are w ramified split-
ting types so that Nd = N + w. Partition the sum

∑
ρ∈L(X) into N u

d sums, namely, given
(S1, ...,Su), where Si is either Spi ,C or Spi ,r j , we consider the set of ρ ∈ L(X) with the
local conditions Si for each i . Note that in each such partition, aρ(p1)

r1 · · · aρ(pu)
ru remains

a constant.
Suppose one of p1, ..., pm is unramified, say p1. Consider N (N +w)u−1 such partitions in

(4·6). Fix the splitting types of p2, ..., pu and let Frobp1 runs through the conjugacy classes
of G. Let L(X; p2, ..., pu) be the set of ρ ∈ L(X) with the fixed splitting types. Then the
sum of such N partitions is∑

C

aρ(p1)aρ(p2) · · · aρ(pu)
ru

∑
ρ∈L(X,p2,...,pu )

1.

By (2·1), ∑
ρ∈L(X,p2,...,pu )

1 = |C |
|G|(1 + f (p1))

A(p2, ..., pu)X + O((p1 · · · pu)
κ X δ),

for some constant A(p2, ..., pu). Let χρ be the character of ρ. Then aρ(p) = χρ(g), where
g = Frobp. By orthogonality of characters,

∑
C |C |aρ(p1) = ∑

g∈G χρ(g) = 0. Hence the
above sum is O(N (p1 · · · pu)

κ X δ). By the trivial bound, |aρ(p2) · · · aρ(pu)
ru | � d2r . Hence

the contribution from these partitions to (4·3) is

� Nd2r X δ (2r)!
r1! · · · ru!

1

u!
∑(2)

p1,...,pu

pκ−1
1 · · · pκ−1

m pκ−rm+1

m+1 · · · pκ−ru
u

� Nd2r X δ (2r)!
r1! · · · ru!

1

u!
m∏

i=1

( ∑
y<pi <x

pκ−1
i

)
u∏

i=m+1

( ∑
y<pi <x

pκ−ri
i

)

� Nd2r X δ (2r)!
r1! · · · ru!

1

u!
xuκ

(log x)u
� Nd2r X δ (2r)!

r !
xuκ

(log x)u
ym+r−u(log y)u−r

� Nd2r X δ (2r)!
r ! (log X)uκβ+r .
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Here we used Lemma 4·3 for the second last inequality. Hence the contribution from the
cases when one of p1, ..., pm is unramified, is

� (N + w)ud2r X δ (2r)!
r ! (log X)uκβ+r � N 2r

d d2r X δ (2r)!
r ! (log X)2r(κβ+1).

If we choose c2 sufficiently small, for example, taking c2 = 1−δ

20(κβ+1)
, X δ(log X)2rκβ+1 �

X 22r

(y log y)r . This verifies (4·3).
Now suppose that p1, ..., pm are all ramified. Then by (2·1), the number of elements in

the set of ρ ∈ L(X) with the local condition Spi ,r for i = 1, . . . , m, is
m∏

i=1

f (pi )

1 + f (pi )
A(r2)X + O((p1 · · · pm)κ X δ),

Note that f (p)

1+ f (p)
� 1/p. By the trivial bound, aρ(p1)

r1 · · · aρ(pu)
ru � du � d2r . Hence

the main term contributes to (4·3)

Xd2r
∑(2)

p1,...,pu

1

p2
1 · · · p2

m prm+1

m+1 · · · pru
u

� Xd2r
m∏

i=1

( ∑
y<pi <x

p−2
i

)
u∏

i=m+1

( ∑
y<pi <x

p−ri
i

)

� Xd2r 22r (y log y)−r yu

ym+r
· (log y)r

(log y)u
.

By Lemma 4·3, (4·3) is verified in this case.
The contribution of the error term O((p1 · · · pm)κ X δ) to (4·3) is similar to the case when

p1 is unramified.

Now take y = c1 log X , and r = c2
log X

log log X . Then from Proposition 4·2, the number of

ρ ∈ L(X) such that
∣∣∣∑y<p<x

aρ(p)

p

∣∣∣ > 1
(log log X)1/2 , is

� Xe−c′ log X
log log X log log log X

, (4·7)

for some c′ > 0. This proves Proposition 4·1.

4·2. Infinite family of number fields with extreme residues

Let C be a conjugacy class of Sd+1, and S = (Sp,C)p�y be the set of local conditions such
that for every prime p � y, Frobp ∈ C . We denote L(X,S)r2 by L(X,S). Conjecture 2·1
says that

|L(X,S)| = A(r2)X
∏
p�y

|C |
|Sd+1|

1 + f (p)
+ O

⎛⎝( ∏
p�y

p

)γ

X δ

⎞⎠ .

The main term is

A(r2)
X

log y
exp

(
− log

|Sd+1|
|C | · log X

log log X

)
. (4·8)

This is larger than (4·7). Also we may assume that almost all L-functions in L(X,S) have
the desired zero-free region of the form in Proposition 3·3. Hence, by Proposition 4·1, except

O(Xe−c′ log X
log log X log log log X

) fields,

L(1, ρ) =
∏
p�y

Frobp∈C

d∏
i=1

(1 − αi p−1)−1

(
1 + O

(
1

(log log |DK | 1
2

))
.
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By taking C = 1, we obtain an infinite family of number fields with the upper bound. On
the other hand, by taking C = (1, · · · , d + 1), we obtain an infinite family of number fields
with the lower bound. This proves Theorem 1·2.

In a similar way, for each 0 � i � d, d − i even, we can construct an infinite family of
number fields with the residue

ζ(2)
d−i

2 eγ i (log log |DK |)i(1 + o(1)).

In particular we obtain an infinite family of number fields with bounded residues by taking

C =
{

(1, 2)(3, 4) · · · (d − 1, d), if d is even,

(1, 2)(3, 4) · · · (d − 4, d − 3)(d − 2, d − 1, d), if d is odd,

for which

Ress=1ζK (s) = L(1, ρ) =
{

ζ(2)
d
2 (1 + o(1)), if d is even,

ζ(2)
d−3

2 ζ(3)(1 + o(1)), if d � 3 is odd,

and it proves Theorem 1·3.
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