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Abstract. This paper is a continuation of [21]. We supplement four results on a family of

holomorphic Siegel cusp forms for GSp4/Q. First, we improve the result on Hecke fields. Namely,

we prove that the degree of Hecke fields is unbounded on the subspace of genuine forms which

do not come from functorial lift of smaller subgroups of GSp4 under a conjecture in local-global

compatibility and Arthur’s classification for GSp4. Second, we prove simultaneous vertical Sato-

Tate theorem. Namely, we prove simultaneous equidistribution of Hecke eigenvalues at finitely

many primes. Third, we compute the n-level density of degree 4 spinor L-functions, and thus

we can distinguish the symmetry type depending on the root numbers. This is conditional on

certain conjecture on root numbers. Fourth, we consider equidistribution of paramodular forms.

In this case, we can prove a result on root numbers. Main tools are the equidistribution theorem

in our previous work and Shin-Templier’s work [45].

1. Introduction

This paper is a continuation of [21]. We use the same notations throughout this paper. We

study Hecke fields, simultaneous vertical Sato-Tate theorem, and the n-level density on a family

of holomorphic Siegel cusp forms for GSp4/Q.

First, Hecke fields. Let S1
k(Γ0(N )) be the space of elliptic cusp forms of weight k ≥ 2 with

respect to a congruent subgroup Γ0(N ). The Hecke operators {Tp}p-N acting on the space and it

has a basis consisting of simultaneous eigenforms in Hecke operators which are called normalized

Hecke eigenforms. Let f be such an eigenform and ap(f) be the Hecke eigenvalue of Tp for p - N ,

i.e. Tpf = ap(f)f . The field Qf := Q(ap(f) | p - N ) generated by such eigenvalues over Q is called

the Hecke field of f . Since S1
k(Γ0(N )) has an integral structure preserved by Hecke operators,
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the eigenvalues are algebraic numbers and it turns out that Qf is a finite extension over Q. The

Hecke field of f reflects various arithmetic properties of f and has been studied by many people

[43], [41]. For example Q-simple factors of the Jacobian J0(N ) of the modular curve X0(N ) can

be described in terms of the degree of the Hecke fields and one can ask the maximal dimension

of Q-simple factors for J0(N ) (see [28], [41], [33],[53] [30]).

Let Sk(Γ(N ), χ) be the space of classical holomorphic Siegel cusp forms of degree 2 with the

level Γ(N ), a central character χ : (Z/NZ)×−→C×, and weight k = (k1, k2), k1 ≥ k2 ≥ 3 (cf.

Section 2 of [21]). For a prime p - N , let T (pn) be the Hecke operator with the similitude pn.

Any eigenform with respect to T (pn) for any non-negative integer n and any prime p - N is

called a Hecke eigen cusp form. We denote by HEk(Γ(N ), χ) the set of all such eigenforms in

Sk(Γ(N ), χ).

Let F be a Hecke eigen cusp form and λF (pn) be the Hecke eigenvalue of F for T (pn), i.e.

T (pn)F = λ(pn)F . It is known that λF (pn) is an algebraic integer (cf. Lemma 2.1 of [47]). We

consider the Hecke field QF := Q(λF (pn), χ(p), χ2(p) | p - N ) which turns out to be a finite

extension over Q (see (2.12) of [21] for χ2). We call F a genuine form if it never comes from any

functorial lift from a smaller subgroup of GSp4, hence, it is neither a CAP form, an endoscopic

lift, a base change lift, an Asai lift, nor a symmetric cubic lift (see Section 2 for the details).

Theorem 1.1. Assume Conjecture 1 of [13] and Arthur’s classification for GSp4 Fix a weight

k = (k1, k2) with k1 ≥ k2 ≥ 3 and a prime p. Then

lim sup
N→∞,p-N, (N,11!)=1

ord`(N)≥4 if `|N

{[QF : Q] | F ∈ HEk(Γ(N ), χ) : genuine} = ∞.

Theorem 1.2. Let the notation and assumptions be as above. Let p be a fixed prime. Put

dk,N(χ) = |HEk(Γ(N ), χ)| Then

|{F ∈ HEk(Γ(N ), χ) | [QF : Q] ≤ A}| = O

(
dk,N (χ)

log dk,N(χ)

)
= O

(
N 9+ε

logN

)

as N goes to infinity satisfying either of the following conditions:

(1) ord`(N ) ≥ 4 if `|N and (N, p) = 1 ; or

(2) ordp(N ) → ∞ as N → ∞.

The claim is still true even if we replace HEk(Γ(N ), χ) with {F ∈ HEk(Γ(N ), χ)| F : genuine}
but keeping the additional condition (N, 11!) = 1. Note that the cardinality of that subspace is

approximately equal to dk,χ(N ) when N, (N, 11!) = 1 goes to infinity.
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Theorem 1.3. Keep the condition in Theorem 1.2. Put f(N ) = (log logN )
1
2 if N is in the first

case of the two conditions in Theorem 1.2 and f(N ) = (logN )
1
4 otherwise. Then

inf{[QF : Q] | F ∈ HEk(Γ(N ), χ) : genuine} � f(N )

as N goes to infinity with (N, 11!) = 1.

Second, simultaneous vertical Sato-Tate theorem. Let Sk(Γ(N ), χ)tm be the subspace of

Sk(Γ(N ), χ) generated by Hecke eigen forms F outside N so that πF,p is tempered for any p - N .

Let HEk(Γ(N ), χ)tm = Sk(Γ(N ), χ)tm∩HEk(Γ(N ), χ). For a prime p - N , let aF,p, bF,p ∈ [−2, 2]

be Hecke eigenvalues as in [21]. Then in Section 4, we generalize Theorem 1.4 of [21] to finitely

many primes. Namely, given finitely many distinct primes p1, ..., pr, ((aF,p1, bF,p1), ..., (aF,pr, bF,pr))

is equidistributed with respect to a suitable measure (Theorem 4.1).

Third, n-level density of degree 4 spinor L-functions. In [21], we studied the one-level density

of degree 4 spinor L-functions of a family of holomorphic Siegel cusp forms for GSp4/Q, and we

showed that its symmetry type is SO(even), SO(odd), or O type, as predicted by [14]. However,

we could not distinguish the symmetry type among SO(even), SO(odd), and O type since the

support of φ̂ is smaller than (−1, 1). In order to distinguish them, we need to compute the

n-level density. For the degree 4 spinor L-function L(s, πF , Spin), we denote the non-trivial

zeros of L(s, πF , Spin) by 1
2 +

√
−1γj. Let φ(x1, ..., xn) =

∏n
i=1 φi(xi) be an even Schwartz class

function in each variables whose Fourier transform φ̂(u1, ..., un) is compactly supported. We

define D(n)(πF , φ, Spin) as in Section 5.

We first prove the following theorem which may be of independent interest. Let L(s, πF , Spin) =
∑∞

m=1 λ̃F (m)m−s. Let m =
∏

p|m pvp(m). For simplicity, denote Sk(Γ(N ), 1), dk,N(1) by Sk(N ), dk,N ,

resp.

Theorem 1.4. Put k = (k1, k2), k1 ≥ k2 ≥ 3.

(1) (level-aspect) Fix k1, k2. Then as N → ∞,

1

dk,N

∑

F∈HEk(N)

λ̃F (m) = δ�m− 1
2

∏

p|m
(1 + p−2 + · · ·+ p−vp(m)) + O(N−2mc),

where δ� =





1, if m is a square

0, otherwise
.
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(2) (weight-aspect) Fix N . Then as k1 + k2 → ∞,

1

dk,N

∑

F∈HEk(N)

λ̃F (m) = δ�m− 1
2

∏

p|m
(1 + p−2 + · · ·+ p−vp(m))

+ O

(
mc

(k1 − 1)(k2 − 2)

)
+ O

(
m−d

(k1 − k2 + 1)(k1 + k2 − 3)

)
,

for some constants c, d > 0.

For one-level density, the root number ε(πF ) did not play a role. However, higher level density

depends on the root number.

When N = 1 (i.e., level one case), we have ε(πF ) = (−1)k2 ([39]). (In this case, k1 − k2 should

be even.) Then we have the following n-level density in the weight aspect. Let HEk = HEk(1)

and dk = dk,1.

Theorem 1.5. Let φ(x1, ..., xn) = φ1(x1) · · ·φn(xn), where each φi is an even Schwartz function

and φ̂(u1, ..., un) = φ̂1(u1) · · · φ̂n(un). Assume the Fourier transform φ̂i of φi is supported in

(−βn, βn) for i = 1, · · · , n. (βn < 1 can be explicitly determined.) Then

1

dk

∑

F∈HEk

D(n)(πF , φ, Spin) =





∫
Rn φ(x)W (SO(even))(x) dx + O

(
1

log ck

)
, if k2 is even

∫
Rn φ(x)W (SO(odd))(x) dx + O

(
1

log ck

)
, if k2 is odd

,

where W (SO(even)) and W (SO(even)) are the n-level density functions defined in Section 5, and

ck = ck,1 is the analytic conductor defined in Section 5.

Let S±
k (N ) be the subspace of Sk(N ) with the root number ε(πF ) = ±1. Let HE±

k (N ) be a

basis of S±
k (N ) consisting of Hecke eigenforms outside N , and denote |HE±

k (N )| = d±k,N . When

N is large, we expect d±k,N = 1
2dk,N + O(N 9−ε), and the analogue of Theorem 1.4 holds when we

replace HEk(N ) by HE±
k (N ). We assume it as Conjecture 5.1. Then we can prove the n-level

density result for HE±
k (N ) (Theorem 5.9 and Theorem 5.10).

In Section 6, we study the n-level density of the degree 5 standard L-functions of holomorphic

Siegel cusp forms. We show that the root number is always one. Hence the symmetry type of

the n-level density should be Sp. Under Conjecture 6.1 which is an analogue of Conjecture 5.1,

we show

Theorem 1.6. Let φ(x1, ..., xn) = φ1(x1) · · ·φn(xn), where each φi is an even Schwartz function

and φ̂(u1, ..., un) = φ̂1(u1) · · · φ̂n(un). Assume the Fourier transform φ̂i of φi is supported in
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(−βn, βn) for i = 1, · · · , n. Then

1

dk,N

∑

F∈HEk,N

D(n)(πF , φ, St) =

∫

Rn

φ(x)W (Sp)(x) dx + O

(
ω(N )

log ck,N

)
.

Fourth, we consider paramodular forms. In our previous paper [21], we considered only prin-

cipal congruence subgroup Γ(N ). Here we can deal with the paramodular group Kpara(N ). We

prove equidistribution results on paramodular forms. In particular we can show Conjecture 5.1

for paramodular forms. Hence n-level density for spinor L-functions of paramodular forms for

weight aspect (analogues of Theorem 5.9 and Theorem 5.10) hold. In a similar way, we can show

simultaneous vertical Sato-Tate theorem for paramodular forms (analogue of Theorem 4.1).

Acknowledgments. We would like to thank K. Morimoto, R. Schmidt and S-W. Shin for

helpful discussions.

2. Genuine forms

In this section, we follow the notation and the contents in Section 2 of [21] for holomorphic

Siegel modular forms of genus 2. The readers should consult the references there if necessary.

2.1. Classical Siegel modular forms and Hecke fields. For a pair of non-negative integers

k = (k1, k2), k1 ≥ k2 ≥ 3 and N ≥ 1, we denote by Sk(Γ(N ), χ) the space of cusp forms of the

weight k with the character χ : (Z/NZ)×−→C× for a principal congruence subgroup Γ(N ). Here

the weight corresponds to the algebraic representation λk of GL2 with the highest weight k by

Vk = Symk1−k2St2 ⊗ detk2St2,

where St2 is the standard representation of dimension 2.

For each prime p - N and n ≥ 1 one can define the Hecke operator T (pn) acting on Sk(Γ(N ), χ).

There exists a basis of the space consisting of eigenforms for all such T (pn) which are called Hecke

eigen cusp forms. Let HEk(Γ(N ), χ) be the set of all Hecke eigen cusp forms for Sk(Γ(N ), χ).

For F ∈ HEk(Γ(N ), χ) we have T (pn)F = λF (pn)F, λF (pn) ∈ C. Since Sk(Γ(N ), χ) has an

integral structure and is of finite dimensional, the eigenvalue λF (pn) is an algebraic integer once

we fix an embedding Q ↪→ C. We define the Hecke field QF of F by Definition 2.14 in [21].

2.2. CAP forms and endoscopic lifts. For F ∈ HEk(Γ(N ), χ) let πF be the corresponding

cuspidal representation of GSp4(AQ). We say F is a CAP form (resp. an endoscopic lift) if πF

is a CAP (resp. endoscopic) representation. We denote by Sk(Γ(N ), χ)CAP the space generated
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by all CAP forms in Sk(Γ(N ), χ). We also define Sk(Γ(N ), χ)EN for endoscopic lifts similarly.

Under mind condition on the level N we have the following estimation on the dimension of the

space as above.

Proposition 2.1. If k1 6= k2 or χ is not the square of a character, then Sk(Γ(N ), χ)CAP = 0. If

k := k1 = k2 and χ is the square of a character, then

dimSk(Γ(N ), χ)CAP = O(kN 7+ε)

as N + k → ∞ and (N, 11!) = 1

Proof. It follows from Section 4.4 and Theorem 4.3 in [21]. �

Next we consider endoscopic lifts.

Proposition 2.2. It holds that

dimSk(Γ(N ), χ)EN = O((k1 − k2 + 1)(k1 + k2 − 3)N 8+ε)

as N + k1 + k2 → ∞ and (N, 11!) = 1

Proof. It follows from Theorem 4.2 in [21]. �

2.3. Local-global compatibility for holomorphic Siegel modular forms. In this subsec-

tion we discuss some results which follow from Conjecture 1 of [13] concerning local-global com-

patibility for holomorphic Siegel modular forms. That conjecture is satisfied for Siegel modular

forms with Iwahori level structure in [13] and for Siegel paramodular forms by [39] and [46].

Let SStable
k (Γ(N )) be the space generated by all non-endoscopic, non-CAP Hecke eigen cusp

forms in Sk(Γ(N )). Such a form is called a stable form by Arthur. For a Hecke eigenform F in

SStable
k (Γ(N )) let us consider the corresponding cuspidal representation πF = ⊗′

pπp of GSp4(AQ).

Proposition 2.3. Let the notations be as above. Assume Conjecture 1 of [13]. Then there exists

a unique globally generic cuspidal representation π′ = ⊗′
pπ

′
p of GSp4(AQ) such that πp and π′

p

belong to the same L-packet and they are both tempered.

Proof. For such πF , by Weissauer [51], there exists a globally generic cohomological cuspidal

representation Π of GSp4(AQ) so that πF is weakly equivalent to Π. By [46], for any fixed

prime `, it gives rise to a Galois representation ρΠ,` : GQ−→GSp4(Q`) which satisfies local-

global compatibility. Under Conjecture 1 of [13] we also have a Galois representation ρπF ,` :
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GQ−→GSp4(Q`) which satisfies local-global compatibility and ρΠ,` ∼ ρπ,` by Chebotarev density

theorem. Therefore πp and Πp belong to the same L-packet. The temperedness of Πp which is

proved in [46] implies that of πp by [8]. �

Corollary 2.4. Keep the notations as in the previous proposition and assume Conjecture 1 of [13].

Then πp is generic if its L-packet is a singleton. Otherwise the L-packet of πp has two members

which are given in the notation of [31] by {VIa, VIb}, {VIIIa, VIIIb}, {Va, θ((σSt2)
JL, (σξSt2)

JL)},
{XIa, θ((σSt)JL

2 , (σπsc)JL)}, or {θ(πp,1, πp,2), θ((πp,1)
JL, (πp,2)

JL)} where πsc, π1,p, and π2,p stand

for unitary supercuspidal representations of GL2(Qp) such that π1,p 6∼ π2,p, σ is a quasi charac-

ter of Q×
p and ξ is a quadratic character of Q×

p . Here θ is the local theta correspondence from

GSO(4) or GSO(2, 2) to GSp4 (cf. Section 4.3 of [21]).

Proof. First we remark that the L-packet of any generic supercuspidal representation which is

not in the image of the local theta correspondence from GSO(2, 2) is a singleton since it has an

irreducible L-parameter. Such a representation never appears in this setting. Then by using Table

A.1 of [31], Proposition 2.3, and local Langlands classification [8], one can list every non-generic

representation whose L-packet is not a singleton (see also Section 2.4 of [31]). �

Put K(pr) := (1 + prM4(Zp)) ∩ GSp4(Zp) for a non-negative integer r.

Proposition 2.5. Let πp be the representation as in Proposition 2.3. Assume Conjecture 1 of

[13] and that the L-packet of πp consists of two members. Assume further that (p, 11!) = 1. Then

dimπ
K(pr)
p = O(p9r) when pr goes to infinity.

Proof. Under Conjecture 1 of [13], one can see that πp is one of representations in Corollary

2.4. Except for representations obtained by the local theta correspondence it is a constituent of

a normalized induced representation Ind
GSp4(Qp)
B(Qp)

χ where χ is a quasi character of B(Qp). Let

γ1, . . . , γt be a complete system of the double coset representatives of B(Qp)\GSp4(Qp)/K(pr).

Then (Ind
GSp4(Qp)
B(Qp)

χ)K(pr) is generated by the following functions:

fi(g) =





δ
1
2
B(b)χ(b), if g = bγik ∈ B(Qp)γiK(pr),

0, otherwise.

so that χ is trivial on B(Qp) ∩ γiK(pr)γ−1
i . Therefore we roughly estimate

dim πK(pr) ≤ dim (Ind
GSp4(Qp)
B(Qp) χ)K(pr) ≤ t = ]B(Z/prZ)\GSp4(Z/prZ) = O(p4r).
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Let us suppose that πp = θ((σSt2)
JL, (σξSt2)

JL), or πp = θ((σSt)JL
2 , (σπsc)JL). Put τ =

σSt2 × σξSt2 or τ = σSt2 × σπsc, respectively. Recall that (p, 11!) = 1. Then one can apply the

argument in Theorem 4.2 of [21] which gives us a similar estimation:

dimπK(pr) =
vol(KH(pr))

vol(K(pr))

1

p2r
dim τKH(pr) = O(p9r)

where KH(pr) := Ker(H(Zp)−→H(Zp/prZp)) for a unique endoscopic subgroup H = GSO(2, 2)

in GSp4 (see Section 4.3 of [21]). The remaining case is similar to this case. �

The following lemma will be used to define a non-canonical map (2.1).

Lemma 2.6. Let πp be as in Corollary 2.4. Assume that L-packet of πp is not a singleton and let

{πp, π
g
p} be the L-packet where πp is non-generic and πg

p is generic. Then for a positive integer r,

(π
g
p)K(pr) 6= 0 (resp. (π

g
p)K(pmax{4,r}) 6= 0) if (πp)

K(pr) 6= 0 except for the case of πp = V Ib (resp.

for the case of πp = V Ib).

Proof. We prove this lemma case by case and all cases are given in Corollary 2.4. Let us first

consider the type VIa and VIb. Then πg
p = τ(S, ν− 1

2 σ) and πp = τ(T, ν− 1
2 σ). By definition

τ(T, ν− 1
2 σ) = σ ⊗ τ(T, ν− 1

2 ) and τ(S, ν− 1
2 σ) = σ ⊗ τ(S, ν− 1

2 ). Therefore the character σ should

be trivial on 1 + prZp. Note that τ(S, ν− 1
2 ) (resp. τ(S, ν− 1

2 )) is of paramodular level 4 (resp. 2).

Since the paramodular subgroup Kpara(pt) contains K(pt) for any positive integer t, the claim

follows.

In the case of VIIIa and VIIIb, by Table A.4 of [31], both of their Jacquet modules along

the Klingen parabolic subgroup are 1 o π where π is a unitary supercuspidal representation of

GL2(Qp). The claim follows from this.

Next we consider the case πg
p = V a = δ([ξ, νξ], ν− 1

2 σ) where ξ is a quadratic character. Clearly

σ is trivial on 1 + prZp. If ξσ is ramified, then δ([ξ, νξ], ν− 1
2 σ) = σ ⊗ δ([ξ, νξ], ν− 1

2 ). The claim

is now easy to follow. The other remaining case is done similarly.

For the level of theta correspondence we can apply the argument in Theorem 4.2 of [21]

regarding the transfer of some Hecke elements with respect to congruence subgroups and the

claim follows from this directly. �

2.4. A non-canonical map between stable forms. Throughout this subsection we assume

Conjecture 1 of [13] as in Proposition 2.3 and Arthur’s classification for GSp4 (which will be

completed soon). Under these assumptions we relate holomorphic stable forms with globally

generic stable forms. According to Lemma 2.6 we also assume that ordp(N ) ≥ 4 when a prime
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p divides N . Let π = ⊗pπp be a cuspidal representation which comes from a Hecke eigen form

in SStable
k (Γ(N )). Let π

g
∞ := D

large
l1,−l2

be the large discrete series with Harish-Chandra parameter

(l1, l2) = (k1 − 1, k2 − 2) (see Section 2.3 of [49]) and we denote by S large
k (Γ(N )) the space of

C∞ Hecke eigen automorphic forms whose representation of GSp4(R) is isomorphic to Dlarge
l1,l2

and which give rise to globally generic representations. We say an element of this space a

globally generic form. Let Sgg
k (Γ(N )) be the space of globally generic forms. For π = ⊗pπp ∈

SStable
k (Γ(N )), we define the finite set S of primes p so that the L-packet of πp is not a singleton

and πp is non-generic. We denote by πg
p the generic representation in the same L-packet as πp

for p ∈ S. Since π is stable, by Arthur’s classification for GSp4 (cf. line 5 in p.11 of [40]), the

admissible representation

πg := D
large
l1,−l2

⊗
⊗

p∈S

πg
p ⊗

⊗

p 6∈S

πp

is an automorphic cuspidal representation which is generic everywhere. Then by Proposition 2.3,

this is a globally generic representation so there is a unique distinguished vector F g in πg. The

uniqueness follows from [12]. Therefore we have a non-canonical map

(2.1) T g : SStable
k (Γ(N ))−→Sgg

k (Γ(N )), F 7→ F g.

Note that T g takes the forms with respect to Γ(N ) by Lemma 2.6. For any subset S ′ ⊂ S ∪ {∞}
one can also consider π(S ′) :=

⊗
p∈S πg

p ⊗
⊗

p 6∈S′ πp which is also automorphic. Similarly we have

a non-canonical map T (S ′) from SStable
k (Γ(N )). There exists 2|S| maps for T (S ′).

We will exploit this map to estimate the number of functorial lifts with the following proposi-

tion.

Proposition 2.7. Under the assumptions in this section, dimKerT g = O(N 8+ε).

Proof. Let AStable
k (Γ(N )) be the space of automorphic forms on GSp4(A) which corresponds to

SStable
k (Γ(N )). Then by [21, (2.17)], dimAStable

k (Γ(N )) = ϕ(N )dimSStable
k (Γ(N )). Hence the

contribution from adelic forms to classical forms is differ by ϕ(N ). Proposition 2.5 implies that

the dimension of the adelic version of T g is O(N 9). Since 2|S| = O(2ω(N)) = O(N ε), the claim

follows. �

2.5. Symmetric cube lifts. There is a functorial lift from GL2 to GL4 which is called symmetric

cube lift constructed by Kim and Shahidi [20]. For an elliptic cusp form f of weight greater than

2, let Π′ be the image of πf under the symmetric cube lift. Then it descends to a unique globally

generic cuspidal representation Πf := Sym3πf of GSp4(AQ). We say F ∈ HEk(Γ(N )) is a
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symmetric cube lift if πF,p ∼ Πf,p for almost all prime p 6= ∞ and an elliptic cusp form f . We

denote by Sk(Γ(N ), χ)Cube the space generated by all symmetric cube lifts in Sk(Γ(N ), χ).

In what follows we will try to estimate the dimension of this space. We can define the following

map as in (2.1):

(2.2) T g := T g
k (N, χ) : SStable

k (Γ(N ), χ)−→Snon-E,gg
k (Γ(N ), χ), T (F ) = F g

where SStable
k (Γ(N ), χ) is the space generated by all Hecke eigen stable forms in Sk(Γ(N ), χ) and

Snon-E,gg
k (Γ(N ), χ) is the space generated by all non-endoscopic globally generic Hecke eigen forms

in Sgg
k (Γ(N ), χ).

Let SCube
k (Γ(N ), χ) (resp. SCube, gg

k (Γ(N ), χ)) be the space generated by all symmetric cube

lifts (resp. all generic symmetric cube lifts) in SCube
k (Γ(N ), χ) (resp. Sgg

k (Γ(N ), χ)). It is easy

to see that SCube
k (Γ(N ), χ) ⊂ SStable

k (Γ(N ), χ) and SCube, gg
k (Γ(N ), χ) ⊂ Snon-E,gg

k (Γ(N ), χ). Fur-

thermore T g induces a surjective linear map

T g : SCube
k (Γ(N ), χ)−→SCube,gg

k (Γ(N ), χ).

Then we have

Theorem 2.8. Fix a weight k. Then it holds that

dimSCube,gg
k (Γ(N ), χ) = O(N 4+ε)

as N → ∞ with (N, 11!) = 1.

Proof. Let F be a globally generic Hecke eigen cusp form in SCube,gg
k (Γ(N ), χ). By Lemma 9.1 of

[21], the conductor of πF is bounded by N 4. On the other hand, if πF = Sym3πf for an elliptic

cusp form f , by applying Theorem in Section 6.5 of [2] to Sym2πf and πf , the lower bound of

the conductor of πF is given by

c(πf)(c(πf)2 − c(πf))

c(πf)
= c(πf)

2 − c(πf)

since Sym2πf � πf = Sym3πf � πf ⊗ ωπf
. Hence we have that c(πf) = O(N 2). The first claim

follows from this with the dimension formula for the space of elliptic cusp forms with respect to

Γ1(N
2) for a fixed weight. �
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2.6. Automorphic induction. In this section we are concerned with Automorphic induction.

For a quadratic field K/Q, there is a functorial lift from GL2/K to GL4/Q which is called

Automorphic induction (some of people say an Asai lift). To descend it to a globally generic

representation of GSp4, the central character ωπ should be invariant under the non-trivial element

σ in Gal(K/Q). Hence ωπ = ω ◦ NK/Q for a character ω : Q×\A×−→C×.

When K is a real quadratic field, then for any Hilbert modular cusp form f of weight (k1 +

k2 − 2, k1 − k2 + 2) one can construct a generic cuspidal automorphic representation whose

representation Π at infinity is isomorphic to Dlarge
l1,l2

with (l1, l2) = (k1 − 1, k2 − 2). We say

F ∈ Sk(Γ(N )) is an automorphic induction if πF is weakly equivalent to such a Π.

Similarly one can consider an automorphic induction for an imaginary quadratic field K.

However by [9] if F ∈ Sk(Γ(N )) is given by such a way, then k2 has to be 2 which contradicts

with our condition k2 ≥ 3. Therefore we have only to consider only contributions from Hilbert

modular forms for real quadratic fields.

Let SAI
k (Γ(N ), χ) (resp. SAI,gg

k (Γ(N ), χ)) be the space generated by all automorphic induction

(resp. all generic automorphic induction) in Sk(Γ(N ), χ) (resp. Sgg
k (Γ(N ), χ)). It is easy to see

that SAI
k (Γ(N ), χ) ⊂ Sstable

k (Γ(N ), χ) and SAI, gg
k (Γ(N ), χ) ⊂ Sgg,non-E

k (Γ(N ), χ). Furthermore

T g induces a surjective linear map

T g : SAI
k (Γ(N ), χ)−→SAI,gg

k (Γ(N ), χ).

Then we have

Theorem 2.9. Fix a weight k. Then it holds that

dimS
AI,gg
k (Γ(N ), χ) = O(N

11
2

+ε)

as N → ∞ with (N, 11!) = 1.

Proof. Let F be a globally generic Hecke eigen cusp form in SAI,large
k (Γ(N ), χ). By Lemma 9.1

of [21] again the conductor of πF is bounded by N 4. Assume that πF comes from a unique

Hilbert cusp form for a quadratic field K with the weight (k1 + k2 − 2, k1 − k2 + 2) and the

level A ⊂ OK with a character χ′ so that χ′σχ′ = χ. By comparing the conductor we have

DKNK/Q(A) = O(N 4) Then we have

dimS
AI,large
k (Γ(N ), χ) = O(N 4

∑

DK |N
K:real quadratic

ζK(−1))
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by Shimizu’s dimension formula in [42].

Now for a real quadratic field K, ζK(−1) =
ζK(2)

π3Γ(−1
2 )2

D
3
2
K by the functional equation. Since

ζK(2) ≤ ζ(2)2, ∑

DK |N
K:real quadratic

ζK(−1)) �
∑

DK |N
D

3
2
K � N

3
2
+ε.

�

2.7. Asai transfer. In this section we are concerned with the Asai transfer which is a transfer

from GL2/K to GL4/Q for an etale algebra K of degree 2 over Q. When F = Q ⊕ Q, it is the

Rankin-Selberg convolution product. When F is a field, it is called the Asai transfer. In the

former case, given a pair (π1, π2) of two cuspidal representations of GL2(AQ), the automorphic

product π1 � π2 descend to a unique globally generic representation of GSp4 only when one of

πi’s should be dihedral. (See [15].) When K is a field, the Asai transfer As(π) of a cuspidal

representation π of GL2/K descend to GSp4 only when π is dihedral. We say F ∈ Sk(Γ(N ), χ)

an Asai lift if πF is weakly equivalent to such a representation of GSp4.

We denote by SAsai, non-E
k (Γ(N ), χ) the space generated by all non-endoscopic Asai lifts in

Sstable
k (Γ(N ), χ). Similarly we can define SAsai, non-E, gg

k (Γ(N ), χ). As in the previous section we

have a surjective linear map

T g : SAsai,non−E
k (Γ(N ), χ)−→SAsai, non-E, gg

k (Γ(N ), χ).

By using this map we have

Theorem 2.10. Fix a weight k. Then it holds that

dimSAsai,non-E,gg
k (Γ(N ), χ) = O(N 6+ε)

as N → ∞ with (N, 11!) = 1.

Proof. Let us first consider the case when K is not a field. Let (f1, f2) be a pair of two elliptic

cusp forms of level N1, N2 with characters χ1, χ2 so that χ1χ2 = χ but one of them is a CM form

(say, f2). Note that once we fix an imaginary quadratic field defining f2, then the character of f2

is fixed and so is f1. As in the previous proposition, we have N1N2 ≤ N 4 by Theorem in Section

6.5 of [2]. Therefore we have only to consider

∑

N1|N4

∑

a2DK |N1
K:imaginary quadratic

h(a2DK) · dimS1
k1

(Γ0(N
4N−1

1 ), ∗),
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where a2 is the square factor dividing N1, and ∗ is a fixed character and h(a2DK) stands for the

class number of the binary forms with discriminant a2DK .

Now for a fixed k1 and N1, dimS1
k1

(Γ0(N
4N−1

1 ) = O(N 4N−1
1 ), and

h(a2DK) = hKa
∏

p|a
(1− (

DK

p
)p−1) � |DK | 12 +εa1+ε.

Hence

dimSAsai, non-E, gg
k (Γ(N ), χ) �

∑

N1|N4

N 4N−1
1

∑

a2d|N1

(a2d)
1
2
+ε � N 4

∑

N1|N4

N
− 1

2
+ε

1 � N 4+ε.

When K is a field, then there exists a quartic field L/Q which contains K such that πF is

weakly equivalent to AIL
Q(τ) for some Hecke character τ : A×

L/L×−→C×. By comparing the

conductor we see that DLNL/Q(c(τ)) = O(N 4) where c(τ) is the conductor of τ . Hence we

need to count the number of such Hecke characters. Given a quartic field of discriminant d,

NL/Q(c(τ)) = O(N 4|d|−1). Given a positive integer n, there are O(τ(n)) integral ideals of norm

n, where τ(n) is the number of divisors of n. Given an ideal a, there are at most N (a)hL

Hecke characters with the conductor a. Therefore, given a positive integer n, there are at most

nτ(n)hL � n1+εD
1
2
+ε

L Hecke characters. Hence the number of Hecke characters in question is

�
∑

|DL|<N4

(N 4|dL|−1)1+εD
1
2
+ε

L � N 4+ε
∑

|DL|<N4

|DL|−
1
2
+ε.

Let N (d) be the number of quartic fields of discriminant |d| which contains a quadratic subfield.

Then
∑

|d|≤x N (d) � x ([6]). Hence by partial summation, the last estimation becomes O(N 6+ε).

Hence our result follows. �

2.8. Proofs of main theorems for Hecke fields. We are now ready to prove main theorems.

Before going into proofs we give a precise definition of genuine forms.

Definition 2.3. Let F be a Hecke eigen Siegel cusp form of weight (k1, k2), k1 ≥ k2 ≥ 3 which

is neither a CAP form nor an endoscopic lift. We say F is a genuine form if the corresponding

automorphic representation πF is not weakly equivalent to any of a base change lift, an Asai lift,

and a symmetric cube lift.
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By using results in the previous section, Theorem 1.1 and 1.3 of [21] hold if we replace

HEk(N, χ) with the subset {F ∈ HEk(N, χ) | F : genuine}, since

{F ∈ HEk(N, χ) | F : non-genuine} = O(dim Ker(T g)) + dim SCube,gg
k (Γ(N ), χ)

+ dim SAI,gg
k (Γ(N ), χ) + dimSAsai,non-E,gg

k (Γ(N ), χ) = O(N 8+ε).

This proves Theorem 1.1.

Theorem 1.2,1.3 follow from the argument in Section 6.2 and 6.3 of [45] with Theorem 1.1 of

[21].

3. Galois representations for genuine forms

In this section we characterize a genuine form in terms of Galois representations. Let F be a

Hecke eigen Siegel cusp form in Sk(Γ(N )) which is neither CAP nor endoscopic. By Laumon-

Weissauer, for any prime ` there exists a unique irreducible Galois representation

ρF,` : GQ := Gal(Q/Q)−→GSp4(Q`)

such that det(I4 − XρF,`(Frobp)) coincides with the Hecke polynomial at p for any prime p - `N

(see (2.13) of [21] for Hecke polynomials). Since πF is weakly equivalent to a generic cuspidal rep-

resentation of GSp4, it can be transfered to a cuspidal representation of GL4. The irreducibility

of ρF,` follows from this fact and the main result of [3].

Theorem 3.1. The notation being as above. Then F is genuine if and only if the Zariski closure

of the image of ρF,` contains Sp4 for all but finitely many `.

Proof. Let G` be the Zariski closure of the image of ρF,`. By Corollary 4.4 and Proposition 4.5 of

[3] one of the following cases happens: (1) G` contains Sp4; (2) G` is contained in the subgroup

GSO(2, 2) = GL2×GL2/GL1 of GSp4; (3) G` is contained in the subgroup Sym3GL2 of GL4; (4)

ρF,` is an induced representation of 2-dimensional Galois representation associated to a Hilbert

modular form for a quadratic real field; (5) ρF,` is an induced representation of a character.

By Theorem 8.7 for all but finitely many `, the reduction ρF,` is irreducible. In the case

(2), there exists a 2-dimensional irreducible Galois representation ρ` : GQ−→GL2(Q`) such that

ρF,` = Sym3ρ`. The irreducibility of ρF,` implies that of ρ`. Therefore ρ` is modular by Serre

conjecture due to Khare-Wintenberger [17]. It follows that its image contains SL2(F`) otherwise

Sym3ρ` is reducible. Hence ρ is absolute irreducible even if we restrict it to GQ(ζ`). Then by
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Kisin [18] for the ordinary case and Emerton [7] for the non-ordinary case, ρp is modular. Hence

the case (2) corresponds to a symmetric cubic lift.

We now assume that F is genuine and ρF,` does not contain Sp4 for infinitely many `. We

denote by Σ the set of such primes `. The cases (3), (4) and (5) are excluded since F is genuine

with the argument above in the case (3). Then by applying Theorem 1.0.1 of [27] for a sufficiently

large ` ∈ Σ (note that they used the notation SGO(4) instead of GSO(4)), we see that F is a

Rankin-Selberg convolution which contradicts with the assumption on F . �

4. Simultaneous vertical Sato-Tate theorem

Let F ∈ HEk(Γ(N ), χ)tm. For a prime p - N , let aF,p, bF,p ∈ [−2, 2] be Hecke eigenvalues as in

[21]. Recall also the measure

µp = fp(x, y)g+
p (x, y)g−p (x, y) · µST

∞

on Ω := [−2, 2]2/S2 (the non-trivial element in S2 acts by (x, y) 7→ (y, x) on [−2, 2]2), where

fp(x, y) =
(p + 1)2((√

p + 1√
p

)2
− x2

)((√
p + 1√

p

)2
− y2

) , µST
∞ =

(x − y)2

π2

√
1 − x2

4

√
1 − y2

4
,

g±p (x, y) =
p + 1

(√
p + 1√

p

)2
− 2

(
1 + xy

4 ±
√

1 − x2

4

√
1 − y2

4

) .

Let C0(Ω, R) be the space of R-valued continuous functions on Ω. Then we can generalize

Theorem 1.4 of [21] to finitely many primes.

Theorem 4.1. Let p1, ..., pr be distinct primes. Then for f ∈ C0(Ωr, R),

1

dtm
k,N (χ)

∑

F∈HEk(Γ(N),χ)

f((aF,p1, bF,p1), ..., (aF,pr, bF,pr)) =

∫

Ωr

f((x1, y1), ..., (xr, yr))

r∏

i=1

dµpi

+





O((p1 · · ·pr)
aφ(N )N−2), level aspect

O
(

(p1···pr)b

((k1−k2+1)(k1−1)(k2−2)

)
+ O

(
(p1···pr)c

((k1−k2+1)(k1+k2−3)

)
, weight aspect

for some constants a, b, c > 0.

Proof. Take S ′ = {p1, ..., pr} in Proposition 5.3 of [21]. Then we can follow along the proof of

Theorem 1.3 of [21] by using Theorem 6.4 and 6.5 of [21]. �
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5. n-level density of degree 4 spinor L-functions

Katz and Sarnak [14] proposed a conjecture on low-lying zeros of L-functions in natural families,

which says that the distributions of the low-lying zeros of L-functions in a family F is predicted

by a symmetry type G(F) attached to F: For a given entire L-function L(s, π), we denote the

non-trivial zeros of L(s, π) by 1
2 +

√
−1γj. Since we don’t assume GRH for L(s, π), γj can be

a complex number. Let φ(x1, ..., xn) =
∏n

i=1 φi(xi) be an even Schwartz class function in each

variables whose Fourier transform φ̂(u1, ..., un) is compactly supported. We define

D(n)(π, φ) =
∑∗

j1,··· ,jn

φ

(
γj1

log cπ

2π
, γj2

log cπ

2π
, . . . , γjn

log cπ

2π

)

where
∑∗

j1,...,jn
is over ji ∈ Z (if the root number is −1) or Z\{0} with ja 6= ±jb for a 6= b, and

cπ is the analytic conductor of L(s, π).

Let F(X) be the set of L-functions in F such that X < cπ < 2X . The n-level density conjecture

says that

lim
X→∞

1

|F(X)|
∑

π∈F(X)

D(n)(π, φ) =

∫

Rn

φ(x)W (G(F)) dx,

where W (G(F)) is the n-level density function.

There are five possible symmetry types of families of L-functions: U, SO(even), SO(odd), O,

and Sp. The corresponding density functions W (G) are determined in [14] (cf. [34]). They are

W (U)(x) = det(K0(xj, xk)) 1≤j≤n
1≤k≤n

,

W (SO(even))(x) = det(K1(xj, xk)) 1≤j≤n
1≤k≤n

,

W (SO(odd))(x) = det(K−1(xj, xk)) 1≤j≤n
1≤k≤n

+

n∑

ν=1

δ(xν)det(K−1(xj, xk)) 1≤j 6=ν≤n
1≤k 6=ν≤n

,

W (Sp)(x) = det(K−1(xj, xk)) 1≤j≤n
1≤k≤n

, W (O)(x) =
1

2
(W (SO(even))(x) + W (SO(odd))(x)),

where Kε(x, y) =
sin π(x− y)

π(x− y)
+ ε

sin π(x + y)

π(x + y)
, ε ∈ {±1, 0}.

We will study the family of degree 4 spinor L-functions L(s, πF , Spin) for F ∈ HEk(N ). We

may assume that πF is not a CAP form. (For a CAP form, |aF (p)| ≤ 4p
1
2 and |aF (p2)| ≤ 4p in

(5.2). Hence if the support of φ is smaller than (−1, 1), then the sum over p in (5.2) is O(N ).

But the dimension of the space of CAP forms is O(N 7+ε). Hence it is negligible.)
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Let L(s, πF , Spin) be the degree 4 spinor L-function. Let

L(s, πF , Spin) =

∞∑

n=1

λ̃F (n)n−s.

It satisfies the functional equation:

Λ(s, πF , Spin) = q(F )
s
2 ΓC(s +

k1 + k2 − 3

2
)ΓC(s +

k1 − k2 + 1

2
)L(s, πF , Spin),

Λ(s, πF , Spin) = ε(πF )Λ(1− s, πF , Spin),

where ε(πF ) ∈ {±1} and N ≤ q(F ) ≤ N 4.

Let φ be a Schwartz function which is even and whose Fourier transform has a compact support.

Define

D(πF , φ, Spin) =
∑

γF

φ
(γF

2π
log ck,N

)
,

where log ck,N = 1
dk,N

∑
F∈HEk(N) log c(F ) for k = (k1, k2), and c(F ) = (k1+k2)

2(k1−k2+1)2q(F )

is the analytic conductor. We showed in [21] that

1

dk,N

∑

F∈HEk(N)

D(πF , φ, Spin) = φ̂(0) +
1

2
φ(0) + O

(
ω(N )

log ck,N

)
,

where ω(N ) is the number of distinct prime factors of N . So the possible symmetry type could be

O, SO(even) or SO(odd) but we cannot distinguish them because the support of φ̂ is too small.

In order to distinguish them, we need to compute the n-level density.

Let λF (pn) be the eigenvalue of the Hecke operator T (pn) for p - N . Here T (pn) is the sum of

Hecke operators Tm for m = text(pa1, pa2, p−a1+κ, p−a2+κ), where 0 ≤ a2 ≤ a1 ≤ κ.

Let T ′(pn) = T (pn)p−n
k1+k2−3

2 . Then

L(s, πF , Spin) = L(s − k1+k2−3
2 , F, Spin),

and L(s, F, Spin) =
∏

QF,p(p
−s)−1,

QF,p(t)
−1 = (1 − pk1+k2−4t2)−1

∞∑

n=0

λF (pn)tn.

Therefore

L(s, πF , Spin) =
∏

Q′
F,p(p

−s)−1,

where

Q′
F,p(t)

−1 = (1− p−1t2)−1
∞∑

n=0

λ′
F (pn)tn.
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Hence λ̃′
F (p) = λ′

F (p), and

λ̃′
F (pn) =





p−
n
2 +

n
2∑

i=1

p−
n
2
+iλ′

F (p2i), if n is even

n−1
2∑

i=0

p−
n−1

2
+iλ′

F (p2i+1), if n is odd

Therefore by [21, Theorem 8.1], we have the following. Note that T ′(p2i) is a sum of Hecke

operators and only T ′
piE4

contributes the main term p−3i.

Theorem 5.1. Put k = (k1, k2), k1 ≥ k2 ≥ 3.

(1) (level-aspect) Fix k1, k2. Then as N → ∞,

1

dk,N

∑

F∈HEk(N)

λ̃F (pn) =





∑n
2
i=0 p−

n
2
−2i + O(N−2pc), if n is even

O(N−2pc), if n is odd
,

for some constant c > 0.

(2) (weight-aspect) Fix N . Then as k1 + k2 → ∞,

1

dk,N

∑

F∈HEk(N)

λ̃F (pn) =





∑n
2
i=0 p−

n
2
−2i + O

(
pc

(k1−1)(k2−2)

)
+ O

(
p−d

(k1−k2+1)(k1+k2−3)

)
, if n is even

O
(

pc

(k1−1)(k2−2)

)
+ O

(
p−d

(k1−k2+1)(k1+k2−3)

)
, if n is odd

,

for some constants c, d > 0.

Since λ̃F is multiplicative, we have proved Theorem 1.4.

For one-level density, the root number ε(πF ) did not play a role. However, higher level density

depends on the root number.

Let S±
k (N ) be the subspace of Sk(N ) with the root number ε(πF ) = ±1. Let HE±

k (N ) be a

basis of S±
k (N ) consisting of Hecke eigenforms outside N , and denote |HE±

k (N )| = d±k,N .

When N = 1 (i.e., level one case), we have ε(πF ) = (−1)k2 ([39]). (In this case, k1 − k2 should

be even.) Hence HE+
k (1) = HEk(1) when k2 is even, and HE−

k (1) = HEk(1) when k2 is odd.

However, when N is large, we expect

Conjecture 5.1. d±k,N = 1
2dk,N +O(N 9−ε), and Theorem 1.4 is true for each subspace HE±

k (N ),

namely, for example, in level aspect, (m =
∏

p pvp(m))

1

d+
k,N

∑

F∈HE+
k (N)

λ̃F (m) = δ�m− 1
2

∏

p|m
(1 + p−2 + · · ·+ p−vp(m)) + O(N−2mc),
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We assume Conjecture 5.1 in this paper.

The calculation of the n-level density is well-known. But for the sake of completeness, we give

an outline. We follow closely [5], [34].

5.1. The case ε(πF ) = 1. We denote the non-trivial zeros of L(s, πF , Spin) by σF,i = 1
2 +

√
−1γF,i. Without assuming the GRH for L(s, πF , Spin), we can order them as

· · · ≤ Re(γF,−2) ≤ Re(γF,−1) ≤ 0 ≤ Re(γF,1) ≤ Re(γF,2) ≤ · · · .

Let φ(x1, ..., xn) = φ1(x1) · · ·φn(xn), where each φi is an even Schwartz function and φ̂(u1, ..., un) =

φ̂1(u1) · · · φ̂n(un). For a fixed n > 0, assume the Fourier transform φ̂i of φi is supported in

(−βn, βn) for i = 1, . . . , n. (βn < 1 can be explicitly determined.) The n-level density function is

(5.1) D(n)(πF , φ, Spin) =
∑∗

j1,··· ,jn
φ

(
γj1

log ck,N

2π
, γj2

log ck,N

2π
, . . . , γjn

log ck,N

2π

)

where
∑∗

j1,...,jn
is over ji = ±1,±2, ... with ja 6= ±jb for a 6= b, and log ck,N = 1

d+
k,N

∑
F∈HE+

k (N) log c(F )

for k = (k1, k2), and c(F ) = (k1 + k2)
2(k1 − k2 + 1)2q(F ) is the analytic conductor. Let

−L′

L
(s, πF , Spin) =

∞∑

n=1

Λ(n)aF (n)n−s.

Recall the one-level density function ([21], page 68):

1

dk,N

∑

F∈HEk(N)

D(1)(πF , φ, Spin) = φ̂(0)− 2

dk,N log ck,N

∑

F∈HEk(N)

∑

p

aF (p)√
p

φ̂

(
log p

log ck,N

)
(5.2)

− 2

dk,N log ck,N

∑

F∈HEk(N)

∑

p

aF (p2)

p
φ̂

(
2 logp

log ck,N

)
+ O

(
1

log ck,N

)
.

Let L run over all ways of decomposing {1, ..., n} into disjoint subsets [L1, ..., Lν]. Let ν = ν(L).

For each l = 1, ..., ν, let Φl =
∏

i∈Sl
φi.

By Rubinstein [34],

1

d+
k,N

∑

F∈HE+
k,N

D(n)(πF , φ, Spin) =
1

d+
k,N

∑

F∈HE+
k,N

∑

L

(−2)n−ν(L)(5.3)

·
ν(L)∏

l=1

(|Ll| − 1)!

(∫

R
Φl(x)dx− 2

log R
Σl,1(Φl) −

2

log ck,N
Σl,2(Φl) + O

(
1

log ck,N

))
,
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where

Σl,1(Φl) =
∑

p

aF (p) logp√
p

Φ̂l

(
log p

log ck,N

)
,

Σl,2(Φl) =
∑

p

aF (p2) logp

p
Φ̂l

(
2 logp

log ck,N

)
.

Note that
∫

R
Φl(x)dx− 2

log ck,N
Σl,1(Φl) −

2

log ck,N
Σl,2(Φl) = D(1)(πF , Φl) + O

(
1

log ck,N

)
.

We show, following Lemma 2 in [34], that we can ignore O
(

1
log ck,N

)
terms in (5.3).

Lemma 5.2.

1

d+
k,N

∑

F∈HE+
k,N

ν(L)∏

l=1

(∫

R
Φl(x)dx− 2

log ck,N
Σl,1(Φl) −

2

log ck,N
Σl,2(Φl)

)

=
1

d+
k,N

∑

F∈HE+
k,N

ν(L)∏

l=1

(
D(1)(πF , Φl)

)
+ O

(
1

log ck,N

)
.

We prove two lemmas analogous to Claim 2 and Claim 3 in Rubinstein [34].

Lemma 5.3. (Claim 2 of [34])

∑

F∈HE+
k,N

∑

mi≥1

m1m2···ma 6=�

a∏

j=1

Λ(mj)aF (mj)√
mj

Φ̂lj

(
log mj

log ck,N

)
� d+

k,N(log ck,N )a−1.

where mi’s are a prime or a square of a prime.

Proof. By changing the order of the sums, we need to consider, for p1, p2, · · · , pr, q1, q2, · · · , qt,

distinct primes,

∑

F∈HE+
k,N

aF (p1)
e1 · · ·aF (pr)

eraF (q2
1)γ1 · · ·aF (q2

t )γt,(5.4)

where e1 + · · ·+ er + γ1 + · · ·+ γt = a.

Now, by rearranging, if there exists ei = 1 for some i, we can assume that e1 = · · · = eb = 1 and

eb+1 > 1, ...er > 1. Then use the fact that λF (p)e =
∑e

i=0 ciλF (pi) for some constants ci. Hence
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aF (p1)
e1 · · ·aF (pr)

eraF (q2
1)

γ1 · · ·aF (q2
t )

γt is the sum of λF (p1 · · ·pbn), where n is not divisible by

p1, ..., pb. Hence by Theorem 1.4, (5.4) gives rise to an error term. So we have the result.

Suppose ei > 1 for all i. Then ei ≥ 3 for some i by assumption. Then we have the result by

using the bounds ([5, (4.10) and (4.11)]) :

∑

p≤Rβn

|aF (p)|i(log p)i

√
pi

�





R
βn
2 , if i = 1

(logR)2, if i = 2

O(1), if i ≥ 3.

,(5.5)

∑

p≤Rβn/2

|aF (p2)|j(log p)j

pj
�





O(logR), if j = 1

O(1), if j ≥ 2.
(5.6)

�

Lemma 5.4. (Claim 3 of [34])

1

d+
k,N

( −2

log ck,N

)a ∑

F∈HE+
k,N

∑

mi≥1

m1m2···ma=�




l∏

j=1

Λ(mj)aF (mj)√
mj

Φ̂lj

(
logmj

log ck,N

)


=
∑

S2⊆S
|S2| even



(

δπ

2

)|Sc
2| ∏

l∈Sc
2

∫

R

Φ̂l(u)du




∑

P2

2|S2|/2

|S2|/2∏

j=1

∫

R

|u|Φ̂aj(u)Φ̂bj(u)du


+ O

(
1

log ck,N

)
,

where mi’s are a prime or a square of a prime, and S = {l1, ..., la},
∑

S2⊆S
|S2| even

is over all subsets

S2 of S whose size is even, and
∑

P2
is over all ways of pairing up the elements of S2.

Proof. First of all, in (5.4), if ei ≥ 4 or γj ≥ 2 for some i, j, then by (5.5) and (5.6), those terms

are majorized by d+
k,N(log ck,N )a−1. Hence we only need to consider the sum

∑

F∈HE+
k,N

aF (p1)
2 · · ·aF (pr)

2aF (q2
1) · · ·aF (q2

t ),

where 2r + t = a. In this case, S2 = {l1, l2, ..., l2r−1, l2r}, and S = {l1, ..., l2r, l2r+1, ..., la}.
We use the fact that aF (p)2 = 1 + p−1 × (polynomials in p−1)+sum of Hecke operators, and

aF (p2) = −1 + p−1 × (polynomials in p−1)+sum of Hecke operators. �

We define

∆l,2(Φl) = Σl,2(Φl) +
1

4
Φl(0) log ck,N .
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Since
∫

R Φl(x)dx = Φ̂l(0),

(5.3) =
1

d+
k,N

∑

F∈HE+
k,N

∑

L

(−2)n−ν(L)

ν(L)∏

l=1

(|Fl| − 1)!

·
((

Φ̂l(0) +
1

2
Φl(0)

)
− 2

log ck,N
Σl,1(Φl) −

2

log ck,N
∆l,2(Φl)

)
+ O

(
1

log ck,N

)
.

The following three lemmas enable us to find an explicit expression for (5.3).

Lemma 5.5.

1

d+
k,N

( −2

log ck,N

)a ∑

F∈HE+
k,N

∆l1,2(Φl1) · · ·∆la,2(Φla) �
1

log ck,N
.

Lemma 5.6.

1

d+
k,N

( −2

log ck,N

)a ∑

F∈HE+
k,N

Σl1,1(Φl1) · · ·Σlr,1(Φlr)∆lr+1,2(Φlr+1) · · ·∆la,2(Φla) = O

(
1

log ck,N

)
.

Lemma 5.7.

1

d+
k,N

( −2

log ck,N

)a ∑

F∈HE+
k,N

Σl1,1(Φl1) · · ·Σla,1(Φla)

=





∑

P2

2
a
2

a∏

i=1

∫

R

|u|Φ̂lai
(u)Φ̂lbi

(u) du + O

(
1

log ck,N

)
, if a is even

O

(
1

log ck,N

)
, otherwise.

Here
∑

P2
is over all ways of paring up the elements of {1, 2, . . . , a}. If a = 2r, it runs through

products of 2-cycles of the form (l1l2) · · ·(l2r−1l2r). There are
(2r)!

2rr!
of them.

Therefore, we have proved

Theorem 5.8.

1

d+
k,N

∑

F∈HE+
k,N

D(n)(πF , φ, Spin) =
∑

L

(−2)n−ν(L)

ν(L)∏

l=1

(|Fl| − 1)!(5.7)

∑

S even

(∏

l∈Sc

(
Φ̂l(0) +

1

2
Φl(0)

))


∑

P2

2
|S|
2

|S|
2∏

i=1

∫

R

|u|Φ̂lai
(u)Φ̂lbi

(u) du


+ O

(
1

log ck,N

)
,
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where S runs through the subset of even cardinality in {1, ..., ν(L)}, and
∑

P2
is over all ways of

pairing up the elements of S.

We summarize it as

Theorem 5.9. Let φ(x1, ..., xn) = φ1(x1) · · ·φn(xn), where each φi is an even Schwartz function

and φ̂(u1, ..., un) = φ̂1(u1) · · · φ̂n(un). Assume the Fourier transform φ̂i of φi is supported in

(−βn, βn) for i = 1, · · · , n. Then

1

d+
k,N

∑

F∈HE+
k,N

D(n)(πF , φ, Spin) =

∫

Rn

φ(x)W (SO(even))(x) dx + O

(
ω(N )

log ck,N

)
.

5.2. The case ε(πF ) = −1. If ε(πF ) = −1, L(s, πF , Spin) always has a family zero at s = 1
2 . By

Rubinstein [34], the n-level density function is

D(n)(πF , φ, Spin) =
∑∗

j1,··· ,jn
φ

(
γj1

log ck,N

2π
, γj2

log ck,N

2π
, . . . , γjn

log ck,N

2π

)

=
∑∗

j1 6=0,...,jn 6=0
φ

(
γj1

log ck,N

2π
, γj2

log ck,N

2π
, . . . , γjn

log ck,N

2π

)

+
n∑

ν=1

∑∗
jν=0,jk 6=0,k 6=ν

φ

(
γj1

log ck,N

2π
, γj2

log ck,N

2π
, . . . , γjν−1

log ck,N

2π
, 0, γjν+1

log ck,N

2π
, . . . , γjn

log ck,N

2π

)
.

By Rubinstein [34], the first term gives rise to

1

d−k,N

∑

F∈HE−
k,N

∑∗
j1 6=0,...,jn 6=0

φ

(
γj1

log ck,N

2π
, γj2

log ck,N

2π
, . . . , γjn

log ck,N

2π

)

=
∑

L

(−2)n−ν(L)

ν(L)∏

l=1

(|Fl| − 1)!

(
Φ̂l(0)− 2Σl,1(Φl)

log ck,N
− 2Σl,2(Φl)

log ck,N
− Φl(0) + O

(
1

log ck,N

))

=
∑

L

(−2)n−ν(L)

ν(L)∏

l=1

(|Fl| − 1)!

((
Φ̂l(0)− 1

2
Φl(0)

)
− 2Σl,1(Φl)

log ck,N
− 2∆l,2(Φl)

log ck,N

)
+ O

(
1

log ck,N

)
.

It is equal to

∑

L

(−2)n−ν(L)

ν(L)∏

l=1

(|Fl| − 1)!
∑

S even

(∏

l∈Sc

(
Φ̂l(0 − 1

2
Φl(0)

))

·



∑

P2

2
|S|
2

|S|
2∏

i=1

∫

R

|u|Φ̂lai
(u)Φ̂lbi

(u) du


+ O

(
1

log ck,N

)
,
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which equals the n-level density of the symplectic type.

We summarize it as

Theorem 5.10. Let the notations be as in Theorem 5.9. Then

1

d−k,N

∑

F∈HE−
k,N

D(n)(πF , φ, Spin) =

∫

Rn
φ(x)W (SO(odd))(x) dx + O

(
ω(N )

log ck,N

)
.

6. n-level density of degree 5 standard L-functions

Let L(s, πF , St) be the degree 5 standard L-function. Let

L(s, πF , St) =
∞∑

n=1

µF (n)n−s.

It satisfies the functional equation: Let Λ(s, πF , St) = q(F, St)
s
2 ΓR(s)ΓC(s + k1 − 1)ΓC(s + k2 −

2)L(s, πF , St). Then

Λ(s, πF , St) = ε(πF , St)Λ(1− s, πF , St),

where ε(πF , St) ∈ {±1} and N ≤ q(F, St) ≤ N 28. Lapid [24] showed

Proposition 6.1. Let πF be as above. Then ε(πF , St) = 1.

In fact, Lapid proved it only for globally generic cusp forms. However, holomorphic cusp

forms are always in the same L-packet with a globally generic cusp form. Hence the result

follows. Because of the above proposition, we expect that the symmetry type of L(s, πF , St) is

Sp. However, we need the following conjecture. We showed it in [21, Proposition 9.5] when m is

of the form m = pa1
1 · · ·par

r , where pi’s are distinct primes, and ai = 1, 2 for each i.

Conjecture 6.1. Put k = (k1, k2), k1 ≥ k2 ≥ 3.

(1) (level-aspect) Fix k1, k2. Let m =
∏

p|m pvp(m). Then as N → ∞,

1

dk,N

∑

F∈HEk(N)

µF (m) =
∏

p|m
(δp,m + p−1h(p−1)) + O(N−2mc),

where δp,m =





1, if vp(m) is even

0, otherwise
,

and h is a polynomial with integer coefficients and c > 0 is a constant.
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(2) (weight-aspect) Fix N . Then as k1 + k2 → ∞,

1

dk,N

∑

F∈HEk(N)

µF (m) =
∏

p|m
(δp,m+p−1h(p−1))+O

(
mc

(k1 − 1)(k2 − 2)

)
+O

(
md

(k1 − k2 + 1)(k1 + k2 − 3)

)
.

Let

−L′

L
(s, πF , St) =

∞∑

n=1

Λ(n)bF (n)n−s.

We use the fact that bF (p)2 = 1+p−1×(polynomials in p−1)+sum of eigenvalues of Hecke operators,

and bF (p2) = 1 + p−1 × (polynomials in p−1)+sum of eigenvalues of Hecke operators.

Let φ be a Schwartz function which is even and whose Fourier transform has a compact support.

Define

D(πF , φ, St) =
∑

γF

φ
(γF

2π
log ck,st,N

)
,

where log ck,st,N = 1
dk,N

∑
F∈HEk(N) log c(F, St), and c(F, St) = (k1k2)

2q(F, St) is the analytic

conductor.

We showed in [21] that

1

dk,N

∑

F∈HEk(N)

D(πF , St, φ) = φ̂(0)−1

2
φ(0)+O

(
1

log ck,st,N

)
=

∫

R
φ(x)W (Sp)(x) dx++O

(
ω(N )

log ck,st,N

)
.

Let φ(x1, ..., xn) = φ1(x1) · · ·φn(xn), where each φi is an even Schwartz function and φ̂(u1, ..., un) =

φ̂1(u1) · · · φ̂n(un). For a fixed n > 0, assume the Fourier transform φ̂i of φi is supported in

(−βn, βn) for i = 1, . . . , n. (βn < 1 can be explicitly determined.) The n-level density function is

D(n)(πF , φ, St) =
∑∗

j1,··· ,jn
φ

(
γj1

log ck,st,N

2π
, γj2

log ck,st,N

2π
, . . . , γjn

log ck,st,N

2π

)

where
∑∗

j1,...,jn
is over ji = ±1,±2, ... with ja 6= ±jb for a 6= b. Then as in the degree 4 spinor

L-functions, we can show Theorem 1.6. (We can prove the analogues of (5.5) and (5.6) for

bF (pi) from [21, Appendix]: Let Π be the cuspidal representation of GL5/Q such that L(s, Π) =

L(s, πF , St). Then (5.5) follows from the fact that L(s, Π×Π) converges absolutely for Re(s) > 1

and has a simple pole at s = 1; (5.6) follows from the fact that |bF (p2)| � |bF (p)|2 for any p, and

the Ramanujan bound |bF (p2)| ≤ 5p1− 2
26 .)
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7. Paramodular forms

In this section, we fix a square free positive integer N . We deal with a compact subgroup

Kpara
p (N ) of level N in G(Qp), which is defined by

Kpara
p (N ) = xM4(Zp)x

−1 ∩ G(Qp), x = diag(1, 1, N, 1),

where G means GSp4 as in [21, Section 2]. We have an open compact subgroup Kpara(N ) =
∏

p Kpara
p (N ) in G(Afin). Furthermore, an arithmetic subgroup Γpara(N ) of G(Q) is given by

Γpara(N ) = G(Q) ∩ (G(R)Kpara(N )), called the paramodular subgroup. An element wN,p in

G(Qp) is given by

wN,p =




0 0 0 1

0 0 −1 0

0 −N 0 0

N 0 0 0




∈ G(Qp).

Then, the Atkin-Lehner involution on G(Qp) is provided by the double coset

Kpara
p (N )wN,pK

para
p (N ) = wN,pK

para
p (N ) = Kpara

p (N )wN,p.

Let k = (k1, k2), k1 ≥ k2 ≥ 4, and Sk(Γ
para(N )) denote the space of paramodular forms of weight

k with the trivial central character. Set d
para
k = dimSk(Γpara(N )). Then by [11],

dpara
k = 2−73−35−1(k1 − 1)(k2 − 2)(k1 − k2 + 1)(k1 + k2 − 3)

∏

p|N
(p2 + 1)

+ O(N (k1 − k2 + 1)(k1 + k2 − 3)) + O(N (k1 − 1)(k2 − 2)).

Here note that
∏

p|N(p2 + 1) = cNN 2 for some constant 1 < cN < 5.

We obtain the Hecke operator T ′
m as in [21, Section 8]. Define, for M |N , the Atkin-Lehner

involution wN,M on Sk(Γ
para(N )), where wN,M is induced from the coset

∏
p|M K

para
p (N )wN,p in

∏
p|M G(Qp).

Theorem 7.1. Suppose k1 ≥ k2 ≥ 4. There exist absolute constants a and b such that for each

prime p - N , square-free natural number M dividing N , and m = diag(pa1, pa2, p−a1+κ, p−a2+κ),

a1, a2, κ ∈ Z satisfying 0 ≤ a2 ≤ a1 ≤ κ, we have

1

dpara
k,N

tr(T ′
mwN,M |Sk(Γ

para(N ))) = B1 + B2 + O(
paκ+b

(k1 − k2 + 1)(k1 − 1)(k2 − 2)
) (k1 + k2 → ∞),

B1 = O(
p−

κ
2

(k1 − 1)(k2 − 2)
), B2 = O(

p−
κ
2

(k1 − k2 + 1)(k1 + k2 − 3)
)
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if m 6∈ ZG(Q) or M 6= 1.

Proof. We recall the notations as in Sections 5 and 6 of [21]. For the trace formula, we choose a

test function f = fξh as

h = fS′,α f̃
( ⊗

p∈S\S′t{v|N∞}
charKp

)

where f̃ denotes
(
⊗p|N,p-M charKpara

p (N)

)⊗(
⊗p|M charwN,pKpara

p (N)

)
. By the same argument as

the proof of [21, Proposition 6.3], one can show that there exist positive constants a′ and b′ such

that

I2(f) × vol(Kpara(N ))−1 × |ν(α)|−
k1+k2

2
S′ = O(pκ

S′(k1 − k2 + 1)(k1 + k2 − 3))

I3(f) × vol(Kpara(N ))−1 × |ν(α)|−
k1+k2

2
S′ = O(pκ

S′(k1 − 1)(k2 − 2)),

{I4(f) + I6(f)} × vol(Kpara(N ))−1 × |ν(α)|−
k1+k2

2
S′ = O(pa′κ+b′

S′ (k1 + k2 − 3)),

I5(f)× vol(Kpara(N ))−1 × |ν(α)|−
k1+k2

2
S′ = O(pa′κ+b′

S′ (k1 + k2 − 3))

for any (k1, k2), κ ≥ 1, S ′, and fS′,α, which satisfy the conditions k1 ≥ k2 ≥ 3, fS′,α ∈
Hur(G(QS′))κ, and N is prime to

∏
p∈S′ p. Notice that an important result [44, Proposition

8.7] was used for the proof. Thus, this theorem is derived from the above estimates. �

Let Snon-C
k (Γpara(N )) denote the space of paramodular forms whose associated representations

are not related to the Saito-Kurokawa representations. We write SCAP
k (Γpara(N )) for the sub-

space consisting of Saito-Kurokawa liftings in Sk(Γ
para(N )) (i.e., it is called the Maass space).

Hence, SCAP
k (Γpara(N )) is the orthogonal complement of Snon-C

k (Γpara(N )) in Sk(Γ
para(N )) by

the Petersson inner product. Namely, we have an isomorphism

Snon-C
k (Γpara(N )) ∼=

⊕

π=π∞⊗πfin

Nπ(Kpara(N ))

where π moves over automorphic representations of G(A) such that π has the trivial central

character, π is not a Saito-Kurokawa representation, π∞ is isomorphic to the holomorphic discrete

series of G(R) with the Harish-Chandra parameter (k1−1, k2−2), and the subspace Nπ(Kpara(N ))

of Kpara(N )-fixed vectors in πfin is not trivial. By [52, Theorem 3.3] or [22, a comment for

n = 2 after Theorem A], for each above πfin = ⊗v<∞πv , if πv is spherical, then πv satisfies the

Ramanujan conjecture. Hence, all spherical representations πv belong to the class I in [31, Table

A.13 in p.293] (see also [37, Table 3]). Hence, by [37, 31], one has an isomorphism

Nπ(Kpara(N )) ∼=
⊗

v<∞
Nπv(K

para
v (N ))
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where Nπv(K
para
p (N )) denotes the subspace of Kpara

v (N )-fixed vectors in πv , and for each prime

p|N , πp satisfies (i) or (ii);

(i) πp is spherical and dimNπp(K
para
p (N )) = 2 ,

(ii) πp is non-spherical and dimNπp(K
para
p (N )) = 1.

As for the case (i), the trace of the Atkin-Lehner involution on Nπp(K
para
p (N )) is zero. When πp

satisfies (ii), the eigenvalue of the Atkin-Lehner involution means the ε-factor of its local spinor

L-factor (see [31, Theorem 5.7.3 in p.185] or [37, Proposition 1.3.1]).

By [38], it is obvious that 1
d
para
k,N

tr(T ′
mwN,M |SCAP

k (Γpara(N ))) is negligible. Furthermore, let

S
non-C,new
k (Γpara(N )) denote the subspace of newforms in Snon-C

k (Γpara(N )). Here, newform means

that its associated automorphic representation π has no Kpara(M)-fixed vectors for any natural

number M such that M |N and M < N . Namely,

Snon-C,new
k (Γpara(N )) ∼=

⊕

π=⊗vπv

Nπ(Kpara(N ))

where π moves over all automorphic representations satisfying the same conditions as above and

πp is of the case (ii) for each p|N . Therefore, one has

tr(T ′
m|Snon-C,new

k (Γpara(N ))) =
∑

M |N
(−2)ω(M )tr(T ′

m|Snon-C
k (Γpara(N/M)))

where ω(M) is the number of distinct prime factors of M .

Let S
non-C,new,+
k (Γpara(N )) (resp. S

non-C,new,−
k (Γpara(N ))) denote the subspace of newforms

whose ε-factors are 1 (resp. −1). By the above mentioned arguments, one gets

tr(T ′
m|Snon−C,new,±

k (Γpara(N )))

=
1

2

[
tr(T ′

m|Snon-C,new
k (Γpara(N )))± (−1)k2tr(T ′

mwN,N |Snon-C
k (Γpara(N )))

]
,

Therefore, if we set

dpara,new,±
k = dimSnon-C,new,±

k (Γpara(N ))),

then by [11] and Theorem 7.1,

dpara,new,±
k = 2−83−35−1(k1 − 1)(k2 − 2)(k1 − k2 + 1)(k1 + k2 − 3)

∏

p|N
(p2 − 1)

+ O(N (k1 − k2 + 1)(k1 + k2 − 3)) + O(N (k1 − 1)(k2 − 2)).
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Furthermore, by Theorem 7.1, there exist absolute constants a and b such that for each prime

p - N and m = diag(pa1, pa2, p−a1+κ, p−a2+κ), a1, a2, κ ∈ Z satisfying 0 ≤ a2 ≤ a1 ≤ κ and

m 6∈ ZG(Q),

1

dpara,new,±
k,N

tr(T ′
m|Snon−C,new,±

k (Γpara(N ))) = B1 + B2 + O(
paκ+b

(k1 − k2 + 1)(k1 − 1)(k2 − 2)
).

Hence we have proved Conjecture 5.1 for paramodular newforms. Therefore, we have proved

n-level density for spinor L-functions of paramodular newforms in weight aspect (analogues of

Theorem 5.9 and Theorem 5.10 for paramodular forms).

In a similar way, we can show a simultaneous vertical Sato-Tate theorem for paramodular

forms (analogue of Theorem 4.1).
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GSp(4). Astérisque No. 302 (2005), 1–66.

[27] T. Liu, and J-K. Yu, On automorphy of certain Galois representations of GO4-type. With an appendix by

Liang Xiao, J. Number Theory 161 (2016), 49–74.

[28] B. Mazur, Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. No. 47 (1977),

33-186.

[29] S.J. Miller, One- and two-level densities for rational families of elliptic curves: evidence for the underlying

group symmetries, Comp. Math. 140 (2004), 952–992.

[30] R. Murty and K. Sinha, Effective equidistribution of eigenvalues of Hecke operators. J. Number Theory 129

(2009), no. 3, 681–714.

[31] B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Math. vol 1918, 2007.

[32] J. Rohlfs and B. Speh, On limit multiplicities of representations with cohomology in the cuspidal spectrum,

Duke Math. J. 55 (1987), no. 1, 199-211.

[33] E. Royer, Facteurs Q-simples de J0(N) de grande dimension et de grand rang, Bull. Soc. Math. France., Vol.

128 (2000), no. 2, 219–248.

[34] M. Rubinstein, Low-lying zeros of L-functions and random matrix theory, Duke Math. J. 109 (2001), no. 1,

147–181.



HECKE FIELDS AND n-LEVEL DENSITY 31

[35] P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, Analytic number theory and Diophantine

problems (Stillwater, OK, 1984), 321-331, Progr. Math., 70, Birkhäuser Boston, Boston, MA, 1987.
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